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Abstract. In the context of sequential (point as well as interval) estima- 
tion, a general formulation of permutation-invariant stopping rules is 
considered. These stopping rules lead to savings in the ASN at the cost of 
some elevation of the associated risk--a phenomenon which may be 
attributed to the violation of the sufficiency principle. For the (point and 
interval) sequential estimation of the mean of a normal distribution, it is 
shown that such permutation-invariant stopping rules may lead to a 
substantial saving in the ASN with only a small increase in the associated 
risk. 
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1. Introduction 

Let {X1, X2,... } be a sequence of independent and identically distri- 
buted random variables (i.i.d.r.v.) with a distribution function (d.f.) F. For  
every n (_> 1), let T, = T(n; X~,..., X, )  be a nonnegative statistic, and let 
{by: v = 1,2 .... } be a nondecreasing sequence of real, positive numbers. 
Consider a general stopping variable 

(1.1) rv = inf{n >_ m: n >_ bvT,} , 

where rn is a preassigned positive integer (which may even depend on v), 
v = 1,2, . . . .  It may be mentioned that the sequential estimation rules 
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studied by Ray (1957), Robbins (1959), Chow and Robbins (1965), Ghosh 
and Mukhopadhyay (1975, 1976), Woodroofe (1982) and others may be 
unified in the form of (1.1). 

We may notice that in (1.1), at the n-th stage, b~T(n;X1,...,X,) is 
compared with n, where Xt,..., X, have been observed in that order. In a 
general setup, 7", is a symmetric function of X1, .... X,, and, in a non- 
sequential setup, Xa,..., X, are permutationally invariant (PI) in the sense 
that their joint distribution remains invariant under any permutation of the 
n arguments. However, in a general sequential setup, for an arbitrary 
stopping rule rv, X~,..., X~ need not be permutationally invariant. Thus, a 
natural question may arise: Could we have stopped earlier if the same set 
of Xl,..., X~ had arrived in a possibly different order? This motivates us 
towards the formulation of permutation-invariant stopping rules (PISR), 
and we shall consider this concept in detail in Section 2. 

There is an intricate relationship between optimal stopping rules and 
(transitive) sufficiency (see Bahadur (1954)). As we shall see in Section 2, 
by construction of the PISR, this (transitive) sufficiency principle is 
violated. Hence, a PISR may not share the optimality properties. Neverthe- 
less, it will be shown that such PISR may lead to substantial savings in the 
ASN and there may not be any significant increase in the associated risk of 
the (sequential) estimators. To emphasize this vital aspect of PISR, in 
Sections 3 and 4, we will incorporate them in the case of sequential point 
and interval estimation problems for a normal mean (when the variance is 
also unknown), and show that the PISR compare very favorably with their 
classical (noninvariant) counterparts. In passing, we may remark that the 
above picture is largely asymptotic in nature, and there is a good scope for 
in-depth numerical studies in the non-asymptotic case which would be 
explored elsewhere. 

2. PISR: General formulation 

Note that we have taken (for n > m) T, = T(n; X1,..., X,). This is done 
merely to include the more general situation where 

(2.1) T, = T* + h,; T* = T*(X1,..., X~), n >_ m ,  

and {h,: n ___ m} is a (nonincreasing) sequence of real nonnegative numbers 
with lim h, = 0. We shall see in later sections that (2.1) covers a more 

n - o ~  

general setup than the simple case where h~ = 0 for all n > m. 
For every n ( > 1), let ~ be the set of n! permutations {il,..., i,} of the 

first n natural integers (1,...,n). For every k (m _< k <_ n) and (il,...,ik) 
{1,...,n}, we define 
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(2.2) T,,,t~ ...... ,~ = T ( k ;  X i , , . . . ,  X~,) . 

Then,  looking at (1.1), we may consider the following PISR:  

(2.3) 

At the n-th stage (n > m), for each k (m < k _< n) and every 
( i l , . . . , i k )  ¢ {1,..., n}, we compu te  T~,(i ...... i,). If, for some k 
(m _< k < n) and some (il,..., ik), k >- bvT , , ,  ...... io, then we stop 
sampling at the n-th stage; otherwise, proceed to the next 
stage by taking one more  observation. The associated stop- 
ping variable is denoted by z*, v = I, 2 , . . . .  

If we write, for each k (m _< k _< n), 

(2.4) T ° = m i n { T . , c i  ...... i 0 : l < i n ~ ' " ~ i k < n } ,  

then, we may also write r* equivalently as 

(2.5) z* = inf {n > m: k > b~T,°k, for some k: m < k < n} ,  

v --- 1, 2, . . . .  Note that  by (2.1), (2.2) and (2.4), for every k (m _< k _< n), 

(2.6) T ° <_ T,  = T(k ;  X~, . . . ,  X , )  w.p. 1 , 

and hence, by (1.1) and (2.5), we have 

(2.7) r* _< rv w.p. 1, for every v = 1, 2 , . . . .  

