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Abstract. Empirical Bayes approach to estimation of many parameters 
is considered. Special features of the techniques discussed are: (i) the 
handling of unequal sample sizes at various stages of an Empirical Bayes 
sampling scheme and (ii) a general iterative procedure for estimating the 
parameters of a parametric prior distribution based on the likelihood 
approach. Linear empirical Bayes estimation is also considered. Applica- 
tion of the general techniques is demonstrated with special reference to a 
multinomial data distribution. 
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1. Introduction 

Let X be a p-vector  r andom variable (r.v.) with a mul t inomial  
probability distribution (p.d.) with parameters (m, 0) where 0 is a p-vector 
and m is a scalar parameter taken to be known. We have 

(1.1) = 0 , , .  0 ;  P r ( X =  x l m ,  O) p(x lO,  m ) =  m! x, .., , 

p p 

where, for every i, 0 < Xi ~ m, 0 < 0i < 1 and i=1 ~ Xi : m, i=~=l 0i : 1. The above 

probability model is fundamental  in the analysis of categorical data and 
contingency table analyses. 

In the above the quantity m often represents the sample size of a 
sample of objects classified into p classes. Suppose that in a current 
experiment, m observations are made on a p-category Bernoulli r.v. Y with 
probability 0i of belonging to category i. Let Xg be the number of Y's in i-th 
category. Then X = (XI , . . . ,  Xp) has a distribution given by (1.1). 
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In this paper we are concerned with Empirical Bayes (EB) methods of 
estimating the unknown parameter vector 0. To adopt the EB approach, a 
special sampling scheme called an EB scheme is necessary. Let x be the 
current observation of X corresponding to the parameter 0. Let 0 be a 
realization of an r .v.O. At the time when the current observation is made, 
it is assumed that there are available past observation vectors xt .... ,x,  
corresponding to independent realizations 0i (i = 1,..., n) of O. Such EB 
schemes in multinomial set up are often encountered in practice. 

As a practical example, consider the following. Each of a number of 
subjects is given m questions or propositions to each of which 3 mutually 
exclusive responses are possible. For example, the responses might be 
"strong agreement", "strong disagreement" and "neutral". Each subject can 
be regarded as having probabilities 0~, 0% 03 of registering a response in the 
three categories, respectively, and the observed numbers of "strong agree- 
ment" etc. responses are multinomiat observations. If 0 = (&, Oz, 03) varies 
randomly from subject to subject, we have, for n subjects a sequence 0i 
( i=  1,...,n) of parameters and observations x~,...,x~ in a typical EB 
sampling scheme. 

As a second example, consider a two-way contingency table with n 
rows and p-columns. If the row effects can be regarded as corresponding to 
realizations of a random effect, the results of each row can be taken as a 
multinomial observation, with randomly varying 0 and the problem could 
well be the estimation of row effects. 

2. The problem of empirical Bayes estimation 

We consider the squared error loss function given by 

(2.1) L(6,O) = (3 -  o)r c ( 6 -  0), 

where C is a known positive definite matrix and 6 is an estimator for 0 and 
is a function of X. The average risk function of ~ is defined as 

(2.2) p(6) = E~EeL(a(X), 0) ,  

where E~(. ) is the expectation with respect to (w.r.t.) the prior distribution 
function (d.f.) G of O and Ep is the expectation w.r.t, the p.d. p(xlO, m) of 
(1.1). 

Let O* be the mean of the posterior d.f. of O, i.e., 

(9* = E(OIX-- x),  

where the expectation is w.r.t, the posterior d.f. 
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(2.3) dB(Olx, m) = {Pc.r,,(X)}-Ip(xIO, m)dG(O) , 

where 

(2.4) PG, m(X) = f p ( x [  O, m)  dG(O) . 

