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Abstract. In this paper we consider a multiple dyadic stationary process 
with the Walsh spectral density matrix f0(2), where 0 is an unknown 
parameter vector. We define a quasi-maximum likelihood estimator b of 
0, and give the asymptotic distribution of b under appropriate conditions. 
Then we propose an information criterion which determines the order of 
the model, and show that this criterion gives a consistent order estimate. 
As for a finite order dyadic autoregressive model, we propose a simpler 
order determination criterion, and discuss its asymptotic properties in 
detail. This criterion gives a strong consistent order estimate. In Section 5 
we discuss testing whether an unknown parameter 0 satisfies a linear 
restriction. Then we give the asymptotic distribution of the likelihood 
ratio criterion under the null hypothesis. 

Key words and phrases: Dyadic stationary process, information crite- 
rion, likelihood ratio criterion, quasi-maximum likelihood estimator, 
Walsh spectral density. 

1. Introduction 

There has been much discussion of Walsh spectral analysis for dyadic 
stationary processes. Morettin (1974) investigated some asymptotic proper- 
ties of the finite Walsh transforms of dyadic stationary processes. Nagai 
(1977) gave the spectral representations for dyadic stationary processes. If 
we consider finite dyadic linear models, then the greatest differences 
between dyadic stationary processes and ordinary stationary processes 
appear. Nagai (1980) and Nagai and Taniguchi (1987) established that a 
dyadic autoregressive and moving average (DARMA) process of finite 
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order can be expressed as a dyadic autoregressive (DAR) process of finite 
order, and also as a dyadic moving average (DMA) process of finite order. 
Nagai and Taniguchi (1987) discussed the principal component analysis of 
a multiple dyadic process, and also the canonical correlation analysis. 
Morettin (1981) gave a convenient survey for Walsh spectral analysis. 

In this paper we consider a multiple dyadic stationary process with the 
Walsh spectral density matrix f0(2), where 0 is an unknown parameter 
vector. We define a quasi-maximum likelihood estimator b of O, and give 
the asymptotic distribution of/~ under appropriate conditions. In Section 3 
we propose an information criterion which determines the order of the 
model, and show that this criterion gives a consistent order estimate. In 
Section 4, for a finite order dyadic autoregressive model, we propose a 
simpler order determination criterion, and show that the estimated order 
has strong consistency. Also, some interesting examples are given in the 
identification problem for Walsh spectra. In Section 5 we discuss a testing 
problem to check whether the unknown parameter 0 satisfies a linear 
restriction. Then we give the asymptotic distribution of the likelihood ratio 
criterion under the null hypothesis. Throughout this paper we are dealing 
with one mode of development of Walsh spectral analysis, via the concept 
of dyadic stationarity. We also remark that the applications of the dyadic 
approach seem limited in the existing circumstances. 

2. Dyadic stationary processes and estimation theory 

First we introduce some basic concepts and notations. Denote by T 
the set of all nonnegative integers. Let x and y be nonnegative real numbers 
and have the following binary expansions: 

x= ~ xz2 t with x t = O o r l ,  

e ¢  

y = ~oyl2 l with yt = 0 or 1 . 
! 

Then the dyadic addition ~) is defined by 

x G y = ~ Ix t -  ytl2 t . l=-e¢ 

A stochastic process (possibly vector process) {Y(t):t e T} is said to be 
dyadic stationary if the joint distribution of Y(q), Y(t2),..., Y(t,) is the same 
as that of Y(q q)t) ,  Y(t2 ~ t),..., Y(t, G t) for every finite set of non- 
negative integers {q,..., t,} and for every nonnegative integer t. For 2 e [0, 1), 
we write it as 
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oo 

). = E 2j2 -j 
. =  j 1 

where  the 2j is ei ther 1 or 0. We define t h e j - t h  R a d e m a c h e r  funct ion,  ~bj(2), 
as 

6i(2) = ( -  1) ~'', j e T .  

The Walsh funct ions  { W(t, 2), t ¢ T, 2 ¢ [0, 1)} are defined as follows: 
(i) W(0, 2) = 1, 2 ~ [0, 1), 

(ii) I f  t = 2"' + 2 "2 + ... + 2", with n~ > n2 > ... > nr > 0, 
then W(t ,2)  = ~b,,(J.)th,2(2)'-'th,.(2), ). ~ [0, 1). W(t ,2)  is called the t-th Walsh 
funct ion  in Paley ordering.  The propert ies  of  Walsh funct ions are well 
known:  

(i) for  each  t~  T a n d  2 ¢ [ 0 ,  I), the value of  W(t,2) is only  + 1 or  
- - 1 ,  

(ii) for  any  s, t ~ T, 

W(t, 2) W(s, 2) = W(t 0 s, 2), a.e. 2 ,  

(iii) for  each t ~ T a n d  2 ~ [0, 1), 

W(t, 2) W(t,/l) = W(t, 2 G / t ) ,  a .e . /1 .  

