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Abstract .  Bayes-empiric Bayes estimation of the parameter of certain 
one parameter discrete exponential families based on orthogonal poly- 
nomials on an interval (a, b) is introduced. The resulting estimator is 
shown to be asymptotically optimal. The application of this method to 
three special distributions, the binomial, Poisson and negative binomial, 
is discussed. 
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1. Introduction 

The Bayesian approach to estimation of a parameter 0 involves 
choosing an estimator 0* which minimizes the Bayes risk. By using Bayes 
theorem it is shown that this estimator (see Bickel and Doksum (1977)) is 
given by 

( I . 1 )  O* - 
fOp(xlO)dO(O) 
fp(xlO)d6(O) 

where G(O) is the (prior) distribution function of 0 and p(x[O) is the 
conditional probability law of the random variable X given 0. Usually 
p(x[O) is assumed to be known and G(O) is assumed to belong to a 
parametric family whose parameters are chosen by the investigator on the 
basis of the past experience. 

*The first author was supported by NSF grant DCR-8504620. 
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In the empiric Bayes procedure, due principally to Robhins (1963), the 
prior distribution function G(O) is not known but must be estimated from 
a sample X1, X2,..., XN of X. This estimate is then used, together with (1.1) 
and the next observation XN+ 1 to obtain an estimate of ON+ ~, the value of 0 
which led to this observation. This last estimate should converge to tg* in 
mean square as N ~ ~o. In this case it is called asymptotically optimal. 

Deely and Lindley (1981) observed that empiric Bayes methods are not 
truly Bayesian and proposed a procedure for combining Bayes and empiric 
Bayes methods. In this work we shall study an alternative procedure doing 
the same task. It is an extension of the method introduced in Walter and 
Hamedani (1987) for estimation of the binomial parameter. We shall 
consider here, discrete exponential families with a single parameter. 

We suppose first that XI, X2,..., XN, XN÷~ form an i.i.d, sample of the 
mixture 

(1.2) p(x) =fp(xlO)g(O)dO, 

where 0 has the unknown "true" absolutely continuous distribution with 
density function g(O). An initial prior approximation go(O) to g(O) based 
on subjective knowledge of an element from a conjugate family is made. 
Then a weight function w(O) is formed from go(O) and any factors in 
p(x[ O) which are independent of x. Orthogonal polynomials pk(O) based on 
w(O) are constructed. These pk(O) are then used to estimate g(O) by 
functions of the form 

m 

(1.3) ~,,,(0) = kZogtkpk(O)go(O), 

where t~k depends on the sample X1, X2,..., X~v. The ~,m(O) are in turn used 
to obtain estimates ~m(X) of p(x) from (1.2) and estimates of ON+t from 
(1.1) when XN+I = X. For m = 0, we have exactly the Bayes estimate, while 
for larger values of m we have progressively less smooth estimators tim(x). 

We shall show that the resulting ~,, and/~,, are integrated mean square 
consistent with respect to an appropriate weight function and the estimate 
of ON+ 1 is asymptotically optimal. 

These methods differ considerably from the previously proposed 
methods for estimating the prior density function. The methods of Choi 
and Bulgren (1968), Deely and Kruse (1968), Blum and Susarla (1977), 
Tortorella and O'Bryan (1979) were all based on step function estimation, 
while those of Berry and Christensen (1979) were based on Dirichlet 
processes. O'Bryan and Walter (1979) used Fourier transform methods. 

In the next section we shall consider the Bayes-empiric Bayes estima- 
tion in the case of discrete exponential families with a single parameter. In 
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this case there is a natural conjugate family from which we choose our 
initial prior go(O). The application of this method to three special distribu- 
tions, the binomial, Poisson, and negative binomial is discussed in the last 
section. In two of these cases one encounters a standard type of orthogonal 
polynomials. 