Now letting E stand for the repeated operat ion E~Ep, we can rewrite (2.2) 
as  

?(c~) = E[{(c~ - 0 * ) r c ( ~ -  0")} + {(O - 0 * ) r c ( o  - t~*)}], 

which is minimized when c~ is chosen to be 0". Thus the Bayes es t imator  of 
0 is the posterior mean of O. Fur ther  when c~ = 0", the above expression 
for p(O) can be reduced to 

(2.5) p(O*) : EpG.m tr {C Cov (OIX)} ,  

or equivalently to 

(2.6) p(O*) = E (O CO) - E,  o o{O*CO*}, 

where Cov (OIX)  is the covariance of O w.r.t, the posterior d.f. of 0, 
Ep~.m(. ) is the expectation w.r.t, the marginal p.d. of (2.4). 

The expression (2.5) is already given by DeGroot  (1970), that  of (2.6) 
generalizes a result of Johns (1957) to mult i-dimensional  cases. 

Suppose now that the d.f. G(O) is not known.  Suppose also that  an EB 
sampling scheme is available such that  at the i-th stage a vector xi is 
observed corresponding to a realization 0i of (9, where 

x, = (x~,..., xp/) r , 

and 

p 

~.~ Xji : m i .  
j= l  

Our problem is to obtain EB estimators of 0 based on the data  {x, x~,..., x,} 
under  various assumptions on G. 

We consider four subcases depending on the nature of specifications 
on G. The first case deals with the situation where the parametric form of 
G is known  and only a set of parameters  a are to be determined to specify 
G; here we consider (a) the Dirichlet prior distr ibution and (b) the logistic 
normal  prior  distribution. The second case deals with the situation where G 
is specified only up to second order moments ;  an investigation into this 
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case was made possible by restricting the class of estimators of 8 to the one 
linear in the current data x. The third case deals with an approximation of 
G by a finite step function and thus reduces the problem of estimating a 
continuous G to that of estimating a finite set of parameters. Finally, in the 
fourth case, we deal with the situation where no specification of G was 
made except the fact that it was assumed to belong to a family of 
continuous distributions whose second order moments exist. 

3. Estimation with parametric priors 

3.1 A general procedure 
Consider the case when G(O) is specified up to a set of unknown 

parameters a = (al,..., aq). Let g(OI a) be the probability density function 
(p.d.f.) of 0 where the form of g( .  la) is completely known. The Bayes 
estimator is 

O* = {PG.m(x)}-' fOp(xl O, m)g(OI a)dO. 

The unknown element a in the above expression can be estimated from the 
previous data, xl,..., x,. 

The likelihood function of these observations can be written as 

(3.1) 
n 

L(a) = iU_ l fp(xil O, mi)g(OI a)dO 

tl 

(3.2) = FI h(xil a, mi) 
i = 1  

where 

h(x[ a, m) = fp(xl  O, m)g(O[ a)dO. 

Now the likelihood equations for aj can be written as 

0 x, ) : , q  
i= Oaj 

One can expand the function 

a in g(Ola) X ) E = xi 
Oaj 

in Taylor series and apply the Newton-Rapson technique to the above set 
of q equations. This provides us an iterative solution of the likelihood 
equations as 
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(3.3) (~(i+ 1) : a(i) .~_ j - l ( (~{i))  U(~lli)), 

where J(a) is a q × q matrix whose (i, j)-th element is 

( O21ng(Ola) [ ) 
(3.4) Sis(a) = n -1 ~ E X = x,, m t ,  

t =  1 O oti O aj 

U(a) is a q × 1 vector whose i-th element is 

(3.5) Ui (a )  = n-1 ~=~'1 E(  O ln g(Ola)oai X = x,,mt ) ,  

and ti {n is the i-th step estimate of a. Often in special cases moment 
estimators of a are readily available, so that these can be used as the initial 
estimate ~<0) to start the iterative process. We note here that the iterative 
sequence will need J(a) to be positive definite at every step. This will be the 
case for a given g whose information matrix is positive definite; conditions 
for this are same as classical regularity conditions. 

The above general procedure will be illustrated for the multinomial 
distribution using (a) the Dirichlet prior distribution and (b) the logistic 
normal prior distribution. 

