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Abstract. The Bayes estimation of hazard rates for a family of multi- 
plicative point processes is considered. We study the model for which a 
hazard rate can be linearly parametrized by a freely varied measure. The 
weighted gamma process is assumed to be the prior distribution of this 
measure; the posterior distributions and the posterior means are given in 
explicit forms. Examples of the evaluation of posterior means are given. 
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1. Introduction 

An important  problem in statistics is the estimation of the hazard rate 
of a point process. Estimation procedures appropriate for parametric 
models can be found in the literature of life table analysis and competing 
risks models (Chiang (1968)), Poisson point process models (Brown (1972), 
Grandell (1972) and Clevenson and Zidek (1977)) and general point process 
models (Lewis (1972)). Aalen (1978) presented a unified theory of non- 
parametric inference for the cumulative hazards of a multiplicative count- 
ing process from a frequentist viewpoint; he showed that the above models 
as well as models in reliability theory, Markov chains with censoring, and 
birth and death process are special cases of the multiplicative counting 
process model. Bayesian inference for the Poisson point process was 
considered by Lo (1982); the parameters of interest are also the cumulative 
hazards (also called cumulative intensities). 

In this paper, we consider the Bayes estimation of the derivatives of 
the cumulative hazards (called hazard rates) for a multiplicative counting 
process model. The idea of our approach is that estimating a density and 
estimating a hazard rate are analogous affairs, and a successful attempt of 
one generally leads to a feasible approach for the other. The approach 
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taken here is then based on the mixture method developed in Lo ((1984), 
referred to as Part I hereafter) for the Bayes estimation of a density; the 
difference is in the choice of a weighted gamma process as the prior 
distribution on the mixing measure. Dykstra and Laud's (1981) results in 
reliability theory are shown to be special cases. 

In Section 2, the multiplicative counting process (Aalen (1978)) and its 
associated likelihood function are introduced and illustrated using simple 
examples. Section 3 discusses weighted gamma priors and presents a key 
tool of this paper: a Fubini-type lemma for the weighted gamma random 
measure. Applications of this lemma to the study of the path property of a 
weighted gamma random measure and the Bayes estimation of the cumula- 
tive intensity of a nonhomogeneous Poisson process are given; the connec- 
tion of this lemma and a similar result on the Dirichlet process are also 
discussed. Section 4 shows that if the prior distribution of the mixing 
measure is a weighted gamma distribution, the posterior distribution is a 
mixture of weighted gamma distributions, and the posterior mean can be 
derived in an explicit form. Section 5 discusses the choice of priors. Section 
6 discusses a Monte Carlo method for evaluating some posterior quantities 
using the Chinese restaurant process of sampling partitions (Aldous (1985) 
and Kuo (1986); this method can also be used to approximate posterior 
quantities appearing in Lo (1984)); numerical examples are given• 

Some of the results in this paper appeared in Lo (1978). 

2. The likelihood function for the hazard rates in mixture models 

2.1 

that 

The likelihood function 
Let N(t) = (N,(t),..., Nq(t)), t ~ [0, 1] be a vector counting process, such 

(i) each Nj(t) is a right continuous point process with jump size one, 
(ii) at any instant, at most one jump can occur in any of the 

component processes, 
(iii) ENj(1) < ¢~ for each j, and 
(iv) the jump times are totally inaccessible; i.e., for any sequence of 

stopping times $1,..., S,,..., P{~im Sk = T, and Sk < T, for all k} = 0 (Meyer 

(1966)), where T,, Tz,.. TN'(,) are the jump times, and N*(1) = ~] Nj(1). 
• ' 1 < _ j < - q  

Then it is well known (Aalen (1978)) that there exists a unique 
continuous increasing k-variate process A(t )= (Al(t) . . . .  , A q ( t ) )  which is 
adapted to the a-fields ._~ = a{N(s), s _< t}, such that 

(2.1) for each j, Mj(t) -- Nj(t) - Aj(t) is a square-integrable martingale, 

(2.2) <Mj, Mj) = Aj, and 
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(2.3) <Mi, M/> = 0 for i # j ,  

where ( . ,  • > is the inner product defined in Kunita and Watanabe (1967). 
In this paper, we are interested in estimating the derivatives of the 

Aj(. )'s, and we assume 
(v) each path Aj(. ) is absolutely continuous with respect to Lebesgue 

measure on [0, 1]. 
Assumptions (i) to (v) imply that there exists a k-variate left-continu- 

ous process A (t) = (Al(t),..., Aq(t)), having right-hand limits, such that for 
eachj  and each t ¢ [0, 1] 

(2.4) Aj(t) = f I{o<_s<_t}Aj(s) ds. 