2. General formulation 

In this section we shall deal with discrete random variables whose 
probability functions are members of a one parameter natural exponential 
family. We shall change the parameterization to enable us to construct an 
orthogonal system of polynomials in the new parameter. We begin with the 
natural form for the one parameter exponential family, 

(2.1) p(x[40 = [ exp {4~T(x) + d(¢) + S(X)}]IA(X), 

where A is a discrete set in ~ r  with indicator function IA, 4) is the 
parameter which is assumed to be real and d(40, T(x), S(x) are real-valued 
functions. The statistic T(x) is sufficient for 4~ when p(x[4~) has this form 
(see Bickel and Doksum (1977)). Most standard discrete distributions 
including the binomial, Poisson, negative binomial, are of this form. 

Such exponential families have natural conjugate families with two 
parameters whose probability density function is given by 

(2.2) n~a.~)(4~) = [ exp {4~a + d(4~)fl}]I~(ch)/~u(a, fl), 

where a and fl are the parameters, ~u(a, fl) is a normalizing factor, and q~ is 
a subset of ~ (see Bickel and Doksum (1977)). By Theorem 2.3.1 of Bickel 
and Doksum (1977), the probability function of Y= T(X), the natural 
sufficient statistics, which we assume to take integer values, is given by 

P(Y[4~) = [ exp {4~Y + d(4~) + S*(y)}]IA'(y), 

where A* is the image of A under T and S*(y)= In {Y_,lx~A:rtx)=vle six)} if 
y e A* and 0 otherwise. We now change the parameterization inp(y[4~) by 
setting 0 = exp {4}; and noting that 0 belongs to a finite or infinite interval 
(a, b). Then we have 

(2.3) p(y[O) = 0 y exp {d(ln 0)} exp {S*(y)}IA.(y) 

= OY~(O)~(y)IA.(y). 

The conjugate prior probability density function of 0 would have the form 
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(2.4) 0) = O° ( O)Io( O) / *( a, , 

where O is the interval (a, b). 
The form (2.3) was already considered by Maritz (1970) who used it to 

obtain an estimate for the Bayes rule in terms of the marginal distribution, 

6(y) = c (y ) f (y  + 1)/ f ( y )  . 

This is a form of a representation suggested by Robbins (1955). However, 
such representations suffer from "jumpiness" as was observed in Berger 
(1985), and must be smoothed. Our procedure will not only provide an 
estimator based on the marginal distribution but will also allow the user to 
specify the degree of smoothness desired. 

A pure Bayesian approach would involve estimation of 0 under the 
hypothesis that it has a "measure of uncertainty" given by the prior 
probability density (2.4). For each fixed y, the posterior probability density 
function of 0 would be proportional to the product of (2.3) and (2.4) and 
would again be a member of the conjugate family. We assume that a 
Bayesian has chosen a and fl in some way and let go(O)= n~a.~)(0). This 
could be done either by using prior knowledge or by treating their 
estimation as a parametric empiric Bayes problem and using a portion of 
the data for this purpose. 

After a and fl have been chosen, perhaps both zero in the non- 
informative case, we "improve" the estimation by using additional data. 
This data is used in conjunction with appropriate orthogonal polynomials 
on (a, b). The orthogonality is with respect to the weight function w(O) 
where 

(2.5) w ( O )  = . 

We need also to assume that O"w(O)dO exists for n = 0, 1,2,.... 

Now we define the bpolynomials {p,} in a standard way; we let 

po(O) = 1/ho, where h 2 = f~ w(O)dO, and 

p~(0)= 0 -  Opo(O)w(O)dO h~, 

b 2 
where h~ is the normalizing factor needed to make f~ p~(O)w(O)dO = 1. This 

is the familiar Gram-Schmidt orthogonalization procedure and may be 
continued to all positive integers. In this way we obtain a sequence 

po(O),pl(O),...,p,(O),..., 
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such that p.(O) is a polynomial of degree n which is orthogonal to pro(O) 
for n ~ m and in fact if q(O) is any polynomial of degree m < n, then 

bq(o)p,,(O)w(O)dO = . 0 

The assumption that the prior distribution has a density will ensure that 
the above procedure does not terminate. 