For the special case of the binomial data distribution the Dirichlet 
prior d.f. becomes a type I beta distribution with parameters (al, a2) and 
the estimation of a reduces to the well-known problem of estimating the 
parameters of a negative hypergeometric distribution. Estimation of the 
parameters by the method of moments is straightforward (see e.g., Maritz 
(1970), p. 53). ML estimation of (a~,a:) leads to the same iterative 
equations as given above with p = 2. The Dirichlet prior has also been 
applied in an EB approach using parametric prior processes for the 
unknown d . f .G.  Essentially this latter approach is based on assigning a 
two stage prior d.f. on the usual EB scheme and had been applied to the 
binomial case (Berry and Christensen (1979)). However, the latter approach 
did not discuss the estimation of the parameters of the Dirichlet process 
assumed and hence is not strictly an EB approach in the sense of the 
present paper. 

3.2 Dirichlet prior and the multinomial distribution 
A Diriehlet prior density for 01 , . ,  Op is given by 

g(O[ a )  = [F(olo)/{F(~l)...F(ap)}]O~ '-1.. .Op ap-l , 

where 0 < Oi < 1; ~,Oi = 1 and 0 < ai; u0 = al + ... + up. This is a conjugate 
prior p.d.f, for the multinomial distribution. The parameter vector a is 
unknown. Straightforward calculation gives the posterior distribution of 0 
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given x as a Dirichlet distribution with parameters a * =  (a* ..... a*) where 
a* = x~ + a,. The Bayes estimator of O is the posterior mean 

O*(x, a) = E(OIx) = (x + a)/(ao + m) .  

The Bayes risk of ~,*(x, a) is a r ( O t o  - a,)/{ao(ao + m)2}. If C = I in (2.1), the 
overall average risk of 0* is 

Now consider the case when a is unknown and an EB scheme is 
available. The method of moments estimators d, for a can easily be 
obtained by using the marginal moments of X~ = (Xli,..., Xp~) r as given by 

E(XjO = mia /  ao , 

E{Xj~(Xj~- 1)} = m~(rn~- l)aj(aj + l)/ao(ao + 1). 

An estimate of aj is then obtained as 

¢ = (do~n) XlXJ, fm, , 

where do, a moment estimator of ao, is given by the equation 

~ m ~ -  Y.~.Xj~ 
d0 = ZT~Xj2_ Z m i -  Zm~ ]~.2 + Emi ~)~2 • 

An alternative method for estimating ao is to equate the sum of the 
determinants of the sample covariance matrix to the theoretical value 
(Mosimann (1962)): 

n 

i~=l{(mi + a o ) / ( l  + Cg0)} p-I Oi, 

where Dt is a determinant of the form 

De = lld:~)ll 

with 

dsTi = { m,(aj/ao)(1 - ajlao) j = k ,  

- m~(aj/ao)(ad ao) j ~ k .  
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The quantity aj/ao is estimated by ~ / m i  where 

n 

= i~, xj , / , , .  

A more efficient way of estimating a;s and a0 is to use the maximum 
likelihood technique of Subsection 3.1. We have 

8 In g(OI a) 
- [ ~ , ( a o )  - ~ ( a i ) ]  - I n  0i ( i  = 1 , . . . , p ) ,  

8ai 

8 2 lng(0[a) I ~'(ao) - ~"(ai) if i = j ,  

OaiOaj - [ ~,'(ao) if i # j ,  

where g(x) = d In F ( x ) / d x  is the digamma function. Thus 

n 

Ui(a) = tC(ao)- ~ ( a , ) -  n-1~:, E(ln Oil x,, m,) 

and 

= I ~u'(ao) - ~u'(a,) if i = j ,  &(a) 
{ ~,'(ao) otherwise. 

From the Dirichlet property of the posterior distribution of 0 given (x, m), 
we have 

ai + xi 
E(ln Oi[x, rn) - - -  

a o + m  
[~(ai + 1 + xi) - ~,(ao + m + 1)]. 

Hence the (i, j)-th element of J- l (a)  is given by 

jIi, J)(a ) = 

1 { , } 2  
~,'(a,) ko V(a,---) 

ko 
~,'(a,)~,'(a;) 

i = j ,  

i # j ,  

where 

ko = 
~'(ao) ,{l} l + ¢(~o) ,~ ,  ¢(~-----~ 
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and the i-th element of U(a) is given by 

t=l aO + mt 
- -  [~u(ai + 1 + xi,) - q/(Oto + m, + 1)]. 