It is also clear f rom (2.3)-(2.5) that  r* remains invariant under  any 
permuta t ion  of the indices i l , . . . , i~ z (i.e., the order in which the Xi's enter 
into the (stopped) sample), while for rv this invariance may not  generally 
hold. Thus,  ~* is a P ISR,  while zv may not  be PI. 

For  each n ( -> 1), let .~¢,1 be the sample space of (X~,..., X,), .~(,I  the 
Borel sigma-field on ._~¢"), and let ,_~l,I be the family of probabili ty 
measures on (.~1,1,~¢,1) which are assumed to be dominated  by some 
sigma-finite measure. Let , ~ , 1  be the sigma-subfield generated by T,, 
n _> m. Then,  {T,: n > m} is a t rans i t i ve  s e q u e n c e  for the sequential model  
{(._~(,I, ..~(,I, ~¢,1); n _> m} if for every n ___ m, any version of the condit ional  
dis t r ibut ion of T, given ( X ~ , . . . , X , - O  depends only on T,-I. Actually, 
Wijsman's  (1959) theorem on transitive sufficiency asserts that  for ._~g,I C 
~ l , I ,  for all n > m, the sequence {..~g"); n > m} is transitive for {..~("); n _> m} 
i f  a n d  o n l y  i f , i f1  ~") and ,~,+~1 are condit ionally independent  given ,.~g,I. 
Bahadur  (1954) has shown that  in sequential decision problems, a t tent ion 
can be confined to procedures based on transitively sufficient sequences of 
statistics. Thus, whenever { T,; n > m} is such a transitive sequence, rv may 
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have some optimality properties, and it is counter-intuitive to consider the 
triangular scheme { T~, k < n; n _> m} and the associated r*. On the other 
hand, by (2.7), whenever the ASN (i.e., E(r~)) exists, we have 

(2.8) E(rY )<_E(zv ) ,  

so that z* is more desirable than rv. This apparent anomaly can be easily 
rectified by considering the optimality properties of the sequential estima- 
tion procedures based on the stopping rules in (1.1) and (2.5), respectively. 
In this context, we shall see that the violation of the sufficiency principle by 
r* generally results in an elevated risk for the corresponding (sequential) 
estimator, and this is quite in line with Bahadur's (1954) basic result. 
Granted this explanation from the theoretical point of view, the natural 
question may arise: What would be the cost for the excess risk in 
compensation for the gain through reduction in the ASN? In other words, 
can some "near optimality" properties be achieved by such PISR? In the 
next two sections, we shall attempt to provide satisfactory answers to these 
questions with special reference to the sequential estimation of the normal 
mean problems. In this setup, we will mostly confine ourselves to the 
asymptotic case where "b~" is taken to be large (as has been done in 
Robbins (1959), Chow and Robbins (1965) and other places), and we 
believe that more favorable results can be obtained in the "non-asymptotic" 
case through extensive numerical work. We do report on some limited 
small sample studies; however, these are not very conclusive even though 
the overall picture appears to be extremely encouraging. 

3. Minimum risk point estimation of the normal mean and PISR 

Having recorded XI,..., g/1, suppose that the I o s s f u n c t i o n  in estimating 
/1 

the (unknown) mean/1 by J~/1 = n -~ Y~ Xi is given by 
i = l  

(3.1) L. = 0(/1 - p)2 + o n ,  

where c ( > 0) is the known cost per unit sample. If the variance tr 2 were 
known, the r isk  E ( L , )  = a2n -' + cn is minimized when n = n o "-- trc -~/2, and 
p0, the associated m i n i m u m  risk,  is --2trc m as c l0; here a - - b  means 
a / b -  1. Since cr is, in fact, unknown, no fixed sample size procedure 

n 

would minimize E(L,) uniformly in tr. Le t  S 2 = ( n -  l ) - ' iX=,(Xi-  X , ) :  for 

n _> 2. Following Robbins (1959) and others, we may then consider the 
s topp ing  rule: 

(3.2) Nc = inf {n > m ( ___ 2): n > c-1/2S/1}, 
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and estimate p by 3(No. Note that the risk associated with XN0 is given by 

(3.3) a2E(N~ 1) + cE(Nc)  = pc, say.  

Up to various orders of approximations (see Starr (1966b), Ghosh and 
Mukhopadhyay  (1981) and Woodroofe  (1982)), it has been shown that as 
c ~ 0 ,  

(3.4) E(Nc)  ~ n o and p~ ~ 2ac 1/2 , 

so that the sequential estimator )(so has asymptotically the minimum risk p0 
under a variety of conditions on m. Note that the stopping rule (3.2) is of  
the form (1.1) with v = [c-~] * + 1, by -- c -~/2 and T, = T* = S, for n > 2 
where Ix]* stands for the largest integer < x. Also, we may note that for 
every n > 2, 

(3.5) s:=(n) -I'x2 1 
0b(a, b) = -~- (a - b) 2 . 