(See More t t in  (1974).) 
Let  Y(t) = (Y~(t),..., Yq(t))'; t ~ T b e  a q-d imensional  dyadic  s ta t ionary  

process with zero mean  and k-th order  cumulants  

ca,...ok(tl,..., tk-1) = cum { Yo,(tl G tk), Ya2(tz ~ tk),..., Yo,(tk)}, 

tl, . . . ,  tk-1 e T, a~,..., ak = 1,..., q. We denote  the covar iance matr ices  

F(tO = {Ca,a2(tl)}, q × q matr ices .  

The statistic 

N-1 
(2.1)  dim(2) ----- t~:O Y(I) m(t, 2) 

is called the finite Walsh t r ans fo rm of { Y(t): t = 0, 1,..., N -  1}. T h r o u g h o u t  
this paper  we assume tha t  N = 2 "°, with m a nonnegat ive  integer and denote  
dlUl(2) --- (d~U)(2) .... , d~Nl(2)) '. Here  we assume the following. 

ASSUMPTION 1. Fo r  every k a n d j  = 1, 2,.. . ,  k - 1, 
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(2.2) ~E ... ~ [C,l...,,(tl,...,t~-l)[ Itjl < 
tt=0 t~ t=0 

for all a~,..., at. 

Then the Walsh spectral density matrix 
spectrum of order k of { Y(t)} are defined by 

f(2)  = }oF(t)W(t 2) 
t = 

and 

( 2 . 3 )  fa~..,a,(21,..., 2k-1) 
k-1  

• .. H w( t j ,  2j) =]~ ]~ca,...~(tl,...,tk-1)j 
tl lk-I 

respect ively.  F r o m  Assumpt ion  1, it is easy to see 
fi,...,~(21,...,2~-1) are integrable on [0, 1] and [0, 1] k-l, 
following proposition is due to Morettin (1974). 

(2.4) 

P R O P O S I T I O N  2.1.  Under Assumption 1, 

and the Walsh cumulant 

tha t  f ( 2 )  and 
respectively. The 

(N) (N) cum {da ~, ( 2 1 )  . . . .  ,d~, (2k)} 

= Du(21 ~ - . .  ~ 2kllfa,..-a,(21,..., 2k-t) + O(N-1)}, 

N-1 
where DN(2)= 2~ 

t=0 

2 1 , . . . ,  2k .  

W(t, 2), and the term O(N -1) is uniform with respect to 

Lv(2) = Fu(2)Fu(2)'= {Ia6(2)}, 

1 N - I  
FN(2) - ~ t~o Y(t) W(t, 2).  

say ,  

where the fitted Walsh spectral density matrix of { Y(t)} is parameterized as 
f0(2), 0 = (01,..., 0r)' e O C I~ r, and 

N f01 {log det f0(2) + tr IN(2)f0(2) -1 } d2 + constant ,  (2.5) log L 

Although we do not assume the Gaussianity of { Y(t)}, we can compute 
the Gaussian likelihood function L of {Y(0),..., Y ( N -  1)}, formally, and 
approximate L. That is, we get 
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The fitted model f0(2) may be different from the true one f(2) ,  and we 
assume thatfo(2) andfo(2) -l are integrable on [0, 1]. Thus we estimate 0 by 
the value b which minimizes 

(2.6) f01 D(fo,  IN) = {log detfo(2) + t r  IN(A)fo(~.)-l}d~., 

with respect to 0. Henceforth we call b the quasi-maximum likelihood 
estimator of 0. To discuss the asymptotic properties of 0, the following 
lemma is a keystone. 