The vector process A (t) is called the hazard (intensity) rate process of 
N(t). Next is the definition of a multiplicative counting process. 

DEFINITION 2.1. A vector counting process N(t) is called a multi- 
plicative counting process if it satisfies (i) to (v), and its hazard rate process 
A (t) satisfies the following multiplicative property 

(vi) Aj(t)= Yj(s)rj(s), 
where both Yj(s)'s and rj(s)'s are nonnegative, left-continuous functions 
with right-hand limits, Yj(s)'s are observables and rj(s)'s are deterministic 
functions called hazard (intensity) rates. 

Next, we discuss the likelihood function of a multiplicative counting 
process. Jacod (1975) showed that, under some weak conditions, the 
distribution of a multiplicative counting process is absolutely continuous 
with respect to the joint distribution of q i.i.d, homogeneous Poisson 
processes, and the likelihood function of a multiplicative counting process 
is proportional to 

(2.5) [ H, rs(T,.)exp{-fllo<_s<_l}j<~<qYj(s)×rj(s)ds} 
l<_i<_N (1) ' " ' 

where J, -- j  if jump number n occurs in thefi th component Nj. 
Denote the total number of jumps of the j-th component by n(j) and 

its jump times by/)1,.. . ,  Tj,(j),j = 1,..., q. Equation (2.5) can be written as 

Several examples of (2.6) are given in Section 4 of Aalen (1978). In the 
following, we describe three simple cases. 
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Example 2.1. (The life testing model)  Let q units with independent  
and identically distributed life times be the subjects of life testing and let 
r(t) = f ( t ) / [ 1 -  F(t)] be the failure rate of the units. Suppose we start 
observat ion when the units are new, and terminate  observation after the 
n-th failure has occurred (i.e., q-n censored observations). Without  loss of 
generality we denote  the n failure times by Tu. . . ,  Tn. Let Y(t) = number  of 
units on test just before age t. Note that  Y(t) is a left cont inuous integer 
valued step funct ion which vanishes outside some bounded  interval. The 
likelihood function is propor t ional  to 

which is (2.6) with q -- 1. See the discussion by Lindley in Cox (1972). 

Example 2.2. (The multiple decrement  model)  Let n independent  
units be observed over the time interval [0, 1]. Assume that  the observation 
of each unit  is a Markov  process X(t), t e [0, 1], with one transient state 0 
and absorbing states {1,..., q}, and that  all units start at the initial state 0. 
Denote  the number  of processes that  j u m p  to s t a t e j  by n(j ) .  Let the j u m p  
times to t he j - t h  state be Tjl,..., T:nlj),j = 1,..., q and Y(t) be the number  of 
processes that  stay at state 0 just  before time t. The likelihood function 
(Hoem (1971) or Aalen (1976)) is propor t ional  to 

This is (2.6) with Yj(s) = Y(s) f o r j  = 1,..., q. 

Example 2.3. (The nonhomogeneous  Poisson process model) Sup- 
pose we observe a Poisson point  process with cumulative intensity v on the 

unit  interval. Suppose the derivative of the v exists, i.e., v(t) 

and we are interested in the estimation of the intensity rate r(t) instead of o. 
Let the j u m p  times be Tx,..., T,. The likelihood function is given by 

(2.9) [,~nr(T,)]exp{-fI~o~_s~ur(s)ds}.  

This is equivalent to (2.6) with Y(s) = 1 and q = 1. 

