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1. Introduction 

Let a~ and b0, i , j  = 1,...,n be real numbers depending on n. We are 
interested in statistics of the form ~ a#b~R,, where R1,..., R, is a random 

i#j 

permutation of 1,..., n, all permutations being equally likely. The ag and b# 
will be referred to as scores. The statistics are called "double-indexed linear 
permutation statistics" so as to distinguish them from single-indexed ones, 
being of the form Y~aibg. Double-indexed permutation statistics have been 
first considered by Daniels (1944) who gave sufficient conditions for their 
asymptotic normality as n --- oo. Later they appeared in various contexts: as 
a measure of association between graphs (Friedman and Rafsky (1983)), as 
a measure of spatial correlation (Cliff and Ord (1981)) and as a multi- 
variate two-sample test statistic (Friedman and Rafsky (1979) and Schilling 
(1986)). In these contexts, the scores are symmetric (au = aji, bu = bji) while 
in Daniels' paper they are asymmetric. Therefore, only these two types of 
scores will be considered here. Note that this restriction is needed for just 
one set of the scores, since the other one, the a0, say, may then be 
symmetrized by (a# + aj~)/2, or asymmetrized by (a# - aj~)/2, without chang- 
ing the value of the statistic. 

The purpose of the present paper is to find sufficient conditions for the 
asymptotic normality of the above statistics. We shall show that under 
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certain circumstances, this problem can be reduced to that of a single- 
indexed linear permutation statistic, which has been extensively studied in 
the literature (see, for example, Puri and Sen (1971), pp. 70-76). Daniels' 
conditions will be seen to be sufficient to permit this reduction and also to 
ensure the asymptotic normali ty of the corresponding single-indexed 
statistic. However, this reduction is not possible if row (or column) sums of 
one set of scores are nearly constant. Such situations may frequently arise 
when the scores correspond to a sparse graph. This case will be studied in 
some detail and sufficient conditions for asymptotic normality are provid- 
ed. Friedman and Rafsky (1983), on the other hand, claimed that Daniels' 

E 2 conditions for asymptotic normality can be weakened to Ea~ = 0, (auaikail)  / 

(~,a#ai~) 3--" O, plus similar conditions on the bu. However, they did not 

give an explicit proof  for their results and merely stated that they could be 
obtained by a similar argument as in Daniels (1944). It is not at all clear to 
us how this can be achieved. Moreover, they applied their conditions to 
raw scores ao and b~/for which the condition Y~ao = 0 = ]~b U does not hold. 
Of course, the scores can be centered to satisfy this condition, but then 
both the numerator and denominator in Friedman and Rafsky's conditions 
would change. Centering would make them vanish, if the row sums of the 
scores are constant, unless the summation is restricted to distinct sub- 
scripts. There are situations for which the asymptotic distribution of the 
statistic is not normal despite Friedman and Rafsky's conditions being 
satisfied, whether in terms of raw or centered scores (see Section 2). 
Nevertheless, our results show that under certain conditions, reducing the 
double-indexed case to the single-indexed one is possible, and then 
Friedman and Rafsky's conditions suffice for asymptotic normality. 

Since the definition of the present statistics does not involve the a~; and 
b,, we will assume, for convenience, that they are zero. Further, E will 
denote the summation over all subscripts and E'  the same summation but 
restricted to distinct values of them only. Upper case letters will be used to 
indicate score variables with "randomly permuted" indexes, for example, 
Bo denotes bR,e~. 

2. Reduction to the single-indexed case 

The main idea is to decompose the space of scores in a way similar to 
the analysis of variance. Let E denote the space of square matrices of order 
n with vanishing diagonal. Let E0, El and E2 be the subspaces of E con- 
sisting of matrices with constant off-diagonal elements, with off-diagonal 
elements of the general form c; + dj, Ec,. = ~dj  = 0, and with vanishing row 
and column sums, respectively. Since only symmetric and asymmetric 
scores are considered, we introduce the subspaces Ek +, Ek- of Ek, k = O, 1,2, 
consisting of symmetric and asymmetric matrices, respectively. Clearly, 
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E0, E1 and E2 are orthogonal  to each other (identifying E with R "l"- 1)), and 
so are the corresponding symmetric or asymmetric subspaces. Put 

1 
at = ao ~,akl if i # j ,  = 0 otherwise,  

(2.1) n ( n -  1) 

a'+ = ~. a;,  a:j = ~i a~ , J 

so that Za~. = Za'+ = a'j  = 0. Define, in the symmetric case, 

1 
(2.2) a* = a,~ n - 2 (a[+ + a~j) if i # j ,  = 0 otherwise.  