Hence the iterative procedure of equation (3.3) can be readily carried out. 

3.3 The logistic normal  pr ior  and  the mu l t i nomia l  dis tr ibut ion 
A prior distr ibution that  has been widely used in Bayesian analysis of 

categorical da ta  is the logistic normal  prior distr ibution (see Leonard 
(1972), Aitchison and Shen (1980)). We now assume a logistic normal  prior 
d.f. for the r andom parameter  O. Let 

(3.6) Ai = In ( Oi/ Op) i =  1, . . . ,p  - 1 . 

The joint  d.f. of A = (A1,.. . ,Ap-1) r is a multivariate normal  distr ibution 
with mean  vector  ~ = (~l,. . . ,~p-1) T and a ( p -  1)× ( p -  1) covar iance 
matr ix F. The prior d.f. of O can then be expressed in terms of parameters  

and F. Thus,  if G(Ola) is the prior  d.f. of O, then a is composed  of 
elements of ( and F and g(Ola), the p.d.f, of O can be written as in 
Aitchison and Shen (1980). 

Consider  now the Bayes est imator  of 0i. For any d.f. G(OI a), the Bayes 
est imator of 0; is given by 

(3.7) O*(x, a) - - -  
(x~+ 1) h(x~, . . . ,x~+ l , . . . , xp la ,  m +  1) 

(m + 1) h(xl  a, m) 

where 

h(xl  a, m) = Pa.m(X) = f p ( x l  O, m)dG(OI a) , 

and h ( x l , . . . , x i +  1, . . . ,xpla ,  m + 1) is also defined as h(x la ,  m) with xi-~ 1 
and m + 1, respectively, in place of xi and m. 

For  the logistic normal  d.f. G(01a), h(x la ,  m) can be obtained in 
principle as an integral depending on ( and F. 

Suppose we are interested in the Bayes est imator  of the quantit ies in 
(3.6). The posterior distr ibution of A can be written as 

(3.8) d B ( 2 1 y , ~ , F )  = {C(y,  G F ) } - '  

{ , • exp yr2 - mD(X) - --f In IFI 

1 ) 
- - _ ¢ )  

2 j 
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where y = (xl,..., xp- 1)r, D(2) = In { 1 + P~' exp (2~) } a n d , = ,  

(3.9) C(y, = f exp { yr2 - mD(2) - l ln lFI 

- 2 0 -  } 

The moment generating function of the p.d.f. (3.8) is 

:A E(e ly ,~ ,F)=Z( t ,y ,~ ,F) ,  

where t = (tl,..., tp-1) r is a dummy vector. We have 

(3.10) X(t,y, ~,F) = C(y + t, ~ ,F) /  C(y, ~ ,F)  . 

Hence the posterior expectation of 2; is 

(3.11) = oz(t,y, ,r)at, k ,--0 

0_ I / 
C(y + t, ~,F)[  /C(y, ~, F) 

Oli [ t=0 / " 

Hence for given ~, F,y, the problem of obtaining the Bayes estimator of 0i 
is to compute integrals of the form h(xla, m) and that of obtaining the 
Bayes estimator of 2; is to evaluate the integral of the form C(y, ~, F) and 
its derivatives. 

When ~ and F are unknown, it is required to estimate them using an 
EB scheme. For this purpose we work with the reparametrization (3.6). 
Using (3.9), the likelihood function of (~, F) can be expressed as 

n 

( 3 . 1 2 )  L*(~, r )  ¢x: .R= 1C(yi, mi, ¢, I v ' ) ,  

where the constant of proportionality is independent of ~ and F. Now the 
likelihood equations for ~ and F are obtained as follows. 

Let 0 In L*/O~ be a (p - 1) × 1 vector with i-th element 

0 In L*/O~i i= l , . . . , p -  1 . 

Let Y0 be the (i,j)-th element of F. Let 0 In L*/OF be a (p - 1) × (p - 1) 
matrix whose (i, j)-th element is 
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0 In L* / 070 • 

Then we have, using the matrix differentiation results (Graybill (1969), pp. 
262-267), 

O In L*/O~ = - ~ F-I{E(A ly,,m,,LF) - 4 } ,  
i = 1  

1 i ~ E [ I F _ , ( A  _ ~)(A - ~)rF-1 - F -1} l y , , m ~ , ~ , F ] ,  O l n L * / O F =  - - - f  = 

where the expectations in the above expressions are with respect to the 
posterior p.d.f. (3.8). 