2.2 A mixture model for the hazard rates 
This paper is concerned with the Bayes est imation of the hazard rates 

rj(t), j = 1 ..... q for the model  specified by (2.6). In particular, we consider 
the case that  each hazard rate r(t) can be represented as a mixture of a 
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known kernel by a freely varied measure p. That is, there is a given 
nonnegative kernel k(t,v) defined on ([0, 1] × R,._~rt~,,~) where R is a 
Euclidean space and ._~ and ,,~ are Borel o'-fields, such that 

(2.10) r(tlp) =fR k(t, v)p(dv) for t ~ [0, I ] .  

We also assume that for each p c O the space of finite measures on (R, ~ ), 

fr(tlp)dt is finite. In this case, the likelihood function (2.6) of p = (/tl,...,pq) 

can be written as 

(2.11) . . ,  _-, [ ]ex, {-S.,o=,, } 
: l<_~j<q[ l~,~(j)f kj(Tji'v)[Ij(Nv) ] 

x exp { - S: x ,<,,s. v,,,,.<.,<<,v, I 

= rI L;(#i )  
l<j<q 

I "  
where rj(t) =JRk:(t, v)pj(dv), kj is given and p: varies in 0 for j =  1,...,q. 

The mixing measures pj are the parameters to be estimated. 

An inspection of (2.11) and a knowledge of conjugate priors indicate 
that gamma type priors on the p's will facilitate the computations; the 
outer product also suggests independent gamma priors. We describe such 
gamma priors in the next section. 

3. The weighted gamma prior distributions 

The theory developed in this section supplements that of Lo (1982), 
and we first briefly describe the settings in that article. For each a in O, 
there is a gamma random measure o on (R, , ~ )  with shape (mean) measure 
a. The finite dimensional distributions of o are determined by" for each 
(measurable) partition B1,..., Bm of R, o(Bj), j - -  I,... ,  m are independent 
gamma (a(B:), l ) , j  = 1,..., m random variables. 

Let fl(v) be a given nonnegative a-integrable function defined on R, 
and define 

(3.1) a(A)  = f i~v~ . l~(v)  o(dv) . 
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Since It is a weighted o which is a gamma random measure, It is called a 
weighted gamma random measure with shape a and scale fl; we sometimes 
write It as flv to stress the dependence of It on fl and o. Likewise, we define 
the deterministic measure fla. The distr ibution of It is denoted by 
P(dItla, fl), i.e., P(dItla, fl) is a probability on the measure space (O, d t ' )  
where ,//t'is the a-field carried by O and generated by the weak convergence 
of measures. The mean and the Laplace transform of It are given by Lo 
(1982) as 

(3.2) fo£ f(v)It(dv)P(dItla, fl) = £ f(v)fl(v)a(dv) 

and 

(3.3) fo exp {-fsf(v)It(dv) } P(dItla, fl) 

= exp { - £  log[l+fl(v)f(v)]a(dv)}, 

wheref i s  any nonnegative function. 
First, we generalize (3.3) to an "updating" equality for the Laplace 

transform of a weighted gamma random measure. 

PROPOSITION 3.1. For nonnegative functions f on ( R , . ~ )  and g on 
(o,~),  

(3.4) fog(It) exp { - £  f(y)It(dy) } P(dItla, fl) 

= exp { - £  log[l+fl(y)f(y)]a(dy)} 

• fog(It)P(dItla, fl/[1 + flf]). 

PROOF. A change of variable reduces (3.4) to 

fo g(flo) exp {- £ f(y)fl(y)o(dy) } P(dola, 1) 

=exp{-£1og[l +fl(y)f(y)]a(dy) } 

• fog(~o)P(aola, 1/[1 +/~f]). 

Therefore, it suffices to show that for any nonnegative function h on 
(g,  ,_~), 
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(3.5) fog(o) exp { -  fRh(y)o(dy) } P(dola, 1) 

=exp  {-fR log [1+ h(y)]a(dy)}fo g(o)P(dola, 1 / [ I+  h i ) .  

f 1" 
We only need to prove (3.5) for g(o) = exp I - JR k(x)o(dx) I where k is any 

nonnegative function. In this case, the left side of (3.5) reduces to 
f 

exp I--fR log [l+h(y)+k(y)]a(dy)}by (3.3). By the same (3.3), the right 

side of (3.5) becomes 

which also reduces to exp { -fR log[1 + h(y) + k(y)]a(dy)}. [] 

The key tool of this paper is the following Fubini-type theorem. 
Denote a point mass at x by dx. 