Fu r the r ,  in deal ing with possibly n o n n o r m a l  d.f. 's (see Ghosh  and 
Mukhopadhyay  (1979)), one may modify (3.2) and consider Arc = inf {n > m 
( _> 2): n > c-1/2(S,, + n-a)} for some 0 < a < 1, and this would correspond to 
T~ = T* + n -a with T* = Sn. 

To introduce the PISR, we define S2.(i ...... i,) as in (2.2) and let 

(3.6) Z,,,k = min {S2,(i  ...... i~): 1 < il < "" < ik --< n},  

for k = 2,..., n. Then, the stopping variable N* of the PISR is of  the form 

(3.7) N* = inf {n >_ m( _> 2): k > c-l/2(Z2f 2 + k-a), 

for some k: m < k ___ n}.  

We estimate p by fiN: and denote the risk of this sequential est imator by 
p*. Our main contention is to compare E(Nc) and pc with E ( N * )  and p~*, 
respectively. 

Let ~ n  be the sigma-field generated by the tail sequence {S~; l_> n}, 
for n _> 2, so that ~ ,  is nonincreasing in n. Then, { $ 2 , ~ , ;  n _> 2} is a 
reverse mart ingale ,  so that 

(3.8) E(Sk2[Ci~,,)=S 2 w.p. 1, V 2 < _ k < _ n ,  

(3.9) S 2 --" tr 2 w.p. 1/1st mean, as n --- = ,  
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where  for  bo th  these results, E ( X  2) < oo suffices and the normal i ty  of  the 
d.f. of  X is not  all that  crucial. Also, by  definit ion, 

• S,;,~ ...... ~ ( = S . 2 ) ,  (3.10) E ( S 2 1 ~ " )  = k ~<-,,<<,,<-- 

so that  by  (3.6) and (3.10), we obta in  

(3.11) Z,, , ,  < S,, z for  every k: 2 <_ k < n;  n >_ 2 . 

Suppose  now that  J°+l,, = {j° , . . . , j°+ d f {1,..., n} be such that  

(3.12) Z,,,k+ ~ = S2.,C,....j~+,), k = m - 1 , . . . ,  n - 1 . 

Then,  for  every  k -e l emen t  subse t  J k =  ( j l , . . . , j k ) C  J~+l,, , ,  le t t ing jk+1 = 

j o+ 1,n~Jk, we have 

(3.13) S2 (j,,...,jk) 

= 2 2 Sg, u ...... j o+,) _ t ~  qb(Xj,, ~ , )  

= o..~j ...... J*+') - 2 t- 4,(Xj,, Xj,.) - ,~o.,u ...... j,.,) , 

so that  for  Xjk. being one of  the two ex t reme values (within the set 
{Xj: j  ~ J~°+l,.}), the te rm within the parenthesis  {. } is nonnegat ive ,  and, 
hence, 

2 ~ ~,2 o o (3.14) min S..u ...... J~)- ~,.,u ...... ~.,~ = Z. ,k+l  . 
JkCJ°. l ,  n 

On the other  hand,  by  cons t ruc t ion ,  

S..0 ...... ~)_< min z (3.15) Z . , k  rain 2 = S n , ( j , , . . . , j k )  , 
I<_il<...<ik<-n j~CJ°,x.  , 

so that  by (3.14) and (3.15), we obta in  for  every n >__ 2, 

(3.16) Z.,k < -- Z.,k+l W.p.  1, for  every k > _ m .  

We may  again recall that  d p ( a , b ) = ( a - b ) 2 / 2 ,  so that  using the order  
statistics X.:~ ___ --. _< X.:. co r respond ing  to X~,..., X.  and fo l lowing some 
rout ine  steps based  on the usual  inclus ion-exclusion principle, we ob ta in  
for  every n > k _> m ( _> 2), 
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(3.17) min{(k)l } = Y. ~b(X,:;, X,:j): l < _ q < n - k + l  
2 q<_i<j<_q+k - I 

,..Iq) _q_< k + l } ,  say = m i n  t Z . , k :  1 < n - -  

71q)  w h e r e  z..,k is the  s ample  v a r i a n c e  for  the  ( o r d e r e d )  s u b - s a m p l e  
{X,,:q,..., X.:q+k- ~ } of size k, for 1 _< q _< n - k + 1, k _> 2. Next, we note that 