The likelihood equations are 

(3.13) 4 = n-' ~, E(Alyi, m i , ( , P )  
i = 1  

and 

(3.14) 
n 

f ' =  n -1 Y~ E [ ( A  - ~)(A - ~)rlyi,  mi ,~, tP] . 
i = 1  

The likelihood equations themselves present an iterative procedure for 
determining ( and/~  if we use i-th step estimates ~ci) and/~(i) on the right 
hand sides of (3.13) and (3.14) to produce (i + 1)-th step estimates. There 
remains the technical problem of evaluating expressions for the posterior 
expectations involved. 

In (3.11) it was shown that the expectations of A can be obtained in 
terms of C(y ,  ~ , F )  and its derivatives. Following similar lines of (3.11), it 
can be shown that the second order posterior moments of A can be 
obtained by using the second order derivatives of Z ( t , y ,  ~, F )  evaluated at 
t -- 0. Thus the problem now reduces to that of evaluating the integral (3.9) 
and its first order derivatives. These quantities can be evaluated by 
numerical integration using Gaussian quadrature. 

4. Linear EB estimation 

Consider the class of estimators linear in the current observation x, 
i.e., 

(4.1) O= A X  + b ,  

where X is the r.v. whose realization is x, b is a p × 1 vector and A is a 
p × p matrix of quantities not depending on X. 
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First we want to construct a linear Bayes estimator of 0 in the above 
class. We assume that the prior d.f. of G belongs to the class 

~ :  {O:Ec(O) = ~, Cova(O) = F } .  

No specific parametric form of G is assumed. Since the Bayes estimator is 
sought in the class (4.1), this means that the quantities A and b must be 
determined such that 

(4.2) E ( O I X  = x) = X x  + b . 

We now consider the data distribution of X to be such that 

E~(X)  = 0, Covp(X) = ~ (0 ) .  

This covers the multinomial p.d. (1.1). Using (4.2) 

Ea(O) = En{E(OIX)}  = E n ( A X  + b) = A E c ( O )  + b = A~ + b i .e.,  
(4.3) 

b = ( I -  A)~,  

where I is a p x p identity matrix. 
Next we consider two different evaluations of E ( x o r ) .  First, 

(4.4) E(XO)  = E~{Ep(X)O r } 

= E a ( O 0  r) = F + ~ r .  

On the other hand using (4.2), 

(4.5) E ( X O  r) = EIdXE(OI X)} 

= E lc {X(X rA r+  br)} 

= ( E u X X r ) A r +  @ r  

= {CovH(X) + ~ r } A r +  ~b r . 

We can use the standard result: 

This gives 

(4.6) 

Covn(X) = E~ Cov (Xl O) + Covo{E(Xl O)}. 

E ( X O  r) = [Ec{L'(O)} + F + ~ r ] A r  + ~b r . 
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Equating the two expressions (4.4) and (4.5), we get 

A = {E~X(O) + F } - ' F ,  

and hence from (4.3), we have 

b = [Ea{X(O)} + F ] - ' E a { X ( O ) } ~ .  

The above general result is readily specialized to the multinomial case by 
noting that .S(O) has an (i, j)-th element 

mOi(1 -- Oi) i = j ,  

¢7(i = - -  m O i O j  i ~ j . 

We then have 

EGZ(O) = m ( D  - ~ r _  F)  = mB(~,  F )  , 

and 

(4.7) O* = {B(~,F) + r / m } - ' { F X / m  + B(~,F)~}. 