LEMMA 3.1. Let g be any nonnegative function defined on (R × O, 
,.~ Q ,/~), then 

(3.6) fofRg(v,p)ll(dv)P(dlJla, fl) = fRfog(v,l~)P(dl~la + ~v, fl)fla(dv) . 

PROOF. A proof of this lemma can be obtained by letting g be an 
indicator function, and then evaluating both sides of (3.6); see Lo (1978). 
However, the Laplace transform argument in Lo (1982) suggests the 
following streamlined proof. It suffices to prove (3.6) for the g's of the form 

g(v, lO=exp { -  2v} exp { - fRf(Y)lt(dY) } , 

where 2 is any nonnegative real number andf i s  any nonnegative function. 
For this g, we apply Proposition 3.1, and then (3.2) to the left side of 

(3.6) to obtain 
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= exp { - £  log[l+fl(y)f(y)]a(dy)} 

• fofR exp { -  2V}lt(dv)P(dlzla, fl/[1 + flf]) 

= exp {--fR log[l+fl(y)f(y)]a(dy)} 

• £ exp { - 2v}fl(v)[1 + fl(v)f(v)]-la(dv). 

On the other hand, an application of (3.3) to the inner integral of the right 
side of (3.6) yields 

e x p { -  2v} fo exp { - £  f(y)lt(dy) } P(dltla + &,fl)fl(v)a(dv) 

=fR exp{-- 2v} exp {-f , ,  l o g [ l +  fl(y)f(y)](a+ 6v)(dy)}fl(v)a(dv) 

= exp {--fR log[l+fl(y)f(y)]la(dy) 

• fR exp { - ,~v}[1 +/~(v)f(v)]-l~(v) a(dv). 

Hence, the two sides of (3.6) are equal for these g's. [] 

The rest of this section provides applications of Lemma 3.1 in different 
contexts, and is independent of the rest of the paper. 

3.1 Discreteness of weighted gamma random measures 
The first application of the lemma is to show that the weighted gamma 

random measure is discrete with probability one. 

COROLLARY 3.1. P(/~:/z is discretela, fl) = 1. 

PROOF. It suffices to prove the result for fl = 1. A measure /~ is 
discrete if and only if ~{v:/l{v} = 0} = 0 (or equivalently,/.t{v:/t{v} > 0} = 

/z(R) < oo); hence, it is enough to show thatjoCt{v;Iz{v} = O}P(dllla, 1) = 0. 

Notice that 

£ ,,{v:,,{v} = o} e(d,,I a, l) =fo£ t{~=o~,(dv)e(d,,I ~, l) 

: £ fo Ii,,M:olP(d/~la + &, 1 ) a ( d v )  , 
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by Lemma 3.1, and the fact that the integrand is a measurable function of 
It and v. Consider the inner integral which equals P(it: It{v} = 01 a + 6v, 1). 
For a fixed v, this probability is zero, since It{v} is a gamma (a{v} + 1, 1) 
random variable according to P(ditl a + 6v, 1). [] 

Remark 3.1. The above argument is essentially due to Berk and 
Savage (1979). Alternatively, Kingman ((1975), p. 15) pointed out that one 
can modify the arguments of Blackwell (1973) to prove Corollary 3.1. 

3.2 On Ferguson's theorem 
The next application of Lemma 3.1 concerns a theorem of Ferguson 

((1973), Theorem 1 in Section 3). Ferguson's theorem is known to be 
equivalent to Lemma 1 in Part I (Lo (1984)). The following corollary then 
essentially provides a proof of Ferguson's theorem using the Laplace 
transform. 

COROLLARY 3.2. Lemma 3.1 implies Lemma 1 of  Part I. 

PROOF. First note that a Dirichlet random probability G is equal in 
distribution to It~it(R) where/1 is a gamma random measure (i.e., fl-- 1). 
Hence, Lemma 1 in Part I (Lo (1984)) is equivalent to 

(3.7) fofn g(v, it/p(R))[p(dv)/it(R)]P(dit[ a, 1) 

= fRfo g(v, it/it(R))P(dit[ a + C~v, 1){a(dv)/ a(R)} . 