Then, since ]~a;j = 0, 

n - 1  1 ]~a* = a[+ - -  a'+ ~. 
n - 2  n - 2  a ; j = 0 ,  

and hence, the matrix (a*) belongs to E2 +. Thus, any symmetric matrix (ao) 
in E can be written as a sum of elements of Eo +, E (  and E~: 

1 1 
ao" - n (n  - 1) Kakt + ~n - -2 (a'+ + a#) + a*, i # j . 

Similarly, in the asymmetric case, the matrix (a*) defined by 

(2.2') a* = ao - 1 (a'+ + aIj) if i C j,  = 0 otherwise,  
n 

belongs to E ; .  Thus, any asymmetric matrix (au) in E can be written as a 
sum of elements of El- and E; :  

1 
= - -  (aA + a~j) + a~ ,  i # j ,  

n 

since ao = a~. 
Define ' * bu, bij 

symmetric case, 
and b;+, b~j in the same way. It follows that in the 

(2.3) ]EaijBij = Y~a*B* + 2 + c o n s t .  

and in the asymmetric case, 
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2 
(2.3') ~aoB~ = Y,a*B* + - -  ( Ea[+B[÷ ) . 

n 

Let T,, U, and V, denote the left-hand side and the first and second 
terms of the right-hand side of (2.3) or (2.3'), respectively, and let t, 2, u. 2 and 
o, 2 be their variances. One has EU,, = El,', = 0 and 

(7". - ET , ) /o ,  = (U. /u . ) (u . /o . )  + (V. /o . )  . 

Thus, if u . /o .  --. 0, the variance of (7". - ET . ) / v . ,  which is t.2/0.2 tends to 1 
and hence, ( I " . -  E T . ) / t .  has the same limiting distribution as V./o. .  Note 
that V. is a single-indexed linear permutation statistic. Similarly, if 
o./ u. --" O, (7 .  - El'.)~ t. has the same limiting distribution as U./ u.. 

The variance of the linear permutation statistic Ea~iB~i is well known 
(see, for example, Puri and Sen (1971), p. 73). We have, in the symmetric 
case, 

(2.4) : 4 ( ~ , a [ : + ) ( Y ~ b f ~ ) / [ ( n  2)2(n 1)], O n  = - -  - -  

and in the asymmetric case, 

(2.4') o 2 = 4( Y~af+ )( ~,b '2)/[n2(n - 1)]. 

In order to compute u 2, observe that E(BoBkt) does not depend on the 
particular indexes i , j ,  k and l, but only on whether and how many of them 
are tied. Hence, 

_ 4 , , 2 2 (y~a .2) (y~b~2)+ ( Y ? a * a ~ ) ( ~ , b o b ~ )  
u. n ( n -  1) n ( n -  1) (n -2 )  

+ 1 
n ( n -  1)(n-  2 ) (n -  3) (Z 'a*a*) (Z 'b*b '~ t ) .  

Note that ~Z'a*a~ ~,a~ 2 since a* + + ai* = 0. Similarly, ao akt = 
Z a  .2 + Za*aj*. Thus, in the symmetric case, 

2 2 (y~a,2)(y~b.2)  
(2.5) u, - n ( n - -  3) ' 

and in the asymmetric case, 

( 2 . 5 ' )  u.: = 
2 *2 *2 

(n - 1)(n - 2) (~'aO")(~'bO ) .  
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From the above arguments, one thus gets the following result. 

LEMMA 2.1. Under the condition 

(RO)  n[(~a*2)(]~b*2)]/[(Y,a'2)(]~bf2+)]--O as n - - n o ,  

the asymptot ic  distribution o f  1", - El ' . ,  where I", = Y~auBo, is the same as 
that of(2~ n) Y2a'+B[÷. 