LEMMA 2.1. Let thj(2)= {~b~Jb)(2)},j = 1,...,r, be q x q matrix-valued 
cont inuous func t ions  on [0, 1] such that 4~j(2) = ~bj(2)'. Under Assumpt ion  1 
we can show that 

lim/-1 tr Lv(2)d~j(2)d2 
N~oaa O 

(2.7) 

& =  V fo 1 

=fo] tr f (2)  ~by(2) d)., (1) 

in probabil i ty  and the quantities 

tr {(IN(2) -f(2))~bj(2)}d2, j = 1,..., r ,  (2) 

have, asymptotically,  a normal  distribution with zero mean vector and 
covariance matrix  V whose (j,  m)-th element is 

(2.8) 2fo 1 tr { f (2)  (~m (2)f(2) ~bj(2) } d2 

+ 
q 1 

f f  f~ (J) ~t (m) E b.( )qbdc (lt)fabca(2, A,lz)dAdlz. 
a,b,c,d= 1 0 

PROOF. Notice that 

By Proposit ion 2.1, we have 

- f.b(a)} d;t. 

where O ( 1 / N )  is uniform with respect to 2. Hence we obtain 

(2.9) E(Aj) = 0(N-1/2).  
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cum {Lb(2), La(p)} = -~2 {cure (d~(2), de(p)) cum (db(2), d~(p)) 

+ eum (d~(2), de(p)) cum (db(2), da(,u)) 

+ cum (d.(~.), &(2), &(p),da(lu))} 

l{ 
- U ~ D~(X G p)[f~(X)J;~(,t) +fo~(,l)J;~(X)] 

+ DN(,~, @ J, @ p @ p)fabcd(2, J,,fl) + O (---~ ) } 

and 

Dw(2 @ 2 @ p @ p) = DN(O) = N, 

we have 

1 

(2.10) cum (Ai, Am) : N f f  E ~bb(~)(2)(,b(aT)(p) 0 a,b,c,d=l 

• cum (Lb(2), La(p))d2zd22 

q [ off4,~(~ (2)4)(d m = Z ) )(/~)fo~d(~ L#)d2dp a,b,c,d: l 

+ 2f/4~b~)(2)fo~(2)fba(2)d2 

). 
Noting that 

DN(2 G 2) = 
N 

0 

1 

otherwise,  

we get that by the continuity of 4~m)(/z), 

l / "  1 (m) 2 
Jo ~ (p)DN(~ ~ p)du : 

1 1 
~}~)(2) + o(1), if ~-~ < 2 < 1 - 2----N ' 

O(1), otherwise.  
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Substituting the above into (2.10), we get 

(2.11) f0 
1 

cum (As, Am) = 2 tr {f(2)qbm()t)fOOckj(2)}d2 

1 q 

+ x 2,.)d2d/2 + o(1). 
a,o ,c ,a= 1 0 

Thus (2.9) and (2.11) imply our result (1) of (2.7). Also (2.11) gives the 
asymptotic variance (2.8). As for the asymptotic normality of Ai, we have 
only to evaluate J(J  >_ 3)-th order cumulant,  cum {Ai,, Ai2,..., Ai,} and show 
that they are zero, J_> 3. Here, without loss of generality, we evaluate it for 
scalar process. 

By Theorem 2.3.2, p. 21 of Brillinger (1975), we have 

(2.12) cum (dl, (~1) d,2 (21),..., ds, 0.s) ds2 (As)) 

= E cum (dji(~j), (j, 0 ~ V1) "'" cum (dji(~j), (j, 0 ~" I:S), 
v 

where the summation runs over all indecomposable partitions v - -  1)1 U . . .  

U Vs of the set {(j, i) , j  -- 1,2,.. . ,  J, i -- 1, 2} (the definition of indecompos- 
ability can be found on p. 20 of BriUinger (1975)). By indecomposability of 
the partitions, each vn contains at least two elements, so we have 

S <  J / 2 .  

By Proposition 2.1, we have 

(s( )) 
cum (dji(2j), (j, i) e v,) --- cum (dji(2j), (j, i) ~ vs) = 0 FI DN ~) 2j . 

= (j, 0 e  v. 

Since 

Dw(2) = 

1 
iV, if 0_< 2 < - ~ ,  

0, otherwise,  

we have, for J_> 2 

=f0 l'" "f01DN(/21 {~ /22)DN(/22 ~ /23)'" DN(/2s @/2,)d/21 "'" d/2s = O(N) , 
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fo L'''fo I DN(21 ~ "'" ~) 2j)d21 "" d2s = 0 ( 1 ) .  