An application of Lemma 3.1 to the left side of (3.7) yields 

(3.8) fRfo g(v, it/it(R))[1/it(R)]P(ditla + 6v, 1)a(dv) . 

Since It is a gamma random measure, It(R) and p/t t (R) are independent 
(this follows from a simple extension of Theorem 1.2.3 in Bickel and 
Doksum (1977)). Hence, (3.8) reduces to 

fgfo g(v, it/It(R))P(ditIa + fly, 1){a(dv)/ a(R)} , 

which is the right side of (3.7). [] 

3.3 Bayes estimation of  a Poisson cumulative intensity 
We conclude this section with an application of Lemma 3.1 to the 

problem of the Bayes estimation of a Poisson cumulative intensity It (Lo 
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(1982)). S u p p o s e / z -  P(d~la, il) and given/z, NI,..., Nn is an i.i.d, sample 
from a Poisson process with cumulative intensity/t.  Then the posterior 
distribution of/L (Lo (1982)) given N~,..., Nn is 

(3.9) P( dkt a + <~<_nNi, il/[l + nfl] ) . 

Suppose we like to choose a/l* to minimize a risk E[L(t t,/1")], where 
L(/.t,/l*) is an integrable loss function, the Bayes theorem states that for a 
given sample N~,..., N,, we should choose/t* to minimize 

Lo (1982) considered the loss function L(/1,/1")=~ [/~(y)-  i~*(y)]ZW(dy), 
where W is a given weight function, and obtained 

( 3 . 1 l )  fl*(t) = fofl(1)P( dfl l a-t-lsY,i<_nNi, il/[1-t- nil] ) 

= f l~.~_,~il(s)[1 + nil(s)]-la(ds) 

+ ,<~<. f~ :_ , : ( s ) [1  + nil(s)]- l Ni(ds) . 

Perhaps a better choice of the loss is L(/t, kt*) =fR [/t(y) -- It*(y)]2~u(dy), 
which does not depend on an extraneous weight function. For this loss, the 
problem becomes choosing/~* to minimize 

(3.12) fof,[~,(t)- :(t)]2:,(dt)?( dl~tlOt+l<_~<_,N,,il/[l +nil] ). 

At first sight, this seems to be a formidable problem. However, an 
application of Lemma 3.1 reduces (3.12) to 

Hence, the minimization is achieved by, for each t, 

(3.14) I1"(t) =fo II(t)P( dl, L a+ ,<~.< Ni + 6t, il/[1 + nil]) 

= fIl,<_,/il(s)[1 + nil(s)l-'a(ds) + il(t)/[1 + nil(t)] 
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+ ,~Z<_.fI[.<_,jil(s)[1 + nil(s)]-'Ni(ds), 

i.e., the new loss function results in an addit ional  term il(t)/[1 + nil(t)]. 

4. Posterior distributions 

For  the priors on the p / s ,  we choose aj c O, ilj to be nonnegative and 
aj-integrable, and le t / t j  ~ P(dpjlaj, ilj),j = l , . . . ,q .  The pj's are assumed to 
be independent .  The posterior distr ibution PN of O = (/~l,...,pk) is defined 
by 

(4.1) fo* [ Hgj(pj) ] PN(dp)= ~j 
fo gj(laj)Lj(laj)P( daA ai, flj) 

fo Lj(laj) P( dlaA aj, ilj) 

where g /s  are nonnegative functions and j runs f rom 1 to q. To evaluate the 
posterior distr ibution PN(dp), we need only to evaluate (4.1) in the case 
q = 1 because the q factors are independent  and can be handled separately. 
Suppressing the subscript j ,  (4.1) becomes 

(4.2) fo g(p)PN(dp) = 
fo g(a)L(lz)P(dftl a, il) 

fe t(lOP(dltla, il) 

where g is a nonnegative function and 

The following theorem characterizes the posterior distr ibution of ~. 
First, some notation.  Let 

(4.4) 

v = ( v t , . . . ,  v , ) ,  

k*(t ,  v) = i l*(v)k( t ,  v) , 

and 

[ vi, o, 
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where C¢ B', ao= a, and ai_l(dvi)=(a+ ~<-:<-i-~Z 6v,)(dvi)fori_>2. 