The expansion of any function h(O) e L2(w; (a, b)) is the series 

o o  

kZ=oakpk(O), 

where 

ak = fbh(O)pk(O)w(O)dO . 

This series converges in the sense of L2(w; (a, b)) by Bessel's inequality and 
in fact converges to h(O) provided (a,b) is a finite interval (see Szeg6 
(1967), p. 44). The polynomials p,(O) satisfy a three term recurrence 
formula 

(2.6) p.(O) = (A.O+B.)p.-~(O) -C.p.-z(O),  n = 2 ,3 ,4 , . . . ,  

as do all orthogonal polynomials (see Szeg6 (1967), p. 42). 

2.1 Auxiliary formulae 
We are interested in estimating the prior distribution, which we 

assume to have a density g(O), from a sample of the mixturef(y)  

(2.7) f (y )  = fbap(ylO)g(O)dO 

b 

= a(y)f  oY( (O)g(O)/w(O))w(O)dO 

b 

= a(y)f£ OYh(O)w(O)dO. 

The density g(O) may not always be identifiable. Any function h(O) 
which is orthogonal to all polynomials with exponents in A* will map into 
the zero function in (2.7). In particular, if A* is a finite set, then any 
polynomial all of whose terms have degree greater than the largest integer 
in A*, will have this property. 

Hence we cannot recover an arbitrary g(O) from the knowledge of f (y)  
but must restrict the choice in some way. 
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If A* is finite, then the maximum number of linearly independent f (y)  
equals the cardinality of A*, and hence we must restrict h(O) to a finite 
dimensional subspace of i f(w; (a, b)). We shall suppose A* = {0, 1,2,..., n} 
for simplicity. The restriction on h(O) will then be that it belongs to the 
space spanned by po(O),pl (O),...,p,(O), i.e., 

n 

(2.8) h(O) : kEoakpk(O) . 

In this casef(y) will become 

(2.9) f ( y )  = Z, adk(y) ,  
k=O 

where 

(2.10) lk(y) = OYa(y)pk(O)w(O)dO, k = O, 1 ..... n . 

Clearly the Ik(y) are linearly independent and therefore the ak are uniquely 
determined byf(y) .  Thus, givenf(y) in this form, we may find the solution 
h(O) by using the coefficients from (2.9) in (2.8). 

If A* is infinite, no finite linear combination of the pk will give all 
possiblef(y) in (2.7). We shall again assume that A* is a set of contiguous 
integers {0, 1,2,... }. There now is no problem with identifiability if (a, b) is 
a bounded interval, since in this case, the pk are complete in L2(w; (a, b)) 
(Szeg6 (1967), p. 40). That is, if hi(O) and h2(0) are both in this space and 
both map into the same f(y) ,  then all the expansion coefficients of hi and 
h2 with respect to the pk are the same. Therefore, h~ - h2 is orthogonal to 
all the pk and hence equals zero almost everywhere. 

If the interval (a,b) is unbounded, it may be that the pk are not 
complete. In this case we must again restrict h(O) to a subspace of L2(w; 
(a, b)). Now, however, we take limits of finite linear combinations of the pk; 
i.e., we take the topological rather than algebraic span of our set of 
polynomials as the allowable set of h(O). 

In each of these cases we solve equation (2.7) for a unique h(O) 
satisfying the appropriate restriction given on f ( y ) .  Our procedure will 
involve first estimating the coefficients in (2.9) and showing the two sides 
are equal (n could be oo). Then, h(O) given by (2.8) is the unique solution. 