Thus, 

fo' ..fo l 

and consequently 

cure (Ai,,..., A,I) = N-J/e[ ' ' ' ' [ '  
JO aO 

c u m  ( d l l  ( )d )d12 ( Jd ) , . . . ,  d j l  (~J)dJ2(~ar))d~l "°" d,~j = O (  N )  , 

4~i, (20"" ~i,(2j) 

• cum (dll(21)d12(21),..., dsl(2s)ds2(2s))d21 "." d2s 

= O(N-J/2+1), 

which implies the asymptotic normality.  [] 

Suppose  f (2 )  is the spectral density of a stat ionary process and {f0(2)} 
is a family of fitted spectral densities which are parameterized by 0 ~ O C 
•r, where O is a compact  set in [~r. We define a pseudo-t rue  value 0 of 
0 ¢ O C R r, by a value which minimizes 

D(fo, f )  =fo ~ {log detf0(2) + trf(A)fo(2) -~ }d2,  

with respect to 0 ¢ O. 

ASSUMPTION 2. The fitted model  fo0.) is twice continuously dif- 
ferentiable with respect to 0 ~ O. 

ASSUMPTION 3. If 0 #  0", then f0(2)~:fo*(2) on a set of positive 
Lebesgue measure. The matrix 

t 02 
Mr(O) = fo 0080 -----7 [log detf0(2) + tr fo(2)-~ f(A)]d2 (2.13) 

is nonsingular  for all 0 ~ O, and My = My(O). 

The first s ta tement  of Assumpt ion  3 is an identifiability condition.  In 
Section 4 some nonidentifiable examples will be given. Then we have the 
following theorem. 
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THEOREM 2.1. Let {Y(t)} be a q-dimensional dyadic stationary 
process with mean zero and the spectral density f(2).  Suppose that Assump- 
tions 1-3 are satisfied, and that 0 exists uniquely and lies in Int O. Then 

(i) lim 0 = 0 in probability, 
N-oo  

(ii) the distribution o f  the vector x / ~ { O -  0}, as N--" ~ ,  tends to the 
normal distribution with mean zero and covariance matrix My 1VMf l, 
where V = { Vjm} is an r × r matrix such that 

~,~ = 2f0 tr f(2) -~ j  {fo(2)}-'f(2) ~m {fo(2)}-' o=~d2 

q f){Ofo<b'°'(2)af~a'~>(2)} + E ..b,~,d: 1 aOj OOm 0:~ f,,b~d(2, 2,/t) d2a/,u, 

where fJb'a)(2) is the (b, a)-th element o f  fo(2) -1. 

PROOF. From the definitions of 0 and O, we have 

(2.14) 
a 

0o D(fo, IN)O=a = O, 

(2.15) 3 
ao D(fo, f )o:o= O. 

Expanding (2.14) around O, we have 

3 
(2.16) 0 = -~-  D(fo, IN) + hTlf(O*)(O- -0), 

where 0* lies on the straight section with end points O and 0, and 

3 2 

h4I(O*) - 3 0 0 0 '  D(f¢, IN). 

By Lemma 2.1, we have 

a 
00 D(fo, IN) --" O, 

in probability and 

~ ( o )  - M~(0), 



214 M. TANIGUCHI ET AL. 

in probabil i ty for each 0 ~ O. By Assumpt ions  2 and 3, absolute values of 
eigenvalues of My(O) have a positive lower bound  for all 0 c O. Hence when 
n is large enough,  with a probabil i ty arbitrarily nearing one, so do the 
absolute values of eigenvalues of My(O). By (2.16) we have 

in probabili ty and consequently 

- M y ( 0 ) ,  

in probability.  Then the limiting distr ibution of x / ~  (0 - 0) is equivalent to 
that  of 

(2.17) 
0 

- Mf'v/N ~-~ D(f~, IN) 

= -- M / I  ~/ /Nf° l  --~0 {log detfi(2) + trfi(2)-' IN(2)}d2 

= -  Mf'k/~ fo'-~o ttrfo(2)-l{IN(2)--f(2)}]d2, 

by (2.15). Again applying L e m m a  2.1 to (2.17), we have completed the 
proof. [] 

Remark.  If the true Walsh spectral density matrix f ( 2 ) = f i ( 2 ) ,  the 
pseudo-true value is equal to the true value, i.e., 0 =  0 (see Hosoya and 
Taniguchi  (1982)). 

3. Model selection of Walsh spectral models 

In this section we assume that  the process { Y(t)} has the true Walsh 
spectral density matr ix f (2 )  =fi,(2), 0, = (01,. . ,  Or)', where Or is an unknown  
parameter  vector. (We use the suffix r to stress the dimension.)  Since the 
order dim 0 = r is u n k n o w n  in many  situations, we must  estimate r f rom 
the data.  Here we fit the Walsh spectral model  f0,(2), 0 < k < L, where L is 
a preassigned upper  limit to the order. We determine the true order r by 
the value/~ which minimizes the following criterion: 

kCN 
(3.1) A ( k ) = D ( f i , , I N ) +  N for k = 0, 1 , . . . ,L ,  

where CN ~ ~ and CN/N ~ 0 as N - - ~ .  For  this est imated order /¢ we 
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have: 

THEOREM 3.1. Suppose  that all the assumptions in Section 2 f o r  
f(2) =fe,(2) and fo(2) = f0k(2) are satisfied. Then lim k = r, in probability. 