THEOREM 4.1. Assume that the likelihood function of a point 
process is proportional to (4.3) and the prior distribution of lt is P(d/~la, fl). 
The posterior distribution (4.2) is given by 

(4.5) 
fo g(/~)PN(d/2) : fR" fo g(lOP(d/ula.,fl*)lt.,:,.(dv). 

lt.,k ,.(R ) 

PROOF. Apply Proposition 3.1 once and Lemma 3.1 n times to the 
numerator and denominator of (4.2) and then simplify. [] 

Theorem 4.1 defines the posterior distribution which summarizes the 
posterior information about the parameter/2 and can be used to compute 
the Bayes estimate of /2. However, the mixture form of the posterior 
distribution (4.5) is quite complicated; hence, descriptions of some posterior 
quantities are necessary. In the next theorem, we illustrate the application 
of (4.5) to find the posterior mean of the hazard rate r(tl/0; the evaluation 
of the posterior k-th moment of r(tl/0 is similar and will not be given. 

THEOREM 4.2. For each t, 

(4.6) EN[r(t[tt)]:fR k*(t,v)a(dv) + ~W(p)  ]~ eiri(tlp ) l<_i<_N(p) 

where W(p)= ~(p)/~q~(p), ~ ( p ) =  l<_i<_l-IN(p)[ ( e i - 1 ) ,  fR ~l k*(Tj, v)a(dv)  ] j~ C(i) 

fR k*(t, v) H k*(Tj, v)a(dv) j~ C(i) 
(4.7) ri(tlp)= fR FI k*(Tj, v)a(dv) ; 

j ~ c(i) 

p is a partition of {1,..., n}, {C(i):i = 1,..., N(p)} are the cells (subsamples) 
of the partition p, and ei is the number of elements in C( i ). 

PROOF. Put g(/z) = r(tl/0 =fR k(t,y)lt(dy) in Theorem 4.1 to obtain 

(4.8) EN[r(t]IU)] : 
fn°fof k(t,Y)/z(dY)P(dlz[a.,fl*)/2.,e,.(dv) 

fR" 12..:.~(dv) 
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fJof k*(t,y)o(dy)P(dola., 1)ll.,k*,.(dv) 

fR"/u.,~*,.(dv) 
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where the last equality follows from a change of variables. Apply Lemma 
3.1 to the numerator  once and write t as T,+ t to obtain 

(4.9) EN[r(tl/.t)] = 

fR"" ~..  l,k*,.( dv) 

fR" lt.,k*,~( dv) 

This is precisely the last equation on p. 353 in Part I (Lo (1984)) without 
the coefficient [ a ( R ) +  n] -1. The rest of the derivation follows that of 
Theorem 2 in Part I and will not be reproduced. [] 

We conclude this section by relating these results to those obtained by 
Dykstra and Laud (1981). Let k( t ,v )= Iiv~_,l. Theorem 4.1 specializes to 
their Theorem 3.3 (Lemma 2 in Part I also specializes to their Theorem 5. I; 
see Lemma 2.1 in Brunner and Lo (1989)). Furthermore, expression (4.6) 
reduces to 

(4.10) E~[r(tllO] = f I{o~v~_,lfl*(v) a(dv) 

, rn~+ l f llo _v _ (,)lfl (v) 
+ % w(m), Z mi x 

. . flio v  (,)lfl*(v)m,a(dv) 

/[ ] ' "  where W(m) = oh(m) ~ch(m) , oh(m) = k(m) Fii f lio<_v<_r(,)} fl (v) a(dv), 

m = (ml,..., m.), mi are nonnegative integers such that sj = l~<_jmi <_j for each 

j = 1,. . . ,n - 1, and s, = n; k(m) = ~( i  - 1 - si-l)!/(i - -  Si)[; the product ~ is 

over the set of i such that m i  >-- 1, 0 <~ T ( n )  < . . .  < T ( 1 )  , (  c~ are the ordered 
statistics of the T's. 