(3.18) 
'7(q) ,'7(q) L ,n+l ,k  if X.+~ > X.:q+k-~ 

Ln, k : .-/(q+ 1} 
Z,n+l,k i f  X n + l  < Xn:q , 

7{q) 
while for X,,:q < X.+~ <_ X,,:q+k-~, we may use (3.13) to compute z,.+Lk from 
z {q )  .,k. In fact, in this case, it follows that 

(3.19) Zn(q) r ,-.(q} ,7(q+ I) +Lk is smaller than at least one o~ Z.,k and .'..,k 

Thus, f rom the viewpoint of computat ion,  given the picture at the n-th 
,-,,{q) 

stage, we do not have to exhaust  the full computat ion of L.+l,k at the 
(n + 1)-th stage, and this observation would be of considerable help, 
particularly if n is large. 

THEOREM 3.1. I f  the Xi's have a normal d . f  with a finite variance 
a 2, then 

( 3 . 2 0 )  

(3.21) 

I!m{E(N*)/E(Nc)} : (zc/6) 1/2 , 

l!m{p*/pc} : (6 + g)(24g) -1/2 , 

so that as c ~ O for  the PISR,  there is about 27.6% reduction in the A S N  at 
the expense o f  only about 5% increase in the risk. 

PROOF. We start with some identities on the variance of truncated 
normal  distributions. Let g and G be, respectively, the standard normal  
density function and d.f., and for every a, fl such that 0 < a, fl < 1 and 
a + fl _< l, let a = G-l(fl), b = G-l(a + fl). Then, we have 

(3.22) fba x d G ( x  ) = g(a) - g(b) , 

(3.23) f : x2dG(x )  = a - {bg(b) - ag(a)} , 

so that 
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(3.24) 
-1 b 2 f: x dG(x)- {a-1 f:xdG(x) } 2 

= I - a -1{bg(b)  - ag(a)}  - a - ' { g ( b )  - g(a)} 2 . 

Note tha t  g'(x) = - xg(x) and g"(x) = (x 2 - 1)g(x), so that  for any a e (0, 1), 
the r igh t -hand  side (rhs) of  (3.24) is minimized for  fl = (1 - a ) / 2 .  Thus,  if 
we define da by G(da)  = (1 + a ) / 2 ,  then for  fl = (1 - a ) / 2 ,  the rhs of  (3.24) 
reduces to 

(3.25) 1 + 2a-lg ' (d ,O = 1 - 2a- ld , ,g (d~)  

- -  ;g a 2 -4- O ( a 4 ) ,  a s  a --* 0 , 
6 

by Taylor  series expansion.  
Re tu rn ing  now to the p r o o f  of  the theorem,  we note  tha t  in (3.7), an 

admissible k must  satisfy the condi t ion  k 1+" >_ c -~/2, so that  as c ~ 0, k ---- oo.  

We rewrite (3.7) as 

(3.26) c -2 1/2 N.* = inf {n >_ rn ( _> 2): n2c > ( k / n )  (Z,,.k + k-") 2, 

for some k: m _< k _< n} .  

Keeping this in mind,  we first s tudy the asymptot ic  behavior  of ( n / k )  2 Z,. ,  

when k and n are bo th  large. Let  F, , (x)  = n -1 ~E I ( X i  <_ x)  be the empirical  
i=I  

d.f. of  the sample of  size n. Then,  we have 

(3.27) 
<, , - - ' "  }' 

- -  K ) L n ,  k = - -  , 

where 

(3.28) Lkq = {x: X~:q <_ x <_ X~:q+k- ~ } , 

~(q},^ 
1 _< q < n - k + l ,  m _< k _< n. Since L.,k ~ are t rans la t ion  invar iant ,  wi thout  
any  loss of  generali ty,  we may  set kt = 0, so tha t  the d.f. F of  X1 is t aken  as 
F ( x )  = G ( x / a ) ,  x ¢ R .  Then,  

(3.29) 

(3.30) 

f 1 . , x d F ( x )  -- a{g(a-lXn:q) - g(tr-lXn:q+k - 1)}, 

ft., x E d F ( x )  = a E ( k / n )  - a{X,:k+q-tg(tr-lX~:k+q-l) 

- X . : q g ( a - l X . : q ) } ,  
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which are both s m o o t h  (i.e., bounded and differentiable) functions of X,:q 
and X,:q+,-1. Let us now write 

(3.31) .,Iq~. ...,k = (hi k)f,.,x2dF(x)- { (nl k)LxdF(x) }2 

,o ={ (q) ( ) }  .kq x: a G  -1 < x <- a G  -1 q + k 1 , 
n 

( 3 .33 )  <..,k ~<q, = (nl k) f a x2dF(x) - { (nl k) f a xdF(x) }2 . 