N~oo 

PROOF. From (2.16) we have 

a 
(3.2) x / ~ ( b k -  0k)= -- )Vf f~(O*)V~fo  ~ ~-k [trf~,(2)-l{IN(2)-f(2)}]d2, 

which tends to normal by Theorem 2.1. Thus we have, for any sequence of 
positive numbers C N -  0% 

(3.3) PIll x /N(/ ik-  Ok)ll > ~N] = O(1), 

where [1" II is the Euclidian norm. Taking CN =ffC-~-u, we obtain 

(3.4) b k -  0k = Op(ff-C-~u/V~). 

Expanding around 0 =/~k, and noting (3.4) we can see that 

(3.5) O(fgk, Iu) : O(fok, IN) + (Ok -- bk)' OD(fo~, IN) ] 
OOk o,=o~ 

1 

+ 7 - - 

Since c~D(fo,, IN)/OOkl#,-~, = O, we have 

I 
(3.6) D(fb,, IN) = D(f~,, IN) -- --f (Ok -- Ok)'ff'Iy(O*)(Ok -- Ok). 

AS a first step we show that 

(3.7) P(/~ < r) ~ 0 as N --" oo 

For k < r, we evaluate 

P~ = P ( A ( k )  < A(r))  = P D(fb~, IN) - -  D(fa,, IN) < N " 

Using the relation (3.6), the above probability is approximated as 
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(3.8) P{ D ( f ~ , I u ) -  D(fo,,Iu) 

(r - k) CN 1 
< N + ] -  (0~ - 0 ~ ) ' ~ , ( 0 * ) ( 0 k  - 0k) 

21 (0, - O,)'Mf(O*)(O,- 0,) } 

Using L e m m a  2.1 the lef t -hand side of  the above {. } converges to 
D(f~k,f)  - D(fo, , f ) ,  which is strictly positive for k < r. On the other hand, 
by (3.4), the right-hand side of {. } converges to zero in probability, which 
implies the probability P1 -- 0 as N-+ ~ .  As a second step we show 

(3.9) P(/~ > r) --* 0 as N ---- 

We have for k > r, 

P2 = P { A ( k )  < A(r)}  = P D ( A ,  IN)-- D(f~,,IN) < N " 

Using the relation (3.6), the above probability is approximated as 

{ , (3.1o) e D ( A ,  IN) - D(fo. ,  IN) - 5 -  (Ok - 0k)'~+(0~*)(0k -- Ok) 

1 (r - k) Clv } 
+ y (Or -- Or)'Mf(Or:g)(Or - Or) < N " 

Becausef0k(2) --f~.(2), for k _> r, we can see that 

(3.11) D(fo~, IN) -- D(f~,, IN) : O . 

While, by (3.4), we can see that 

_ 1__2 (Ok - O~)'JTi(O*)(O~ - ~ )  + 21-- (0,  - O, ) 'kT/ (O*) (O,  - ~,) 

is at most of order Op(X~NI N). However, the right-hand side of {. } in 
(3.10) is (r - k)CN/N, ( r <  k), which implies P2 --* 0, as N--* oo. Thus we 
have completed the proof. [] 
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4. Determination of the order of dyadic autoregressive models 

In the previous sections we could proceed in ways fairly analogous to 
those used in the ordinary stationary processes. However, if we consider 
finite parametric models, for example, dyadic autoregressive processes of 
finite order (DAR-processes), dyadic moving average processes of finite 
order (DMA-processes) and dyadic autoregressive moving average proces- 
ses of finite order (DARMA-processes), then the greatest differences exist 
between dyadic stationary processes and ordinary stationary ones. That is, 
it is known that DAR, DMA and DARMA are equivalent, in the sense 
that a DAR or DARMA-process of finite order can be expressed as a 
DMA-process of finite order (see Nagai (1980) or Nagai and Taniguchi 
(1987)). 

In this section, for a finite order dyadic autoregressive model, we can 
propose a simpler order determination criterion. Then we show that this 
criterion gives a strong consistent order estimate. 