Expression (4.10) is slightly simpler than (4.6). However, we must 
point out that such reduction is possible only because the kernel k takes on 
the simplest form. In general, (4.6) should be used. 

5. The choice of k, e and/~ 

In this section, we discuss the choices of the kernel k and prior 
parameters a and ft. It suffices to consider the case that q -- 1. As the first 
example for the choice of the kernel k, we let 
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(5.1) k( t , v )  = ~, ~t,A~,v~l, 
I~j~q 

where {A/ j  = 1,..., q} is a parti t ion of the time interval [0, 1]. This gives us 
a piecewise constant  hazard rate model.  In fact, r(tl/~) =/~(Aj) if t e Aj, and 
expression (4.6) reduces to, for e a c h j  and t e Aj, 

(5.2) E~[r( tl/~)] = 
[a(Aj) + ni]fl(t) 

1 + 

where nj is the number  of observations in 3j. 
Let a(Aj) --" 0 and fl(t) --" O, (5.2) becomes, for e a c h j  and t e 3j, 

(5.3) Es[r( t  I/z)] -- nj / f  lts, ~1Y(s) d s ,  

which is the m a x i m u m  likelihood estimate of the constant  hazard rate (see 
p. 54 in Cox and Oakes (1984)). 

The other determinat ions  of k are more subtle. In general, the family 
{k( . ,  v): v e R} is the collection of extreme points  of L,  = {r(. Ip):/t e O} in 
the sense that  any r e Lk can be represented as a mixture  of k( -, v), v e R 
for some mixing measure p e O. In the following, we list some cases where 
such integral representations exist. 

(5.4) k(t ,  v) = Ii,<vl, v e R ( = [0, oo)) 

implies Lk is the family of nondecreasing hazard rates on [0, 1]. This is due 
to a form of the Khintchine-Shepp theorem (p. 158 in Feller (1971)) for a 
finite measure instead of a probabili ty (similarly k(t ,  v)--Iiv<t~ gives a 
family of nonincreasing hazard rates). 

(5.5) k(t ,  v) = e -iv, v ~ R ,  

here Lk is the family of completely mono tone  hazard rates. It is also a very 
smooth  subfamily of decreasing hazard rates. 

(5.6) k(t ,  v) = III, al>-vl, v ~ [0, ~ )  ; 

the rates obtained are increasing to the right of a and decreasing to the left 
of a and hence, Lk is the family of symmetric  U-shaped hazard rates with 
the m i n i m u m  at a (reversing the inequality sign in (5.6) gives the family of 
unimodal  and symmetric rates). 

In case no determinat ion of k is available, one may use 
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(5.7) r(tl/x) =fflIo<~<o:,o<v<oolrk(z(t - v))p(dv, dr), t ~ [0, 1], 

for a prescribed kernel k such that k(t)= 0 for t < 0 and for each finite 

constant C, flt-::<,~_clk(t)dt < ~. Denote the collection of hazard rates that 

can be represented as (5.7) for some/t supported by [0, oo) × [0, ~) by Lk. It 
can be shown that the Ll-closure of Lk contains all the r(t)'s, such that 

f I~o<,<,lr(s)ds < ~. 
The choice of]7 and a depends on k. An examination of (4.6) and (4.7) 

indicates that an idea analogous to conjugate priors also prevails. In 
particular, it is convenient to regard fl(v)k(.,  v) in (4.7) as densities with v 
being the "parameter" and choose a(dv) to be a conjugate "prior" when 
sampling from the parametric family {[3(v)k(. , v), v e R }. 

6. The numerical evaluation of some posterior quantities 

The number of summands for the dominating term E in (4.6) is equal 
P 

to the Bells number B, where n is the sample size. The Bells number 
increases roughly as n!, and the exact evaluation of the estimates (4.6) is 
formidable for sample sizes larger than twelve (the evaluation of the 
monotone rate estimate (4.10) is only slightly simpler; for a detailed 
discussion, see Brunner and Lo (1989)). This section discusses Monte Carlo 
approximations to the posterior mean (4.6). 