We now have the question of obtaining estimates of ~ and F when an 
EB scheme is available. This gives us an EB analogue of the linear Bayes 
estimator 0 ' .  Consider the quantities 

n 

Z =  n- '  i~i (Xi/mi) = n-1 i:, ~ Zi 

and 

n 

s = £ ( z i -  2 ) ( z ,  - 2 )  r . 
i = I  

It can be readily established that 

EZ-- 

E ( S )  = (n - 1 ) [ F +  n-1 i=1 ~" B ( ~ , F ) / m i  ] . 

where D(~) is a p × p diagonal matrix whose i-th diagonal element is ~i. 
This leads to the linear Bayes estimator for the multinomial parameter 0 as 
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Thus simple moment estimators of ~ and F are given by: 

(4.8) 

(4.9) 

~ = Z ,  

/~=[ n-S1 D(~e)n~e~eri--1~mil]/( 1- 1--n i=l~mil) " 

Linear EB estimation was introduced in the context of the exponential 
family by Jackson et al. (1970) and more generally by Griffin and 
Krutchkoff (1971). Both these developments concentrate on a scalar para- 
meter 0 and the latter gave an application of linear EB estimator of O 
defined by (4.7), (4.8) and (4.9) which then reduced to the Griffin- 
Krutchkoff estimator. The success of the linear EB technique depends on 
the extent of the linear approximation to the exact Bayes estimator 
corresponding to the true prior d.f.G. The Bayes estimator is linear for the 
conjugate prior d.f. Thus for cases where the true prior d.f. is close to the 
conjugate prior, the linear EB techniques can be effective. In general, the 
Bayes estimator may be a nonlinear function of the current observation x 
and the nature of the prior d.f. is unknown. To overcome this problem, a 
completely nonparametric family of d.f. G have been considered as is 
shown in Section 6. By a completely nonparametric d.f. G we mean a 
continuous d.f. G, whose parametric form is assumed to be unknown. An 
approximate nonparametric approach that had been found to perform well 
in the scalar parameter case is to use a finite step function approximation 
to the unknown G (see Maritz (1970)). This approach has been extended to 
a vector parameter case in Section 5 below. 

5. Finite approximation to G 
An intermediate step between adopting a fully parametric prior d.f. 

G(Ola) and adopting a completely nonparametric family of d.f.'s G is to 
approximate the specified G by a finite step function of the form 

i 

(5.1) Gk(O)=j~lct  j at 0 = 2 ,  ( i=  1, . . . ,k),  

where G, has jumps of size Ctl,..., Ctk at the points 21,..., 2k of the parameter 
space of 0. Here the jump sizes satisfy the constraints (a~ + ... + ak = 1, 
0 <  a,.< 1). A likelihood approach can still be developed to estimate 
a = (Ctl . . . .  , ak) and/or  2 = (21,.,2k). We can approximate the likelihood 
function (3.1) by 

(5.2) Lk(a, 2) = ,'~=1 hk(xil a, 2, mi) , 
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where 

k 

(5.3) hk(xit a, 2, mi) = j__E p(xil2j, mi)aj. 

We may treat both a and 2 as unknown parameters. But this could lead to 
over-parametrization. We consider only the two alternative cases: 
I. a is assumed to be known; 2 unknown 

We may assume that a~= 1/k and consider estimating 21 .... ,2k by 
maximum likelihood. For identifiability one may need to impose some 
restrictions on 2~'s such as an ordering sequence. The estimating sequence 
would be as in Section 3 with Lk(a, 2) in place of L(a, 2). 
2. 2 is assumed to be known; a unknown 

Assume that 21,..., 2k are known selected values and a,,. . . ,  ak are to be 
estimated. In this case, too, a likelihood procedure based on Lk(a, 2) can be 
developed and an iterative sequence analogous to that of Section 3 can be 
obtained. Indeed this is a typical problem of estimating mixing proportions 
of a finite mixture of known components.  Thus, it can again be treated by 
EM algorithm approach. In this case a set of iterative equations for aj's will 
result as follows: 

(5.4) a)'+'l= a)'l(x.)ln 
u= 1 

where 

(~)i)(Xu) ~ ~)i)p(xul2j, m~ ) / J=~ a)°p(x~12j, m~) . 

In (5.4) fi)i) is an estimate of a~ at the i-th stage of the iteration. At the 
initial stage one can take a)ol = 1/k. 