Note that for r = 1,2,..., we have 

(3.34) L x r d F , ( x ) - f l . k x r d F ( x ) = L x r d ( F , ( x ) -  F(x))  

= n-l~ 2 { ni/Ex'[F.(x) - F(x)lxX:i~ +'-' 

- r f t . ~ n m [ F , ( x ) -  F (x ) ] x ' - i dx  } .  

Also, for a normal d.f. F, for every finite r ( > 0), 

(3.35) f~° {F( )[1 )]} oolxl' x - F ( x  rdx < ~ , 

for every Y > 0, while (see Ghosh (1972)) as n --- oo 

(3.36) sup {n'lElF.(x) - F(x)l/[F(x)(1 - F ( x ) ) ]  ' / 4 }  = 0 ( 1 ) ,  
~o<X<OO 

w.p. 1 as well as in the r-th mean. Thus, the rhs of (3.34) is O(n -1/2) w.p. 1, 
as well as in the s-th mean for all s ( > 0). On the other hand, proceeding as 
in (3.24)-(3.25), we can verify that for any given k / n ,  (3.33) is a minimum 
when q = (n + k ) /2  and this minimum value is given by the rhs of  (3.25) 
with a =  k / n .  Thus, using (3.29), (3.30), (3.33) and the lower bound in 
(3.25), it follows that whenever k -- oo, n --. oo with nl /2(k/n)  3 ~ oo, at a rate 
faster than log n, then for every e > 0, there exists c(e) e (0, oo) such that 

(3.37) 
p{  "-,,(q)* l ~(q)  

Ln, k /qn, k -- I I > e} _< c(¢)n -5, V n >- no ; 

(3.38) 
~(q) 6 

~,k >~ (k/n)  2 >> O((n -1/2 log n)2/3) . 

Actually, in (3.37), we could have used an exponential rate in n, but O(n -5) 
suffices. Similarly, using (3.34)-(3.36), we have for the same set 
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(3.39) (q) -1 ,7(q} ,-r(q)* P{(~,,k) I > el < c(e)n -5, V n > - L n ,  k _ no L ,  t l ,  k - -  . 

Thus, for k, n --- ~ with nl/2(k/n)3(log n) -t -- ~ ,  we have 

(3"40) P{  Z",k < cr2 rc } -~  (k/n)2(1 - e') <_ 2c(e)n -4, V n >_ no 

where ~' ( >  e) can be made to converge to 0 when e lO. Also, refer to 
Kiefer (1961, 1967). Now, 

(3.41) P Z,,k > cr ~ (k/n)2(1 + e') < 2c(e)n -4, V n > no. 

On the other hand, whenever k -- ~ ,  n --. ~ ,  but  k / n  --- 0, we write 

(3.42) (n /k ) f t . , x~dF, (x )  = k -l q*k~l e=q (X":i)r' r = 1 ,2 ,  

as a linear combinat ion of functions of order statistics (i.e., h i ( x ) =  x, 
h2(x) = x2). For normal distributions, it is known that the sample order 
statistics have finite moments  of any finite order, and hence using the 
classical moment  convergence results on order statistics (see Sen (1959), 
van Zwet (1964)), it follows that the 2p-th central moment  of (3.42) is 

(3.43) O(k-P( log  n)r), V r and p = 1 ,2 , . . . .  

Now, as has been pointed out immediately before (3.26) that k l+a >__ C -1/2, SO 
that whenever n2c is bounded,  k ~ O(n*/ll+al), and hence, choosing p such 
that p/ (1  + a ) >  5, we again arrive at (3.40)-(3.41). A similar technique 
may be used when n2c is large, where we need to adjust p (in (3.43)) 
accordingly. Thus, we conclude that whenever k - - - ~ ,  n - - - ~  with k i n  
> n -~, for some t />  O, we have for every n > no, e > O, 

2 7~  344, -2zn,k- ° I }< 2c  ,o, 

Next, note that 

(3.45) (n°)2c - .  tr 2 as c ~ 0 ,  

so that using (3.26), (3.44) and (3.45) we readily obtain 

N,* I f lT~l 6 ~1/2 ~,O/ ---* (3.46) c /t~ / J ",cJ 1 w.p. 1 as c ~ 0 
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Also, it follows f rom Robbins  (1959) and others that  

N~ 0 (3.47) E( c)/nc --" 1 as c 1 0 ,  

while by cons t ruc t ion ,  N*/Nc<_ 1 w.p. 1 for  all c > 0 .  Hence,  by the 
D o m i n a t e d  Convergence  Theorem,  we get 

1/2 o ~  (3.48) E(N*)/{(zc /6)  -c~ --" 1 as c 1 0 ,  

and this completes  the p roof  of  (3.20). 
Next ,  we note that  by (3.7), 

(3.49) P ( N *  > n) < e{z, , ,k  > (c'/2k - k-") 2, V k <- n} 

<-- P{Zn, k° > (cl/2kn - kna)2}, V k, ~ [m, n ] .  