Note that by (2.2) and (2.2') and the Pythagorean theorem, Y,a .2 may 

be obtained by Y.a~ 2 -  2(Zaf)/(n-2) in the symmetric case or Y.a~ ? -  

2( Y~a "2)/n in the asymmetric case. Hence, a stronger condition, but easier 

to check, is obtained from (R0) by just replacing ao,* bo* with ao,' b v.' 
In many applications, one of the score set, the bo say, satisfies 

(~b*2)/(Zbf2+) = O(n-') ,  (]~[b;+lr)/(Zb;2+) r/2= O ( n l - r / 2 )  . 

For example, this holds when bu = bibj (for i # j ) ,  where bi is the indicator 
function of a subset of m elements of {1,...,n} with n / m ,  n / ( n - m )  
bounded. Then (R0) is equivalent to 

(R1) 0, 

and the single-indexed linear permutation statistic ]~ai+Bi+ is asymptotically 

normal if (]~[a[+lr)/(Y~a[2) r/2--* 0 for some r > 2 (Hoeffding (1951)). Note 

that if positive raw scores a0 are used in place of centered scores a~-, the last 
condition, with r = 3, is just Friedman and Rafsky's (1983) condition. Since 

= (Y, a i+)/n ,  i t c a n b e s e e n  a[÷ ai+ - ~,ai+/n by (2.1), implying ~,a "2 = Zai2+ - 2 

from the triangular inequality that one may replace centered scores by raw 

scores if l imsup(Y ,  ai+)2/(nEa2+)< 1. Under the last condition, (R1) is  

equivalent to (]~a 2)/(]~a2+)--- 0, being a mild requirement. 

]~ ' - ' - '  ]~a[ 2 ]~a/~ 2, D a n i e l s '  conditions, Remarks .  (1) Since uouik = - 
namely liminf(Y~'a[ia[k)/(n 3 max a,~ 2) > 0 and the same for the bo, imply 

(Z, ab 2 ) / (  Z a  "2 ) = O(n -~) and the same for the bu. Hence, (R0) with a~., bb. in 

place of a*, b*, is fulfilled. Daniels' conditions are also sufficient to ensure 
the asymptotic normality of Ea'÷B~+ (compare Puri and Sen (1971), Chapter 
3.4). It is clear that they are by far too strong, since only (R0) and a further 
mild condition on the a'+ and b;÷ suffice to ensure asymptotic normality. 

(2) The above derivations crucially depend on the fact that u, /o ,  --" O. 
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If this is not true, asymptotic normality may not hold. For example, 
suppose n is even and take a0= 1 if i # j  and are both in I or I ' ,  = 0 
otherwise, where I is a subset of {1,...,n} with n/2 elements and I '  is the 
complement of I. The row sums of these scores are constant, and the 
centered scores, for i ~ j ,  are a~. = n/[2(n - 1)] if i , j  are both in I or I ' ,  
= - (n/2 - 1 ) / ( n -  1) otherwise. Thus, a,~ : a~aj + l /[2(n - 1)], i # j ,  where 
ai = 2-1/2 or - 2 -1/2 according to whether i is in I or I ' .  Define b0 and b; in 
the same way with respect to another subset J of {1,..., n}. Then EaoBo = 

(~,a~Bi) 2 - VZa2B2 + (1/4)n/(n - 1). By using the results on the asymptotic 

normality of the single-indexed permutation statistic, it can be seen that 
4/n times the above random variable is asymptotically distributed like 
Z ~ -  1, Z being a standard normal variate. Thus, asymptotic normality 
does not hold in this case. Note that the a0, as well as a,~ satisfy Friedman 
and Rafsky's (1983) conditions (for centered scores, summation over 
distinct subscripts is assumed, since otherwise an indeterminate expression 
0/0 arises). Note that (R0) is not satisfied here, since a~'÷ = b;+ = 0 for all i. 

(3) Shapiro and Hubert (1979) have derived conditions for the 
asymptotic normality of the permutation statistic by relating it to a statistic 
of the form W =  ~,'doa(X~,Xi), where the X, are independent random 
variables. Their conditions correspond to the case u,/o,  --" 0 (condition AE 
of their Lemma 2.1) and are rather strong (conditions A3-A4). It is 
surprising to us that they did not center the scores do. Centering seems to 
be indispensable, since the variance of the permutation statistic E'doA o, but 
not that of W, is zero if the d~ are constant. The proof of their Theorem 3.1 
would not be valid if the do were constant (or almost so) and not centered. 