A q-dimensional dyadic stationary process { Y(t): t e T} is called a 
dyadic autoregressive process, if it can be expressed by 

P 
(4.1) j~oAJY(t  (~)j) = e(t), t ~ T ,  

where 
(i) A/s are q × q matrices, A0 = Iq and p = 2 r - 1, where r is a non- 

negative integer, 
(ii) e(t), t e Tare i.i.d, random vectors such that 

(4.2) Ee(t) = O, Ee(t)e(t) '  = G > O, 

(iii) 

(4.3) det 4i(2) # 0, a.e. 2 ,  

P 

where ~b(2) = j~=oAJ W(j ,  2). 

If (4.2) and (4.3) hold true, then the Walsh spectral density of { Y(t)} is 

(4.4) f(2) = (/)(2)-' G{~(2)-'}'. 

We call a DAR-process (4.1) irreducible if there does not exist a 
matrix 

2" ~-1 

Z KjW(j,a) 
i=0 
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which satisfies 

(4.5) f (2 )  = ¢~I(2)-1G{~O~(2)-I} ' , a.e. 2 .  

Moreover ,  for  an irreducible D A R - p r o c e s s  (4.1), there exists a to, 2 r - l - -  < 

to _< 2 r - 1, such that  A,0 ~ 0. 
For  an i r reducible  D A R  mode l  (4.1), p is called the order  of  the 

model .  Fo r  simplicity, such a mode l  is wri t ten as D A R ( p ) .  No te  that  in the 
above  defini t ion,  the order  of  the mode l  (4.1) is def ined as p = 2 r - 1, not  
as max  {t: A~ ~ 0}. The advan tage  of  such a def ini t ion is that  it suits the 
Walsh  spectral  analysis,  and is convenien t  for  es t imat ing the pa ramete r s  of  
the model .  To  see this, consider  the fol lowing two scalar irreducible D A R  
models:  

x(t )  + x ( t  G I) + ax ( t  G 2 )  = e(t) , 

and 

Y(t) + Y(t ~ 1) + aY(t q) 3) = e(t), t ~ T, 

where a ~ 0, a ~ + 2, e(t)'s are i.i.d, with Ee(t) = 0, Ee(t) z = o -2. It is easily 
seen that  they have the same Walsh  spectral  densi ty 

o.2[1 + W(1,2)  + aW(2 ,2 ) ]  -2 . 

But  if we define the order  of  the model  as ma x  {t: At ~ 0}, then their  order  
may  be 2 and 3, respectively.  Obv ious ly  such a def ini t ion is not  convenien t  
for  Walsh  spectral  analysis. It is easy to see that  these two models  are not  
e s sen t i a l ly  d i f fe ren t .  F o r  a q × q m a t r i x  A = (a0, 1 _< i , j  < q), d e n o t e  

q 

= ~1 la01. To determine the order  p = 2 r - 1 of  the irreducible mode l  I L a l l  ,, = 

(4.1), we suggest the fol lowing criterion: 

(4.6) 
1 2~1 1 N-Z1 2 CN 

LN(k) = "~ n=0  N t~ffo Y(t) Y(t ~) (2* + n))' N ' 

where  Y(0),. . . ,  Y ( N -  1) are the observa t ions  of  the model  (4.1), N - -  2 m 
with m posit ive integer, and CN satisfies the fol lowing condit ions:  

(4.7) lim CN CN N-~ 7 = 0 and lim - ~ . 
N-= 10gl0g N 

Define 
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(4.8) ~N ---- max  {k >_ 0: LN(k - 1) > 0, L:v(k) < 0},  

where LN( -- 1) ---- 1 for convenience. We can use ~N as an estimate of the 
true value r of the model  (4.1). We have the following: 

I f  the model (4.1) is irreducible and (i), (ii) and (iii) THEOREM 4.1. 
are satisfied, then 

(4.9) lim ~N = r, a.s. 
N ~ o o  

PROOF. Suppose  that  p is the true order of the model  (4.1) and 
p = 2 r - 1. According to Nagai and Taniguchi  (1987), if det {@(2)} ~ 0, then 
{ Y(t): t e T} is a DMA-process  written as 

2 r -  1 

(4.10) Y(t) = ~o Kj~,e(j) ,  t e T.  j= 

Put  F(n) = EY(O)Y'(n). By (4.10) and condi t ion (ii), it is easily seen 
that  for any n, 

(4.11) -N t~o Y(t) Y'( t  ~ n) - F(n) = 0 a . s .  , 

as N - - ~  (e.g., Petrov (1975)). By (4.10), for n _  2 r, F ( n ) -  0. Thus,  if 
k >_ r, then 

(4.12) LN(k) = O ( loglog N )  CN 
N N '  a.s . ,  

as N----oo. F r o m  this and lim(CN/loglog N ) =  0% it follows that  with 
N-~o 

probabili ty one for large N, 

(4.13) LN(k) < 0, k >_ r .  