Thus,  if we define n* ~ ac-1/2(n/6) 1/2 as c ~ 0, then  for  every n ___ n*(1 + ~), 
e > 0, letting k,, ~ an (a > 0, small), by using (3.41), we obtain 

(3.50) P ( N *  > n) = O(n-4) . 

Similarly,  for  every n < n*(1 - e), e > 0, by (3.40), we get 

(3.51) P ( N *  = n) = P{Z,,,,,~ > (cVZk - k-") 2, V n'<_ n - 1, k<_ n', 

Zn, k <-- (cl/2k - k-a) 2, for some k ___ n} 

< P{Z,,,k <_ (cl/2k - k-") 2, for  some k: n* < k ___ n} 

= O(n-4(n - n*) ) ,  

where  n* ~ c -1/12÷2"1. Thus,  using the H/51der inequality,  for  n '  ___ n*(1 - e) 
and r -1 + s -I = 1, we get 

(3.52) E{(Xu:  - / 0 2 I ( N  * _< nO} 

= .X  E{()(.  - l t )2I(N * = n)} 
n o  - < n < - n  ' 

_< .o.~<.,{P (N* = n)} 1/~{E[ I 2(,, - ,u 12']} 1/s 

<_ . E  O(n-4/~)O(n-1)O((n-  n*) 1/~) 
r/o -< r / -<n  p 

<-- O ( ( n ' -  n*) l/r) . Z  O(n -1-4/r) 
n 0 <_1,1<_71" 

-'- O( (n ' - -  n*)l/r)O((n*)-4/r-- (n') -4/r) 

=. O( c-1/(2r}) o (  ¢2/(rll +a)}) 
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--- O(c(3-a) /2(r+ra)) .  

Since 0 < a < 1, 3 - a > 2 > 1 + a. Also,  since E( I ) ( ,  -/112s) = O(n -s) for  
every s = 2, 3,. . . ,  choos ing  s so large tha t  (3 - a)/(r + ra) = (3 - a)(s - 1)/ 
(s + sa) > 1, we obta in  f r o m  (3.52), as c 1 0, 

(3.53) E { ( X N ?  - p)2I(N~* < n')} = 0 ( c ( 1 + q ) / 2 ) ,  

for  ~/> 0, while us ing (3.50) and a similar  inequali ty,  we have as c ~ 0, 

(3.54) E{(Xu~* - p)2 I (N*  ___ n)} = 0 ( c ( 1 + " ) / 2 ) ,  

for  all n _> n*(1 + e). O n  the  cen t ra l  d o m a i n ,  tha t  is, n * ( 1 -  e)_< N *  _< 
n*(1 + e), e > 0, we m a y  vir tual ly  repea t  the  steps in Sen and  G h o s h  (1981) 
and conc lude  tha t  as c ~ 0, we have 

(3.55) E{ (~rN~* -- #)2 I ( [N* - n*l <- en*)} 

2 ~ 1.,1~ = ~)1/2cl/2 tr / ~ + o(c 1/2) tr(6/ + o(fl/2) . 

Therefore ,  as c ~ 0, by (3.48), (3.53)-(3.55), we get 

(3.56) p* ~ (YC 1/2 {(6/re)1/2 + (rr / 6)1/2 

p~(6 + re)/(24r01/2 , 

and  this comple tes  the p r o o f  of (3.21). [] 

S u p p o s e  n o w  tha t  in (3.7) we replace c 1/2 by de m, for  some  d > 1, and  
deno te  the co r re spond ing  s topp ing  variable by N~*(d), that  is, 

(3.57) N*(d)  = inf {n >_ m ( _> 2): k >_ c-l/2d(Zl,!~ + k -a) 

for  some  k: m _< k _< n} .  

Let  us also deno te  by p*(d),  the risk of  the P I S R  based on  the  e s t ima to r  
)(N:~a~. Then ,  vir tually repea t ing  the p r o o f  of T h e o r e m  3.1, we ob ta in  

(3.58) 

(3.59) 

Then ,  if we let 

l!tmo{E(N*(d)) / E(Nc)} : d(rc/6) 1/2 , 

l!m{pc*(d)/pc} : 1 + d_1(6/~)1/2} . 
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(3.60) do,~= (6/~)m(1 - r / ) ,  

for some arbitrary small r/( > 0), from (3.58) and (3.59), we obtain 

(3.6 I )  l!m{E(N*(do,.))/E(N¢)} = I - r/, 

(3.62) l !m{p*(do, q)/p¢} = I + ~ -  r/2/(l - r/). 