(4) It can be easily seen that the covariance of Y.a*B~0 with ~,a[+B;+ 
vanishes. This immediately yields the variance of EaoBo: 

(2.6) tE.=4(Z, afE+)(Z,b;2+)/t(n-2)2(n - 1)]+ 2 ( E a * 2 ) ( E b * 2 ) / t n ( n -  3)], 

in the symmetric case and 

(2.6') t2=4(~a'2)(Y.b;2) /[nZ(n - I)] + 2 ( Y . a * 2 ) ( ~ b * Z ) / [ ( n - l ) ( n -  2)], 

in the asymmetric case. 

3. The irreducible case 

We first consider the case where the ratio of variances o,/u,  -- 0. In 
this case, t n / u ~ -  1 and the statistic ( T , -  ET,)/t~ has the same limiting 
distribution as U~/u~. We may drop the sign * in bi~ by adding the 
condition that row and column sums of these scores vanish. Then, a* may 
be replaced by a0 as well, since this does not alter the value of the statistic. 
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For ease of reading, proofs are relegated to the end of this section. 

THEOREM 3.1. Suppose that the scores satisfy 

(AI) max(  ~la~l ) =  O[(Ea~)l(nmax lauI)], 

(A2) (~a2)l(n 2 max a~) --- 0 

(B0) ~.b,~=0 for all i ,  
J 

(B1) Elbo.l'ln 2:  O[(Eb~ln2)'12], 

a s  n ---.  o o  , 

r =  3,4,.. . .  

7hen, ,  ,,,- , . , ,  . , ,  l [ ~ . a i j B u j / t 2 t ] g a ~ j [ E b # ) l n 2 j , / 2  converges in distr ibut ion to a stan- 

dard normal variate. 

Note that Cliff and Ord (1981) gave a similar result, but without an 
explicit proof. Conditions (B0) and (B1) reduce to those of Cliff and Ord if 
b/j is of the form bibj for i~ j .  Our conditions (A1) and (A2) are weaker 

than their conditions on the no, namely max (~a0.)bounded and ~,a2/n -, 

7 > 0 (no >-0 and sum to n). Indeed, from the last conditions, max au <- 

(~ao) which is bounded, and max au > (Ea2)/(~,a0) which tends to m a x  
i ' 

? > 0, hence, (A1) and (A2) hold. 
As a related result, we mention Theorem 4.1.2 of Bloemena (1964), 

which gives a sufficient condition for the conditional asymptotic normality 
of the two sample test statistic of Schilling (1986) and Henze ((1988), 
Propositions 2.1 and 2.2). 

Conditions (A1) and (A2) suffice for most applications. The first one 
requires that the row sums are roughly evenly distributed, the second one 
that the scores are "sparse", in the sense that most of them are zero or 
small with respect to their maximum absolute value. This guarantees to 
exclude that ao takes the form of a product aiaj, which, as was seen earlier, 
can lead to a non-normal limiting distribution. 

By the argument given at the beginning of this section, the above 
result still holds if in (A1) and (A2) the aij are replaced by centered scores 
a,~ or reduced scores a*. Call the corresponding conditions (A'l), (A'2) and 

(g* l ) ,  (g*2). Since ~ai~ .2= ~ai2-(~,aij)21[n(n - 1)] and l~aij/n[ < 
/ x 

max/~]a0.  I ), it can be seen that (A1)and (g2) imply  ( g ' l ) a n d  (A'2). 
x - -  I 

Similarly, (A'I) and (A'2) imply (A ' l )  and (A*2). The converse may not 
hold. Thus, (A*I) and (A*2) are weaker than (A1) and (A2), but in practice 
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the latter conditions are easier to check. Similarly, it would be convenient 
to have conditions on the centered scores and not on the reduced scores, as 
required by (B0). Thus, consider instead of (B0) 

(B'O) ~,bo = O, 

meaning that the b0 are centered. Since (A'I) and (A'2) already imply 

(Y~ag)/(nZ, a*2)--O, from (2.4) and (2.5) or (2.4') and (2.5'), the condi- 

tion o,/ u, --" 0 holds if 

(B'I) Y~b~+ = O ( ] ~ b 2 ) .  