If r = 0, the theorem is proved. 
Now assume that  r > 0. We have 

2'~-1 1 
(4.14) lira E 

N ~  n=0 N -  

N - I  2 
,__E ° Y(t)r(t • (2 r-1 + n))' 

2 t I _  1 

= Z Ilr(2 '-1 + n ) l l  2, 
r t = 0  

a . s .  

We proceed to prove that  
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2 r 1_ 1 

(4.15) Y~ 
n=O 

liE(2 '-1 + n)l[ 2 > 0 .  

If we assume that  (4.15) does not hold, we have 

2 r I_ l 

(4.16) f (2)  = Y~ r(l)W(l,2), 2 ~ [0, 1]. 
/=0 

Put h = 2  r - l -  1, 2j=j / (h+ 1), j = 0 , 1 , . . . , h .  We know that for all 
1 <_ h, W(I, 4) = W(l, 2j) for 2 ~ [2j, 2j+ 1). F rom this it is easily seen that  f (2 )  
takes only at most  h + ! different values, say, f(2o),. . . ,f(2h). By (4.4), G > 0 
and q~(2) # 0, it is easily seen that  f(2s) > 0, j = 0, 1,..., h. Hence we can 
write 

j =  0, l , . . . ,h .  Put  

O h + l  ~- 

G = G'/Z(G'/2) ', f(2j) =f'/z(2j)fl/2(2j)', 

w(0,2o) w(1,4o) ... W(h,40) 

W(0, 2,) W(1,2,) ... W(h, 

W(0, 2h) W(1,2h) ... W(h, 2h) 

T h e n  H/~+inh+l = (h + 1)Ih+~. Thus the matr ix equat ion 

Bo G-1/2 fl/2(2o) 

( 4 . 1 7 )  ( H h + l  ~ I q )  " = " 

Bh G-l/2 f /2(2h) 

has a unique solution (Bd,..., B~), where Bs's are all q × q matrices. F r o m  
(4.17) we can see that  

(4.18) tY~=oBtW(l,2j) G t~=oBjW(l,2j) =f(2~), j = 0, 1 .... , h ,  

which implies 

(4.19) ~/(2)G~(2)' = f(2),  2 s [0, 1], 

where 
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h 
(4.20) r/(2) = l~D Bi W(l, 2).  

By Nagai and Taniguchi (1987) there exists 

such that 

(4.21) 

Thus we have 

(4.22) 

which contradicts 

2 r - t  - ] 

~,  (2) = ~ gtW(l, 2) 
1=0 

(J~1(2)/'~(2) = Iq, a.e. 2 .  

f ( 2 )  = ~ i ( 2 )  - 1 G { ~ 1 ( 2 ) - 1 }  ', a .e .  2 ,  

our irreducibility assumption. Now (4.15) has been 
proved. By (4.6), (4.7), (4.14) and (4.15), with probability one for large N, 

(4.23) LN(r -- 1) > 0, r > 0 .  

Noting (4.13) and (4.23), with probability one for large N, we have 

(4.24) 

Remark. The following 
DAR-process: 

X(t) + X(t  ~ 1) + X(t f~ 2) - X(t  ~) 3) = e(t), t ~ T ,  

where e(t)'s are i.i.d, with Ee(t) = 0 and Fz(t) 2 = o -2. Then 

~(2) = 1 + W(1,2)+  W ( 2 , 2 ) -  W(3,2) ,  

but 

r N  ~ r . [ ]  

scalar process {Y(t): t E T} is a reducible 

0 -2 0 -2 

{~(2)} 2 4 

5. Test of hypothesis for linear restriction of parameters 

Let {Y(t)} be a q-dimensional dyadic stationary process with Walsh 
spectral density fi(2) depending on an unknown parameter 0 = (/9,,..., Op)'. 
We assume that {Y(t)} satisfies all the assumptions in Theorem 2.1. The 
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first p r o b l e m  is to test a compos i t e  hypo thes i s  Ho: 02 = 020, against  
H: 02 ~ 020, where 0' = (0{, 0~), Of = (01,..., 0t), 0; = (0t+l,..., Op) and O~o = 
(01+ 1.0,..., Op.o), a specified vector and (0{, 0~0) e Int O. Al though we do not  
assume the Gaussianity of { Y(t)}, we can formally form the following log- 
likelihood ratio criterion 