Thus, for r /= .1 (or .05), we have 10% (or 5%) reduction in the ASN at the 
expense of only .5% (or .13%) increase in the relative risk. Thus, allowing 
r/--- 0 and noting that r/2/(2 - 2r/) -- ,/2/2, we arrive at the following. 

THEOREM 3.2. Let {ev: v = 1,2,... } be a sequence of  positive numbers 
such that lim e~ = 0. Then, there exists a sequence {r/v: v = 1,2,... } of  

v~o~ 

positive numbers such that r/v <_ (2tv) 1/2 for  all v = 1,2,..., and defining 
dv = (1 - r/0(6/r0 m and Nc*~ = N*(d,), we have for  every ~ > 0 the existence 
o f  Vo such that &o < e and 

(3.63) I!m{E(N~*~o)/E(Nc)} _< I - (2e) '/2 , 

(3.64) fim[p*(dvo)/p~} = l + ~. 

Thus, the modified PISR N*(dv) is e-risk efficient and has a smaller A S N  
than the usual stopping rule No. 

Although it appears that for the PISR the sufficiency principle is 
violated, nevertheless in the asymptotic setup, the PISR or its modified 
version compares very favorably with the original stopping rule. 

In order to get some ideas regarding the comparative behaviors of Arc 
and N* for small values of n o c, we ran small-scale simulations with 200 

0 replications. We fixed a = 1, ~t = 20, m = 5, 10, nc = 25, 50, 75, a = .5, .9, 
1.3 and d = 1.05, 1.2, 1.35. Note that d should lie in the interval (1, X / ~ )  
so that we may expect some saving in the ASN. We observed negative 
savings, that is, E(N*) exceeded E(N~) all the time when a - - . 5 .  When 
a = .9, we noted that E(N*) and E(Nc) came out to be nearly the same. 
Table 1 summarizes our findings when a - -  1.3 and m = 10. When d gets 
closer to x/-6/n ~ 1.382, naturally percentage savings are expected to go 
down. For  a = 1.3 and small values of n* like 50 and 75, we do observe 
significant savings in the ASN while using the stopping rule (3.26); 
however, the associated "risk-efficiency" seems to be nearly the same as it 
would be for the stopping rule (3.2). This is definitely encouraging and we 
foresee the need for future in-depth numerical studies along these lines. 
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Table 1. Savings and associated risk. 

Estimated Estimated n o d 
Savings (%) p*/pc 

25 1.05 21.6 1.051 
1.20 12.2 1.025 
1.35 2.6 1.018 

50 1.05 28.8 1.087 
1.20 20.4 1.047 
1.35 10.9 1.025 

75 1.05 31.6 1.096 
1.20 21.4 1.050 
1.35 12.6 1.027 

4. Fixed-width confidence interval for the normal mean and PISR 

Given two numbers  d ( >  0) and a ~ (0, 1), we wish to construct  a 
confidence interval In for p such that  

(4.1) the width of In = 2d and P ( #  ~ I , )  ~ l - a .  

The sequential  procedure  of Ray (1957), later studied in Star t  (1966a), can 
be defined by introducing a s topping variable 

(4.2) Nd = inf {n _> m ( > 2): n > p2S ,2d -~} ,  

where S, 2 is defined as in (3.2) and p is the upper  50a% point  of the 
s tandard normal  d.f., that  is, G ( p )  = 1 - a / 2 .  Recall f rom Section 3 that  g 
and G stand for the s tandard normal  density function and d.f. The 
confidence interval IN~ for p is then taken as 

(4.3) IN~ = [J(s~ - d, J(N~ + d ] .  

One may again note that  (4.2) is of the fo rm (1.1) with v = [d-Z] * + 1 and 
by = p2/d2. F rom Starr (1966b), it follows that  as d I 0, 

(4.4) E ( N d )  ~ p 2 0 2 d - 2  - -  n~' (say) and P(I~  e lug) ~ 1 - a . 

Following Chow and Robbins  (1965), we may as well introduce the fudge 
factor n -a" in (4.2), for some 0 < a* < 1. 

To introduce the P ISR,  we conceive of a positive number  p* and then 
parallel to (3.7) and (3.57), we define 

(4.5) N ~ ' ( p * )  = inf {n > m ( _>_ 2): k >- ( p * / d ) 2 ( Z n ,  k + k-a*), 
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for some k: m _< k _< n}.  