From (2.2) or (2.2') with the b's in place of the a's and using the triangular 
inequality (in the l r norm), it can be seen that condition (B1) holds for b* if 

it holds for b~ and Zlbi+l~/n = O[(Zb2)r/2]. Put xi= [bi+l/(y.b2+) 1/2, then 

x,_<l and hence, Z x / < Z x  2= 1, giving Z lb~+l~<(Zb2+) r/z. Thus, (B'l) 

implies E I bi+l ~= O[( Y~b 2)~/2 ]. Hence, in Theorem 3.1, (B0) can be replaced 
by (B'0) and (B'I). 

The general case where the ratio u,/o, neither converges to 0 nor to 
infinity is difficult to treat. Nevertheless, under rather strong conditions on 
the scores ag, asymptotic normality still holds. 

THEOREM 3.2. Suppose that the scores satisfy (B'O)'and 

(A'0) 

(A'l) 

(A'2) 

(B"I) 

~a,j = 0 ,  

max(  ~la~l )= O(max lao[) , 

liminf (Za~-)/(n max a~.) > O, 

limsup (ZbZi÷/n)/( Zb~)< 1. 

Then, ( ~,auBiy)l w,, where 

wn2 = 4(~,aijaik)(~,,bijbik)/n3 + 2(Za )(Zb )l.2 

converges in distribution to a standard normal variate. 

Remark. Under (A'0) and (B'0), one has Z'auaik : Za?÷ - Za~ and a 
similar equality for the b~. Hence, 



NORMALITY OF PERMUTATION STATISTICS 423 

2 w, = [4(n - 2) /n4] (Ea /2+)(EH+)  

+(2/n2) (~ai~-2~ ,a i2+)(~b2-2~,b2+)  + (4/n3)(Y, ai~)(Zb~). 

Condi t ions  (A'I),  (A'2) and (B"I) imply that  the last term in the above 
r ight-hand side is negligible with respect to the second. It can then be seen 
that  w, is equivalent to t,, as given by (2.6) or (2.6'). 

PROOF OF THEOREM 3.1. The method  of p roof  consists of showing 

that  the moments  of the r a n d o m  variable (~aoBo)/(llall Ilbll/n) where 
[ ~  2~1/2 

[lall--I,z, ao) , Ilbll = (Eb2 )  ~/2, tend to those of a normal  variate with 

zero mean  and variance 2. We shall assume that  the scores are symmetric. 
The p roof  for asymmetric scores needs only minor  modifications to account  
for the fact that  Eai:.aj~ = - Ilall 2 and not Ilall = as in the symmetric  case. 
For  convenience we shall normalize the ao so that  max [aol -- 1, and use 
some terminology of graph theory.  A graph G may be defined as a finite 
collection of pairs (/z, v) of integers, called edges. The integers occurring in 
those pairs are called nodes. We allow graphs with multiple edges, meaning 
that  the above pairs need not  be distinct. The nota t ion  I GI will denote  the 
number  of nodes in G, which, for convenience, will be labelled as 1,..., I GI. 
For  any part i t ion of the set {1,..., r} × {1, 2}, one may associate a graph 
with r edges (distinct or not) as follows. For  k = 1,..., r, let P,, and Pv, be 
the sets of the part i t ion containing the points  (k, 1) and (k, 2), respectively, 
then the k-th edge of the associated graph is (g, v), = (/z,, Vk). Call G(r) the 
set of all graphs constructed this way. For  a graph G, we put 

Y~(a, G) = E' H ai, i, 
i j , . . . ,  i1~1 (fl, v) ¢ G 

and similarly for E(b,  G). Then it can be seen that  the m o m e n t  of order r 
of 'EauBu is the sum of terms of the form 

M(G) = E ( FI Bi~i, ) ~,(a, G) - 
(j,k) ~ G 

( n -  I GI)! E ( b , G )  ~ ( a , G ) ,  
n! 

over all graphs G in G(r). Note that  because of the condi t ion aii = 0, we 
only need to consider graphs where no node is linked to itself. 