We shall obtain the ak by using a biorthogonal sequence (lk(y), 2k(y)) 
satisfying 

~ ,  lk(y)2j(y) = fikj . 
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We first observe that  in both  the finite and infinite case with complete  set 
{pk}, (2.9) holds for some choice of ak. However, in the case of an 
unbounded  interval in which {pk} is not  necessarily complete,  we must  add 
this as one of our  hypotheses. 

The ,~k(y) may be obtained f rom the or thogonal  polynomials  by the 
formula  (see below) 

(2.11) 2k(y) = pktel(0)/(y!a(y)). 

Then we find that  2k(y) = 0 for k < y and therefore 

k 
= Z ~ aylj(y)2k(y) Ef (y)2k(y)  y=Oj=O 

k k 

= y_EoaY y=JElj(y)2k(Y) : ak. 

In many  calculations it is easier to use other formulae for lk and 2k. 
The lk may also be given in terms of the coefficients ofpk(O) or in terms of 
the recurrence formula  (2.6). Indeed f rom (2.6) we have 

(2.12) Ak f foOY tr( y)pk- l ( O )w( O)dO 

f ,  b 0Y+I 
= ( A k a ( y ) / a ( y  + 1)) L a ( y  + 1)pk- (O)w(O)dO 

= (Aktr(y)/tr(y + 1))/k-l(y + l) 

= fb a OYa(y){p*(O) -- Bkpk-l(O) + Ckpk-2(O)} w(O)dO 

= lk (y )  -- B k l k - l ( y )  + C k l k - 2 ( y ) .  

The corresponding recurrence formula  for the 2k is given by using 
(2. l l) and is 

(2.13) (Aktr(y -- 1)/tr(y))Ak- I (y -- 1) 

= 2k(y) -- BkAk-l(y) + Ck),k-2(y). 

Since pk(O) is a polynomial  of degree k, it has the form 

k 
( O ) = ' 

and hence 
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k 
(2.14) tk(y) : akj/ .j r(y), 

where pj is thej-th moment of w(0), while 

(2.15) 2k(y) = aky/tr(y). 

To show that the two are biorthogonal we calculate 

® j 

yE:o2J(y)lk(y)= : EoAj(y)lk(y 

: Y., 0 pk(O)w(O)dOtr(y) 
y=O 

 o JPk(O)w(O)dO 

= f~p j (O)pk(O)w(O)dO = ~kj .  

2.2 Estimation 
In the pure Bayesian case the posterior estimate of 0 would be 

(2.16) 0* = 
f2oYa(y)~(O)g(O)dO 

tr(y) f ( y  + 1) 

tr(y + 1) f (y )  

In the empiric Bayes case one estimates g(O) (or the resulting f(y))  
from a sample Y1, Y2,..., YN and then uses this estimate of g to obtain an 
estimate/~ from another observation YN+ 1. Thus (2.16) would become 

tr(y) f ( y  + 1) 
(2.17) 0 =  a ( y +  1) f (y)  , YN+1 = y ,  

in the empiric Bayes formulation. 
Berger (1985) has objected to this estimator when f i s  fN, the empiric 

distribution, because of the "jumpiness" of 0. However, we shall use 
smoother estimates based on polynomial expansion of fN in terms of the 
lk(y). This will also enable us to estimate other Bayesian outputs such as 
the posterior variance or posterior confidence intervals by the same method 
and thus meet another of Berger's objections. 

We begin by choosing a and fl as indicated previously and we then 
define the weight of (2.5). This results in a preliminary Bayesian estimate of 
O given by (2.16) in which 
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(2.18) go(O) = Cpo(O)w(O)/ ~(O) , 

where C is a positive constant. This estimate is independent of the sample 
YI, Y2,..., YN and uses only the value of Ym~ = y. The sample is then used 
to estimate the expansion coefficients of h(O)= g(O)/O~P(O) with respect 
to the orthogonal polynomials pk(O), 

(2.19) a~ = f :  h(O)p~(O)w(O)do = f :  g(O)p~(O)~ (O)aO . 