Then, we propose the confidence interval IN:t;) = [)(N:tp*) + d] for/a. 
F r o m  the detailed analysis given in Section 3, we can show that  as 

d I 0, we get 

(4.6) N~'(p*) -~- - 7  n~' --" 1 w.p. 1/1st m e a n ,  

and 

(4.7) 
7~ )112 _ 

Thus, if we let 

(4.8) (rt / 6)1/2p* = P ,  

then f rom (4.6) and (4.7), we note that  for such part icular  choice of p*, 
(4.1) holds for the P I S R  in t roduced  in (4.5). Thus,  for the P I S R  in (4.5), 
we achieve both  the "asymptot ic  consistency" and "asymptotic  efficiency" 
results by simply adjusting p in (4.2) and replacing it by p* given by (4.8). 
More  generally, if we conceive of a sequence {e~: v = 1,2,...  } of positive 
numbers  such that  ev --- 0 as v --- oo and define 

(4.9) p* = (6/~)'/2(1 + c o p ,  

then for the corresponding N~*(p*), we have as d I 0, 

(4.10) E{N~ ' (p*)} /E(Nd)  -" (1 + eO 2 . 

Next, we obtain 

(4.11) P{It  ¢ Iu:tp'~)} ~ 2G(p(1 + ev)) - 1 

2G(p) + 2evpg(p) + e2p2 g'(p) - 1 + o(e 2) 

= 1 - a + 2e~pg(p) - e~p3g(p) + o(e~) 

= 1 - a + evpg(p){2 - p2ev} + o(e 2) 

1 - u + e~p2{1 - G(p)}{2 - pZe~} + o(e~) 

{ l  } 
= 1 - a + ~p2 ~ - T ap2~ + o ( ~ )  
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Savings and coverage probability: a= .05, m= 10. 

Estimated Estimated 
n~ p* a 

Savings (%) C.P. 

25 1.05p .6 18.5 .914 
.7 25.7 .899 

50 1.05p .6 34.9 .889 
.7 42.0 .867 

25 1.3p .6 20.2 .971 
.7 28.3 .960 

50 1.3p .6 34.2 .955 
.7 41.3 .941 

70 l a p  .5 24.7 .910 
.7 41.4 .885 

90 l . lp  .5 27.1 .930 
.7 45.0 .840 

70 1.37p .5 -7 .8  .960 
.7 18.4 .915 

90 1.37p .5 -3 .5  .940 
.7 22.1 .930 

{ 12 } = 1 - a + a e ~ p  2 1--~-pev+O(&) 

= 1 - a +  q~, say. 

Thus, in order to be able to claim that the asymptotic coverage probability 
in this case is at least 1 - a, we may select Ev so small that r/~ is small, while 
in (4.10), 2ev + e~ is also small. Note that p2a = 2p2{1 - G(p)} is bounded by 
(2/rO1/2p exp ( - p2/2) for all p and it converges to zero as p2 - .  ~ .  Thus, 
compared to the increase in the relative ASN (i.e., ev(2 + e~)), the gain in 
the coverage probability (i.e., 2p2{ 1 - G(p)}e~{ 1 - p2e~/2}) is relatively small. 
Thus, there may not be any practical gain in choosing p* as in (4.9). On the 
other hand, if we replace ev by - e~ in (4.9), then instead of  (4.10) we would 
have (1 - e~) 2 < 1 and (4.11) would be changed to 1 - a - ae~p2{1 + p2e~/2 + 
O(ev)}. Thus, sacrificing only a small fraction of the coverage probability, 
we may achieve a somewhat larger fraction of  the reduction of ASN. For 
example, if we let ev -- .05 (or .01), we have 9.75% (or 2%) reduction in the 
ASN along with a reduction of .05ap2(1 + .025p 2) (or .0lap2(1 + .005p2)) of  
the target coverage probability. For a = .05, we thus observe the possibility 
of 5% reduction of the ASN for our PISR by lowering the coverage 
probability from .95 to .945. 

In order to get some feeling regarding the comparative behaviors of Nd 
and Nd* for small values of n*, we ran small-scale simulations with 200 
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replications. We fixed tr = 1, p = 20, p = 1.96, m = 5, 10, n* = 25, 50, 70, 
90, p*/p = 1.05, 1.1, 1.3, 1.37. Notice that E(N*)  is expected to be smaller 
than E(Nd) when 1 <p* /p  < 6 X / ~ - - 1 . 3 8 2 .  We estimate the coverage 
probabil i ty (C.P.) merely by the relative frequency of  the constructed 
intervals covering/t-value. Table 2 partially summarizes our findings. 

Again, we think that Table 2 speaks for itself. It seems that by 
properly choosing a and p*, the rule (4.5) would provide substantial saving 
compared to E(Nd) and at the same time, the achieved coverage probabili ty 
may not be unattractive at all in comparison with the target 1 - a. Let us 
point out  another aspect. Suppose we implement the original stopping rule 
(4.2) where we plug in 1 - a = estimated C.P. from Table 2. The ASN for 
that adaptive rule (which is not permutationally invariant) always came out 
within a small fraction of E(N*)  in our simulations, and, of  course, 
asymptotically they are the same. The picture is definitely encouraging and 
worth pursuing in the future. 
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