A careful inspection of ~ in (4.6) indicates that it is actually 
P 

(6.1) ~q(p)N( t lp ) /  ~ q ( p ) D ( p ) ,  

where 

(6.2) 

(6.3) 

(6.4) 

q ( p ) =  a(R)sv~P) [ ~(ei - 1)! ] F(a(R))/F(a(R) + n) , 

N(ti,)= {rI i [fsflc(iki(Ts, v)a(dv)la(R)]} ~iri(ti,), 

The weights {q(p)} are probability weights on the collection of partitions of 
the set {I,...,n} (for a proof, put gi= 1 in Lemma 2 in Lo (1984)), 
suggesting a more efficient method by simulating a partition having 
distribution q(- ). 
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A random partition having distribution q(. ) can be simulated based 
on the Chinese restaurant process with parameter a(R) (Aldous (1985), p. 
92, see also Kuo (1986)). Imagine n persons arriving sequentially at an 
initially empty restaurant with a large number of unoccupied tables. Person 
j either sits at an empty table with probability a(R)/(a(R) + j -  1), or else 
sits at an occupied table with probability proportional to the number of 
occupants at that table. The resulting configuration of the occupied tables 
is a random partition with distribution q(- ). 

Repeat a Chinese restaurant process with parameter a(R) a total of M 
times to obtain random partitions pl,p2,...,pM. The Monte Carlo approxi- 
mation to (6.1) is then given by the ratio 

(6.5) 
/ 

Y, N(tlpk)/ ~, D(pk)" 
l<_k<_M /l<_k<_M ' 

it is well known that the standard error of this approximation is Oe(M-l/2) 
(Rubenstein (1981)). 

Remark 6.1. This Monte Carlo method provides an approximation 
/ 

of quantities of the form Zg0(p ' ) /~ ,g (p )  where p '  is a partition of p' / p  
{1,...,n,n + l,...,n + m} and go and g are given functions of partitions, 
since one can approximate the numerator and the denominator separately. 
Note that the proofs in Theorems 4.1 and 4.2 indicate that the dominating 
term of the posterior (m + 1)-th moment of any linear function of/1 is of 

/ 

the form ~ go(p')/Eg(p). In particular, the posterior variance of r(tl/0 can 
/ r 

be approximated, since it corresponds to m = 1. It is clear that this method 
can also be used to approximate the posterior moments of (any linear 
function of) the mixing distribution G appearing in Part I (Lo (1984)), 

since the dominating terms for these are also of the forms E go(p')/Y~g(p). p' 

Example 6.1 The following Table 1 (Aalen (1978)) shows times to 
copulation of Drosophila. The model likelihood function is given by (2.6) 
with k -- 1 and Y(t) = M(t) x F(t), where M(t) and F(t) are the numbers of 
male and female flies that have not been involved in any copulation up to 

Table 1. Times in seconds at initiations of mating (Aalen (1978)). 

Ebony flies: 

Oregon flies: 

143,180,184,303, 380, 431,455,475,500,514,521,552,558, 606, 
650, 667, 683, 782, 799, 849,901,995,1131, 1216,1591, 1702, 2212. 

555, 742,746,795, 934,967,982, 1043, 1055, 1067,1081, 1296, 1353, 
1361, I462,1731, I985,2051, 2292, 2335, 2514, 2570,2970. 
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time t (each fly only mates once). Two experiments are carried out: one for 
Ebony flies [M(0) = 40, F(0) -- 30], and one for Oregon flies [M(0) = 39, 
F(0) = 29]. 

A very smooth decreasing hazard rate mixture model is assumed for 
the data; this is achieved by choosing an exponential kernel k(t ,  v) = v x 
exp { - vt}.  Gamma (a, b) (with mean a~ b) distributions are employed for 
the shape probability a( .  ) /a(R) .  Figure I displays the posterior mean (4.6) 
where the dominating term ~ is approximated by (6.5); a gamma (1,5) 

p 

distribution is assumed for a ( . ) / a ( R ) .  Figure 2 displays the change of 
posterior means (based on the Ebony flies data) for different gamma (a, b) 
shape probabilities. 
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Fig. 1. Posterior means of  hazard rates. 
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Fig. 2. Posterior means of hazard rates. 
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