These coefficients ak are estimated by 

l N 
(2.2o) ak = ~ i~, ;tk(Y,.), k = o, l, 2 , . . . ,  

which gives as an estimator of g(O) 

m 
(2.21) ~m(O) = k~Ogtkpk(O)w(O)/ ~(O), m = O, 1,2, . . . ,  

and of f (y)  

m 
(2.22) fro(y) = kE=Ogtdk(y), m = O, 1,2, . . . .  

For m = 0, (2.21) is the same as (2.18) while as m increases, the 
estimator becomes progressively less smooth. For m = n, the size of A* in 
the finite case, the estimator o f f (y )  is exactly the empiric distribution. If 
A* is infinite the estimator approaches the empiric distribution as N--- oo. 

2.3 Asymptot ic  optimality 
We now assume that the discrete set A* consists of successive integers 

0, 1, 2,..., n where n is finite or infinite. We cannot quite do so without loss 
of generality, that is, without losing the parametric form of our family 
given by (2.3). We also assume that a _< 1 _< b and that a(y) is a probability 
function, merely by shifting the origin in (2.3) which we can do without 
loss of generality. 

We first observe that ~k is an unbiased estimator of ak, the expansion 
coefficient of h(O) 

1 N k 

= i~=i = Z=oAk(y)f(y)=ak , E[,M ~_E[,Ik(~)] , =  

and that the variance of ~k is 
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(2.23) 

where 

may be expressed as 

(2.24) 

where 

(2.25) 

k 2 _ m 1 yE__oAk(y)f(y ) aM E[(~k -- ak) 2] = -~ N 

G < 

- -  N ' 

Ck = max 22(y). Our estimate of the prior density function (2.21) 
O<~y<_k 

g i n ( O )  = f - l m ( O ) w ( O ) / ~ ( O ) ,  

m 0 .  f~m(O) = k~=o&Pk( ) 

Hence the mean square error of [~m(O) is 

(2.26) E[(/~m(0) - h(0)) 2] = E k~o(g~k-- ak)pk(O) + k__~÷ akpk(O) 

m 2  m [ ~ 0 ]  2 
<_ k}oPk(O) k}oE[(ak -- a~) ~] + k~ ,  akP~( ) , 

and the integrated mean square error with respect to w(O) is simply 

b 
(2.27) Jo E[(hm(0)  - h(O))2]w(O)dO 

m rb z r a c k  
<_ kZ=O_ J~ pk(O)w(O)dO kZ[O - -~  + h~ k=m+, ~" a2k 

=h2° -Nk=o G k=m+l " 

If we assume that h ~ L2(w; (a, b)) and (a, b) is finite, then 

aM -- 0 as m --, o~. 
k=m+l 

Hence if m is chosen sufficiently large to make ~ aM < e/2, and the 
k=m+l 

sample size N then chosen large enough to make the first term in (2.27) less 
than e/2, then the integrated mean square error can be made less than e. 
We observe that N depends on m and as m tends to infinity so does N to 
assure the convergence of (2.27). 
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This procedure  works if there are an infinite number  of  elements in A* 
since dk is defined for every integer. However,  if A* has only n + 1 points, 
then 6k = 0 for k > n since 2k = 0 in that case. Thus ~,, = ~, for all m _> n 
and (2.27) holds only for m < n. We therefore require in this case that  h(O) 
be a polynomial  of degree < n. 

A similar assumption will be made  in the case of an infinite interval 
(a, b) since then the system {p,} is not  necessarily complete. 

We summarize the various assumptions we have made: 

ASSUMPTIONS 2.1. 

(i) The condit ional  probabil i ty p(y lO)  belongs to a discrete family 
of the form 

p(y lO)  = OY~(O)G(y), 

where y = 0, I, . . . ,  n; n = card A* < oo; 0 e (a, b); and ~(0) and a(y)  are 
positive measurable functions. 