Let v be a terminal  node  of G, in the sense that  there is just  one 
(single) edge linked to it. This edge could be of the form (/z, v) or (v,/t), 
/t ~ v. We shall consider only the first case since the argument  for the 
second case is similar. Then,  f rom the fact that  co lumn sums of the b~ are 
zero, 
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Z(b, G) -- - ~ Z (b, Ga), l<_;t<_lGl,,~,v 
where G~ is the graph obtained from G by replacing the edges (/~, v) by 
(2, v). Repeating this argument, it is seen that E(b, G) can be written as a 
sum of a number (not depending on n) of terms of the form ~,(b, G'), 
where G' is a graph obtained from G by successively replacing an edge 
linking to a terminal node by another edge linking to a different node in 
the graph, until there are no terminal nodes left. If t is the number of 
terminal nodes in G, then clearly G' can have at most I GI - (t:2) nodes 
where (t:2) denotes the smallest integer greater than t /2.  On the other 
hand, by Htilder's inequality, with the nodes of G' relabelled as 1,..., I G'I, 

)l/r 
I E(b ,G ' ) l  <_ H E Ibi, i~l' , 

(/~, v) ~ G' i~,...,i IG,I 

r being the number of edges of G', the same as that of G. The sum in the 
above parentheses equals n IG'L E lbi~lr/n 2, which is O(nt~'lllbllr/n r) by (B1). 
Hence, E(b, G) = O(n IcI-C':2)-rllbllr). If r -- 2p and G is a union o fp  disjoint 
subgraphs G1,..., Gp of the form {(/~, v), (v,/z)} or {(/z, v), (/z, v)}, one further 

P 
has Y,(b, G) = H ~,(b, Gq) + o( [ [b i i  2p) = Ilbtt2p[1 + o(1)]. Indeed, the re- 

q=l  

mainder term is a sum of terms of the form E(b, G') with G' having the 
same number of edges as G but I G'l < I GI. Call G*(2p) the set of all such 
graphs G. We shall show below that for all graphs G with r edges and t 
terminal nodes, n-t':2)E(a, G)/Ilall ~ tends to I, if r is even and G ~ G*(r), 
and to 0 otherwise. (Note that in the first case, I GI -- r and t = 0 necessari- 
ly.) This would imply that M(a) / ( l l a l l  [Ibll/n) r -" 0 unless r is even and G 
G*(r), in which case the limit is 1. Now, the number of elements of G*(2p) 
is 2 p times the number of ways one can pick p pairs of bails from an urn 
containing 2p bails, that is, (2p)!/p!.  This equals precisely the 2p-th 
moment of a normal variate with mean zero and variance 2, and Theorem 
3.1 is then proved. 

We now show the above assertion. Observe that if G is the union of 
two disjoint subgraphs G' and G", say, then E(lal, G) _< E(lal, G') E(lal, G') 
where T.(lal, G) is defined in the same way as E(a, G) with la#l in place of 
a~. Thus, we only need to show that for any connected graph G, that is a 
graph which cannot be decomposed as a union of disjoint subgraphs, with t 
terminal nodes and r edges, n(':2)E(lal, G)/liall r-" 0, unless G e G*(2p). 
Consider first the case that G is a tree, that is a connected graph without 
cycles, where a cycle is a sequence of edges of the form (i~,i2),..., 
(ik-1, ik), (ik, il). Then, ~([al ,  G) = O[(n Ilal12) IGt ~] = O(llall/n) tcl-211allIGt. 
This is seen by summing first with respect to the subscript iv, v being a 
terminal node of G, showing that the above left-hand side is bounded by 
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/ \ 

~ tauI} E(la[ G'), G' being the subtree of G without the max edge linking 
j • 

% g 

to v, then using (A1) and repeating the argument. The above result still 
holds for a connected graph, since by suppressing redundant edges, we get 
a tree with the same number of nodes and Y.(la[, G) can only decrease. It 
follows that for a connected graph, 

n-~':2~E(lal, G)I Ilall' = O[n-~':2~llall ici-'(llall In)lGI-2]. 

But 2(I GI - t) + t ~ 2r, or equivalently I GI - r < t/2, hence the above 
right-hand side, by (A2) tends to 0 as n goes to infinity, unless t = 0, 
I GI = r -- 2. This desired result follows from the fact that a general graph 
can always be written as a union of disjoint connected subgraphs. 