6. Simple empirical Bayes estimation 

6.1 A general method 
This section considers the multinomial extension of simple empirical 

Bayes estimation techniques which do not require an explicit estimation of 
G. A Bayes identity useful for this purpose in the case of a uniparameter 
distribution was given in general terms by Maritz and Lwin (1975). 
Analogue of this identity for multiparameter data distributions can be 
made along similar lines; the following lemma provides this. 

LEMMA 6.1. Let X = (X1,..., Xp) r be a vector random variable with 
p.d. (p .d . f )  p(xlO). Let 0 be a realization o f  a vector r.v. 0 = (Ol,.. . ,  Op) p 
with d . f  G(O). Let M,  = (Mum,.. . ,  M,  lpl) r be a vector of  linear operators 
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such that for any real-valued function a(u) of u = (ul,..., up) r, the vector 

Mua(u) = [MuIl l  a ( u ) , . . . ,  M u l p ) a ( u ) ]  r 

is well defined. Further, for any two operators, M~, and Muj, the repeated 
operator 

Mu,Mu,a(u) 

is well defined. The marginal p.d. (or p.d.f) of X is 

P(x; G) = f p ( x l O ) d G ( O )  . 

Then the following relationships hold: 

Mx, P(x; G) [ Mx,p(xlO) ] 
P(x; G) - E p(xlO) x , 

Mx,Mx, P(x;G) [Mx, Mx, p(xlO) l ] 
P(x; G) = E p(xlO) x . 

PROOF. Along the same lines as Lemma 3.1 of  Maritz and Lwin 
(1975). 

6.2 A simple EB method for the multinomial distribution 
We now apply the general relationships of Subsection 6.1 to the 

multinomial p.d. of  (1.1). Let the operator Mx,-- Mi be defined as 

Mip(xlO, m) = Pr {X1 : X l , . . . , X i  = x i~-  1,...,Xp = Xp - llO, m} 

Also let the repeated operator Mx,Mxj = M~Mj be defined as 

MtMjp(xl O, m) 

= Pr {X1 = xl,...,Xi= xi+ 1,. . . ,Xj= x:+ 1,...,Xp = xp-  210, m}. 

(i ~ p ) .  

Applying the above lemma and using PC.re(X) of (2.4) for P(x; G), we have 

x i + l  
x, 

- -  { g i P G ,  m(X) /  PG, m(X)} , 

(xi + 1)(xj + 1) 

(6.1) ai = E{f2ilx, m} - 

(6.2) ao = E(Oi.Qjlx, m) = {MiMgPG, m(x)/ PG,,,,(x)} , x,,(xp- l) 
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where 

D i = O i / O p  i=  1 , . . . , p -  1,  
(6.3) 

Qp= 1. 

We can express Oi's in terms of D?s as 

(6.4) 

p 
~p ~--- 1 £ ~'~i : 1/Or ,  

i=1 

Oi : ~"~i/~-~T i = 1, . . . ,p - 1 . 

The Bayes estimator of Oi can be expressed approximately in terms of ai 
and a0. Consider the Taylor expansion of (6.4) to the second order terms: 

a, },,=o Oi = ai/ ar + (Qi - ai) { "D-~ 

- Q i  } 
+ E(Q+-  a j) 

+ 2 ( 0 i - a i ) 2 { - 2 ( - [ 2 - 3  r 

2Qi 7--3 £2r }a=~ 
+ 2 j~i(~Qi-  ai)(~2j -- aj) { -Q-~T 

{2~Qi } 
@ ~ t¢.'~i (~ j  -- aj)(f2k- ak) r~z~ j~i £2=a 

where £2 = (~r'~l . . . .  , f2p) r and a = (al,..., ap) r. Then for xp ~ 0, 1, we have 

(6.5) 
aT-- ai) 

E( Oil x, m) = ai/ ar - (a i i  - a~) a3r 

+ ~, (au - aia:) 2 a i -  a_________Z / , i  a 3 + ]~ ~ i  (ajk -- a:ak) ai j~i a 3 

( i=  l , . . . , p -  1), 

P 
where ar = j__~! aj. 