(ii) A conjugate prior density of the form 

z(o,p (0) - 

has been found. 
(iii) The integrals 

exist for all integers k = 0, 1,. . . .  
(iv) The true prior density 

g(o) = 

is such that  h(O) is in the closure in L2(w, (a, b)) of the space spanned by 
po(O),p~(O),... ,p,(O), n = card A*. 

We can now restate the results of the above calculations as: 

THEOREM 2.1. Let Assumpt ions  2.1 hold. Then 

fa ~El~m(O) - g(O)lZO-a~-a(O)dO -'* 0 as m ~ ~ , 

where ~m(O) is the estimate (see (2.21)) o f  the true prior  density g(O) based 
on a sample o f  size N(m)  with common  probabili ty funct ion  f ( y ) ,  y ~ A* 
(see (2.7)). Furthermore, N ( m )  --, ~ as m --. ~ .  
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COROLLARY 2.1. Let Y~, Y2,..., YN be as in Theorem 2.1, and let 0,~ 
be given by 

I s: '1o 1 Or" = 0 (y)~(O)gm(O)dO a,b) ' 

where the subscript (a, b) denotes the restriction to (a, b) o f  the preceding 
expression. Then as m -~ o~ (and hence N --, oo), 

~[(Or" - o*)  2] - o ,  

i.e., Or" is asymptotically optimal. 

PROOF. We observe tha t  

- o ' ( y  + 1) E fir,(y) f(y) 

2,{ 
<- a(y  + l) f - ~  E[fm(y + l) - f ( y  + l)l y 

• ) I f , ( y )  + 1  E l f r ' ( y ) - f ( y ) l '  , 

where 0 < ), < 1. Since 

(2.29) El fm(y) - f ( y ) l  ' =  E [ f£b OYtr(Y)(gr'(O) - g(O))~(O) dO 

b 2y 2 2 

which converges  to  0, we have E[(O,~ - 0 ' )  2] - -  0 as m ~ ~ .  

The  same cons idera t ions  lead to: 

COROLLARY 2.2. Let Yt, Y2,..., YN be as in Theorem 2.1, and let 
V = E~(oly)[(O - 0*) 2] be the posterior variance, Let V,~ be given by 

r l fb(o_Or')2OYtr(y)~(O)~r'(O)d 0 1o,~), 
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then if b < oo, 

E[( Iv,,, - V) 2] ~ 0 as m --, o~. 

If h(O) is in the algebraic span of the polynomials po, pl,...,pm, the 
problem reduces to a parametric one with m + 3 parameters. In this case 
we have: 

COROLLARY 2.3. Let )'1, Y2,..., YN be as in Theorem 2.1, let h(O) be 
a polynomial o f  f ixed degree m, then 

b 1 
f~ E[gm(O) - g(O)120-~l-#(O)dO= O ( - ~  ) . 

2.4 Non-informative prior 
If as frequently happens the Bayesian is unwilling or unable to choose 

a and fl, but is equally happy with all choices, then the prior go(O) becomes 
a constant. This of course will be improper if (a, b) is an infinite interval. 
However, the empiric Bayes part of our analysis is still valid in this case. 
Indeed, the weight function for our orthogonal polynomials is just 

w(O) = ~(0) = e -¢'On°) , 

where ~u(tk) is the cumulant generating function on (a, b) and may be given 
by (Morris (1982)) 

~u(~b) = I n  Ee*Ytr(y) = In EOYa(y). 
y 

Hence w-1(0) = E OYa(y). 
y=0 

Morris (1982), constructed polynomials in y and/z = ¢/(tk) which are 
orthogonal with respect to the weight (exp {~by - ¥(tk)})a(y). In some cases 
these can be modified to correspond to the orthogonal polynomials we 
have used. However, since w(O) is not in general a polynomial function, 
this does not always work. 

It should also be remarked that since w-~(O) is given by a power series, 
our family of distributions is also a power series family and results on 
identifiability for such families can be used (see Patil et al. (1975)). 