(5.1) G = 2 log L = N{D(fo. ,o2) ,  IN) -- D(f~,,O~o), I N ) } ,  

where b' = (0{, b~) is the quas i -maximum likelihood est imator for 0 under  
H, and ~l is that  for 01 under  Ho. Put  v = x / ~  ( b -  0), w = x / ~  (~1 - 01) and 
u' = (w', 0% Expanding in a Taylor expansion around 0, we have 

(5.2) - G = N{D( f~ , ,~o ) ,  IN) - D(fo,,o~),  IN)} 

1 O2D( fa ,  IN) 
2 (U -- O)' OOOO' (U -- V)(1 + Op(1)) 

1 OZD(fo, IN) 
- - -  ( u  - o) '  ( u  - o ) (1  + o , ( 1 ) )  

2 0 0 0 0 '  

1 

2 
- - -  (u  - o ) ' M f ( u  - v)'(1 + op(1)). 

F rom Theorem 2.1 we have 

(5.3) o = - M f - ' X / ~ - ~ O  D ( f i ,  IN)(1 + Op(1)). 

Similarly we have 

(5.4) 
0 

u = - LyX/~--Z-#~ D ( f i ,  IN)(1 + op( l ) ) ,  
a l /  

where 

I1; 1 0 ] 
Z f  = 

0 0 

and 

E _ _  
02 

OOlO0( 
D(fio, ,¢o),IN) = 111 + O ( N  -1) • 

From (5.2), (5.3) and (5.4) we have 
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(5.5) 1 OD( fo ,  IN) [ M f ]  _ L f ] M f [ M ;  l _ I_f] 
- a =  T " / #  o o' 

• ~ aD(fo, Iu) (1 + op(1))  
O0 

_ 1 x/N OD(fo, Is) [Mi '  - Lf]x/~ OD(fo, I~) 
2 O0" O0 

Here we set down the following assumptions: 

(1 + op(1)). 

(5.6) 

ASSUMPTION 4. 

process represented as 

Y(t) = y~=oAje(t ~ j) , 

o c  

wherej~ollAjII < ~ and .41 are q × q-matrices, and the e(t)'s are independent 

random variables. 

ASSUMPTION 5. The unknown parameter 0 off0(2) is innovation- 
free, i.e., 

(5.7) 0 f o l  00 tr {fo(2)-l f~(2)}d2 = Op . 

(See Hosoya and Taniguchi (1982).) 

LEMMA 5.1. Suppose that Assumptions 1-5 are satisfied, and that 

jZoA:W(j,2) ~ 0 for  all 2 e [0, 1]. For an innovation-free parameter 0 we 

have 

•f• OD(fo, N(Op, Mr) I~) 
O0 

PROOF. Using an argument similar to Hosoya and Taniguchi (1982), 
we can see that 

1 0 
Iof . = o ,  

for j , m  = 1,...,p; a ,b , c ,d=  l,...,q. Putting ~bj(2)= (O/OOs)fs(2) in Lemma 
2.1, we have the desired result. [] 

The process {Y(t)} is a linear dyadic stationary 
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Applying Lemma 5.1 to (5.5) we have: 

THEOREM 5.1. S u p p o s e  that A s s u m p t i o n s  1-5 are satisfied. Then 

the d is tr ibut ion  o f  - G under  Ho tends to X2(p  - 1) as N --" oo. 

Now we consider a more general test of the hypothesis. 

Ho: BO = u20 against H: BO ~ u20 , 

where B is a (p  - l) × p matrix with rank B = p - l, and u~o = (ul+ Lo,..., up, o). 
Then there exists an l × p matrix A such that 

o = = u ( O ) ,  
B u2 

where det ( A )  ~ 0. Let 0 be the quasi-maximum likelihood estimator of 

0 ~ O, then u(0) = t~. Then the likelihood ratio criterion of testing 

H0: uz = u2o against H: u2 ~ u2o 

is given by 

(5.9) Cs : N { D ( f ~ . ~ ) ,  IN) - D ( f a  ..... ), IN)}, 

where ~ is the quasi-maximum likelihood estimator of ul under Ho. Then 
we have: 

THEOREM 5.2. S u p p o s e  that A s s u m p t i o n s  1-5 are satisfied. Then 

the d is tr ibut ions  o f  - ~ under  Ho tends to XZ(p - l) as N -" ~ .  
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