Suppose now that an EB scheme is available. Also assume that the 
sample sizes at different stages of the EB scheme are all identical and equal 
to m. Then the functionals of G in the expressions for ai and a0 can be 
estimated from previous data. Let N,,,,(x) be the number of previous 
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observations Xl , . . . , x ,  that are equal to x. Then we have an estimate of 
PG, m(X) as 

(6.6) P~,m(X) = Nn, m(X)/n. 

Similar ly ,  Mie6,m(X) and MiMjPG, m(X) can be estimated by MiN,,,m(X)/n 
and MiMyN,,.m(X)/n. Thus EB estimators of a; and au can be constructed as 

x~+ 1 
(6.7) ~,. - - -  

xp 

(6.8) g0,, = 
(xi + 1)(xj + 1) 

x (xp- 1) 
{M, MjN..m(X)/ !V.,m(X)} . 

An approximate EB estimator can now be constructed for 0~ by substi- 
tuting EB estimators of a~ and ao in (6.5). 

6.3 An alternative simple EB estimation for  the multinomial distribution 
An alternative simple EB estimator 0 can be constructed by considering 

an extension of an EBE for a binomial parameter originally proposed by 
Robbins (1956). 

Let M* be an operator defined by the relationship 

(6.9) M*h(zl , . . . ,  zp) = h(zl, . . . ,  zi + 1,..., zp) , 

where h is a real valued function. Then the Bayes estimator of 0i can be 
expressed as 

(6.10) O*(x, G,m) - xi+ 1 m + 1 M*{Pa, m+l(X)}/Pa, m(X), 

where PG,m(X) is as defined in (1.2) and Pc,,,+l(x) is also defined as PG, m 
with (m + 1) in place of m. 

When an EB scheme with m~ = m (i = 1,..., n) is available, the quantity 
PG, m(X) can be estimated as in Subsection 6.2. However, PO,m+~(X) cannot  
be estimated f rom the data  with m trials, thus the quantity Ei{Po, m+t(x)} 
cannot be estimated from the EB scheme. 

Following Robbins (1956), we consider the Bayes estimator of Oi based 
on (m - 1) multinomial trials: 

x~+ 1 
(6.11/ O*(x, G ,m  - 1) = 

m 
Mi*{Pc, m(X)}/ P6,m-1 (x) . 
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The unknown components of the above estimator can now be estimated by 
using the following. 

Let N,,m-~(x)  be the number of previous x~'s which are equal to x 
where the calculation is based on a selected subset of (m - l) observations 
at each stage of the EB scheme. Let N, , , , (x )  be defined as before. Then a 
simple EBE for 0,. can be constructed as 

(6.12) O i ( x , n , m -  1 ) -  - -  
x~+ 1 

m 
[M*{N. ,m(X)} /  N, ,m- , (x)]  . 

The estimator (6.12) does not make use of all of the available 
information, namely all trial results at each stage of the EB scheme. To 
utilize all the available data, we may regard (6.12) as a randomized 
estimator based on one of the possible choices of m-results since Nn, m-l(X) 
can be based on any subset of (m - 1) trials in the current experiment. By 
computing (6.12) for every permutation of the current results and averag- 
ing them, we obtain an estimator 

Ü i * ( x , n , m )  = ~, x iMT{Oi ( x , n ,m  - 1 ) } / m  , 
i=1 

where the operator M/* is defined as 

M]{h(z i , . . . ,  zp)} = h(z l , . . . ,  z, - 1 . . . . .  Zp) . 

The estimator O ] ( x , n , m )  is also a simple EB estimator since it does not 
require an explicit estimation of G. 

7. D i s c u s s i o n  a n d  c o n c l u s i o n  

The binomial case has been widely considered in the literature. A 
number of non-EB and EB type estimators have been compared in terms of 
their average risks by Martz and Lian (1974). A similar study for the 
multinomial case is lacking. The present paper concentrates on the con- 
struction of EB estimators for a vector parameter case and specializes in 
the multinomial distribution. The EB estimators proposed in this paper are 
asymptotically optimal, in the sense of Robbins (1956), under fairly general 
conditions. Small sample (n) properties of these estimators need further 
study. 
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