3. Some examples 

In this section we consider particular instances of discrete distributions 
whose probability functions can be put in the form of an exponential 
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family. This will include the binomial, Poisson, negative binomial distribu- 
tions. In the case of the binomial we use the traditional parameterization 
rather than converting to the form of the last section; since the latter form 
will lead to non-standard orthogonal polynomials which would of course 
be less desirable. 

3.1 Binomial  distribution 
This has been studied in Walter and Hamedani (1987). The conditional 

probability function is 

(3.1) p ( x l O ) =  B , , ( x , O ) = ( n ] o ~ ' ( 1 - O )  "-x, x = 0 , 1  .... , n ,  
\ ] X 

with conjugate prior given by the Beta density 

(3.2) rc(a,p)(0)=0a(1 -O)~/B(c t ,  fl), 0<_0 < 1, ct, f l >  - 1. 

The associated orthogonal polynomials are the well-known Jacobi poly- 
nomials p~kP'")(O) satisfying the Rodrigues formula 

( -  1) k d k t0a+ktl 
P~ka'")(O) = k!O"(1 - O) p - ~  I ~ - 0)P+k}, k = 0, 1,2,.., 

They are orthogonal with respect to the weight function 

w(O) = 0 a ( 1  - 0 )  p . 

In Walter and Hamedani (1987) it was shown that the estimator 

0,,1 

is asymptotically optimal in the sense that 

E[(O,- 1 - 0"-,)2] --. 0 as N -- ~o, 

where 0,*-~ is the Bayes rule for the conditional probabilities given by 
B,-~(x, 0). For large n, the difference is negligible. The necessity of using 
n - 1 instead of n can be avoided if the prior distribution is assumed to 
have a density of the form 

~.,~)(0) = q(0)0~(1 - 0) ~ , 
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where q(O) is a polynomial of degree n or less, as was assumed in Theorem 
2.1. 

Alternatively one could use the parameterization of the last section 
which in the binomial ease would be 

0 
P m 

I - 0 '  

and 

B,,(x,O) = p(xlO')  = ( nx ) (O')"(l + O') -" . 

However, as was mentioned before, this would lead to non-standard 
orthogonal polynomials. 

3.2 Poisson distribution 
Compound Poisson distributions were studied in Tucker (1963) and in 

Walter (1985), in the latter case from a point of view similar to that 
considered in this work. The conditional probability function is already in 
the form of Section 2, 

(3.3) p(xlO)  x -o = O e  /x!,  x =  O, 1,2, . . . .  

and the conjugate prior is given by the Gamma density function 

(3.4) rr,,,p)(O) = O~e-B°/F(a, fl), 0 < 0 < ~ . 

Hence the weight function for the orthogonal polynomials is 

(3.5) w(O) = 0ae -Ip+l)° = [(fl + l)O]ae-lP+l)°/(fl + 1)" . 

This is the weight function for a well-known family of orthogonal poly- 
nomials, the Laguerre polynomials L~((fl + 1)0) where 

?Tae q 
(3.6) LT'(ri) - k! D~(e-~rlk+a)' k = 0, 1, 2, . . . .  

In this case we have 

(3.7) 
0 x 

= L ((fl + 1)O)w(O)dO 
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: f o  qX+~L~(q)e-" 
x!(~ + 1) x+°+' a,7 

(:) : ( - 1)* x ! ( / ~  + 1) ~+°+~ ' 

from equation (2.3) in Walter (1985). The orthogonal polynomials are not 
normalized, but can be made so by using 

(3.8) =f0 [Lk((]~ + 1)O)]2w(O)dO 

F(a + 1 ) ( k + a )  
- ( f l + l )  ~+~ k ' k = 0 , 1 , 2 , . . . ,  

again from Walter (1985). The biorthogonal functions 2k ~'p) are particularly 
simple in this case. Indeed we have 