PROOF OF THEOREM 3.2. The argument is similar to that given in 
the proof of Theorem 3.1 and we shall use the same notation. Note that if 
the ao satisfy (A'l) and (A'2), then a~. also satisfy the same conditions. 
Thus, we may replace au by a~., which for convenience will be denoted again 
by av, and will be normalized such that max l a~l = 1. 

We need to show that the moments of (Y, ao.Bo.)/w, tend to those of a 

standard normal variate. The moment of order r of Y~auB~ is the sum of 
M(G) --- [(n - ]Gl)!/n!] Y.(a, G) X,(b, G) over all graphs G in G(r). Call an 
edge isolated if it does not share any node with others. By the same 
argument as in the proof of Theorem 3.1, E(b, G) can be written as a sum 
of terms of the form Y.(a, G') where G' is obtained from G by replacing 
each isolated edge by another edge sharing a common node with it, and 
E(b, G') = O(nl~'l-rllbllr). Note that if G has s isolated edges, then ]G'I can 
not exceed [G[ - (s:2), hence, ~(a,  G) = O(nl~'l-t':2)-rllbJ['). On the other 
hand, by (A"I), E(lal ,  G) -- O(n) for any connected graph, and hence, if 
G is the union of c disjoint connected subgraphs, then E(a, G ) =  O(nC). 
However, if s among them are actually isolated edges, then, as above, 
E(a, G) can be written as a sum of terms of the form Y~(a, G') with G' 
having no isolated edges and at most c -  (s:2) connected disjoint sub- 
graphs. From this and (A'2), Y~(lal, G)/Ilall ~= O(nC-~:2)-'/z), r being the 
number of edges of G. But 2(c - s) + s < r or equivalently c <_ r/2 + s/2, 
with equality if and only if all connected subgraphs of G have at most 2 
edges. Therefore, M(G) = o[(llall Ilbll/n )r] unless G is a union of disjoint 
connected subgraphs each having exactly two edges. Suppose that this is 
the case and let G1,..., Gp denote the corresponding subgraphs of G. Then, 

P P 

H X,(b, Gq) - E(b, G) a n d  q~=l ~,(a, Gq) - Z(a, G) are sums of terms of the 
q = l  = 

form E(b, G') and Y.(a, G'), respectively, where G' is a graph obtained 
from G by grouping at least one set of nodes from different Gq and 
replacing the edges linking them by the ones linking the resulting nodes. By 
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the above results, the first sum is o(n I~1 2~jlbll2P), and since G' can have at 
most p -  1 disjoint connected subgraphs, the second sum is o(11alt2% 

P 2p 
Hence ,  M ( G )  = 1-I E(a,  Gq)X,(b, Gq)/n I~lq + o(wn ), since E(b ,  G) : 

q=l  

O(nIGt-2pIIbII2P ) and E(a, G) = O([[all2P). 
Thus, we have shown that the moments  of odd order r of  E'aijBg are 

o(w~) and the moments  of even order r - - 2 p  are given by the sum of 
q 

H ~,(a, Gq)Y,(b, Gq)/nlat~+o(w 2p) over all sets of  p disjoint connected 
k=l 

graphs each having two edges, with union in G(2p). To compute this sum, 
note that such subgraphs can have two or three nodes; those with two 
nodes can have two different forms: {(/~, v), (v, /0} or {(/z, v), (/z, v)}, and 
those with three nodes can have four different forms: {(/z, v),(~t,2)} or 
{(/t, v), (v, 2)} or {(p, v), (2, v)} or {(/~, v), (2,/t)}. Now, each graph in G(2p) 
can be identified with a partition of {1,...,2p} × {1,2} as explained at the 
beginning of the proof  of Theorem 3.1, and the above subgraphs can be 
identified with a partition of {p~,p2} × {1,2} where p~,p2 is a pair of  
integers in {1,...,2p}. Thus, the number  of ways one can choose l ,m 
subgraphs as above, with two and three nodes, respectively, amounts to 
214m(2p)!/(2Pl!m!). It follows that the considered sum is [(2p)!/(2Pp!)]w 2p, 
up to a term o(w2p). But the last expression is precisely the 2p-th moment  
of a normal  variate with mean zero and variance w 2. The proof  is 
completed. 
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