(3.9) 

and hence 

k IX)/Cll = ( - 1)k k + a ' 

(3.10) 
l(~'P)(m) l~m~'~)(X) 

Thus, if we normalize the polynomial by dividing by C~ ~'~), we find that 

(3.11) 2~a'P)(k) = l(ka'~)(m)/C~ "'p), 

Thus, the estimator for the prior density 

is of the form 

(3.12) 

where 

(3.13) 

k < _ m .  

g(O) = k~=oakL~((fl + 1)O)O~e-a° / C~ ~'~) , 

m 

~,m(O) = k~o~kL~((fl + 1)O)O~e-P° / C f f  ~) , 

N 

-N i~ 
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the sample Xz, X2,..., XN from a distribution with probability 

Our general 
consistent with weight (3.5) and that 

{ foO +%-°b.(O)dO 
(3.14) Om = max = 

fro(X) 

is asymptotically optimal. 

3.3 Negat ive  b inomia l  d is tr ibut ion 

0 x 

f ( x )  = fo 7 e-°g(O)dO " 

theory tells us that O-~e~e~,,(O) is integrated mean square 

,0} 

The conditional probability function in this case has the form 

(3.15) p(x]O) = / j r +  x -  1 \1 0X(l _ 0)% x =  0, 1,2,... 
X ] 

in which (I - 0) corresponds to the probability of success and (3.15) gives 
the probability that x failures occur before the r-th success. In this 
interpretation r is a fixed positive integer and 0 is the parameter. The 
conjugate prior family is again a Beta family 

rc(,,.p)(O) = 0"(1 - O): /B(a ,  fl), 0 < 0 < 1, a, fl > - 1 .  

However, the weight function for the orthogonal polynomials will be 

w(O) = o°(i - o) :÷' , 

which again leads to the Jacobi polynomials, in this case 

{p,(~+"~)(O)}. 

Hence lg (~'~) is given by 

(3.16) l~a '~ ) (x )= f01 ( r+x+ l )  O)~+rdO 

(r+x - 1 ) ~ _  r'aj+x+a, 
= u*j.I o ~, t l - O)#+rdO X j=o 
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= ( r + X - l x  k F ( j + x + a + l ) F ( f l + r + l )  
JZoakj F ( j  + x + a + fl + r + 2) 

Since this is exactly the setting of Section 2, we may choose 2k t'#) by 

and find that 

s t r + x -  lx  
Ckakx[ ( x ), X <_ k ,  

2k~"'P)(X) = O, X > k ,  

k 
(3.17) (a,:) (.3) ~o2,. (x)l; (x) 

= fo' C'P~P+"'°(O)P~#+"")(O)O"(1 - O)~+'dO 

= Ck(Smkd~ #+''~) " 

The normalizing factor &(#+"") (see Szeg6 (1967)) is given by 

F(k + fl + r + l)F(k+ a+ I) 
(3.18) dk~a+"a) = F(k + l ) F ( k  + a + fl + r + 1)(2k + a + fl + r + 1) " 

This may be combined with 2k ~"'p) by taking 

Ck = 1/ d~ p .. . .  ), 

the desired biorthogonality. Thus to obtain 
density is 

(3.19) 

the estimator for the prior 

m 

= - O) # , 

1 N a, Xi 
(3.20) glk = " - ~  i~= l ,r+ X i -  lx .d(f l+r,a) • 

t x, )uk 

This ~,~ is integrated mean square consistent with weight 0-a(1 - 0) 1-p and 

we take 

where, given a sample XI, X2 ..... XN from 

f ( x )  = fol ( r + x -  l ) ox(l - 
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the empiric Bayes posterior estimate of O, the restriction to [0, 1] of 

(3.21) 

f 1 x + l  r+x-1 
Jo o ( x )(1 - O)'gm(O)aO 

Om= fm(X) ' 

is asymptotically optimal. 
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