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Abstract. In the note Hoel's result (1965, Ann. Math. Statbt., 36, 1097- 
1106) is generalized to a large family of experimental design optimality 
criterions. Sufficient conditions for optimality criterion are given, which 
ensure existence of the optimum experimental design measure which is a 
product of design measures on lower dimensional domains. 
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1. Introduction 

In 1965 Hoel published the following result (see Hoel (1965a)): If the 
regression function 

(1.1) EY(x,y) = Z ~. c~g~(x)h~(y) 
a=l ,8=1 

is estimated from uncorrelated observations in [0, 1] 2, then there exists a 
G-optimum experimental design, which is a "product" of G-optimum 
designs for estimating the regression functions: 

s 

(1.2) EG(x) = ~=, a~g.(x), 
r 

EH(y) = E=I b~h~(y). 

The definition of G-optimality is recalled in Section 2 for readers' conve- 
nience (see also Kiefer (1974), Silvey (1980), Fedorov (1982) and Pazman 
(1986)). The above result holds if experimental designs are all probability 
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measures on [0, 1] 2 and  [0, 1], respectively, and by product of designs we 
mean product of the corresponding measures. 

Applications of this result to analytical construction of G, D-optimum 
designs are given in Hoel (1965a, 1965b) and Fedorov (1982). It seems, 
however, that the advantages of Hoel's decomposition in constructing 
numerical algorithms have not been fully exploited. As is known (see e.g., 
Atwood (1978), Wu (1978), Wu and Wynn (1978), Silvey (1980) and 
Fedorov (1982)), the most difficult and time consuming step in a typical 
iterative algorithm is that of choosing the next point to be included into a 
design. Realization of this step, in turn, requires iterative search of ex- 
tremum of a certain multivariable function. Difficulties in iterative search 
can be reduced when Hoel's decomposition can be applied to a problem at 
hand. The above facts motivated us to try to extend Hoel's result to a 
larger class of optimality criterions, leaving details of computational algo- 
rithms outside the scope of this note. In view of recent advances in 
experiment design theory (Whittle (1973), Kiefer (1974), Ash and Hedayat 
(1978), Pazman (1980), Silvey (1980) and Fedorov (1982)for example), our 
task is not too difficult, but the above stated practical motivations seem to 
justify our algebraic considerations. 

We stress that our results are valid for the, so called, asymptotical 
designs (see Pazman (1986), p. 17) approximating fixed-size designs very 
well, when the number of observations tends to infinity. This class of 
experimental designs is commonly used in recent monographs and contri- 
butions (Whittle (1973), Kiefer (1974), Ash and Hedayat (1978), Atwood 
(1978), Wu (1978), Wu and Wynn (1978), Pazman (1980, 1986), Silvey 
(1980) and Fedorov (1982)). 

2. Statement of the problem and the main result 

We consider the regression function E Y ( x ) - - a t . f  (x) of a special 
structure, which generalizes (1.1). Namely, the column vector f (x )  of 
continuous and linearly independent functions on a compact set X is of the 
form: 

(2.1) f (x )  = gl(x (1)) @ gz(x (2)) @--" @ gr(X It)) A= ~ g~(x(i)) 
i=I 

where x t;I, i = 1,2,..., r are subvectors of the vector x. Furthermore, x Ill ~ Xi, 
i = 1, 2,..., r, where Xi is a compact set and X = X1 x X2 x ... x -Yr. In (2.1), 
gi" Xi ---" R m' is mi X 1 vector of continuous and linearly independent func- 
tions, while @ denotes Kronecker's, or direct, product of matrices (see 
Marcus and Mine (1964), Lankaster (1969) or Graham (1981) for its 

definition). The vector of unknown parameters a is an m g IrI mg column 
i=1 
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vector, which is estimated from uncorrelated observations of Y(x0, Y(x2),... 
with variances a 2 independent of x ~ X. Our aim is to choose an experi- 
mental design ~, which is from the class E of all probability measures on X 
including all discrete measures. This choice is based on the information 
matrix 

(2.2) M(~) = fx f (x )  fr(x) ~(dx) , 

as well as on an optimality criterion O(M(~); m), which is a real valued 
function of the information matrix M, and its dimension m (see Whittle 
(1973), Kiefer (1974), Pazman (1980) and Silvey (1980) for discussion). 
Every design ~ e ~, which maximizes O(M(();m), over Z is called O- 
optimum. For example, a design ~* e Z which maximizes 

• ( M ( ~ ) ;  m )  = - o "2 max f r (x)  M - ' ( { )  f(x) 
xEX 

over ~ ~ ~ with M(~) nonsingular is called G-optimum experimental design 
(see Hoel (1965a), Kiefer (1974), Ash and Hedayat (1978), Pazman (1980), 
Silvey (1980) and Fedorov (1982)) for its interpretat ion and further 
examples). 

Concerning • we adopt the following assumptions: 
(A.1) O is concave and differentiable in M÷, which is the subset of 

nonsingular matrices in M __a {M(~): ~ e ~}. 
Examples of criterions, for which (A.1) holds are given in Kiefer 

(1974). Let F(M;m) be an m x m matrix with elements 80(M;m)/amgj, 
where mij are elements of M. Let ~g with elements ~i, qi,.., be the class of all 
probability measures on Xi. Note that product measures 

(2.3) 
r 

~(dx) = ~ ~i(dxl')); ~, ~ ~",., i = 1,2,..., r ,  

form a subset of ~, =" denoted by ~n. For ~ e ~g define mix  mg matrix 

M~(~i) = fxgi(xli))gf(xli)).~i(dx li)) and let ~ ~ ~.~ be a measure for which 

(2.4) max O(Mi(~i); mi) = ( I ) ( M i ( ~ i ) ;  m,) . 
~i~.~, 

Its existence is guaranteed by compactness of X; and by continuity of gi 
and O. 

Note that for every ( e ~n 

(2.5) M(~) ~-- ~ Mi(~i) , 
i=1 
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since for Kronecker's product (see Lankaster (1969) and Graham (1981)) 

(2.6) (A ~) B) .  (C @ D) = (A.  C) ~) (B.  D ) ,  

where A, B, C and D are matrices of appropriate dimensions. Our aim is to 
show that Hoel's result extends to criterions with gradient matrices F 
fulfilling the following conditions 

r 

(A.2) If M = 1~ M~, then 
i=1 

(2.7) F(M; m) = (-~ F(Mi, mi) 
i=1 

where M, Mi are m x m and mi × mg matrices, respectively, and m = lZI mi. 
i=1 

(A.3) If M ~ 114+ is an m × m matrix, then F(M; m) is nonnegative 
definite; m = 1,2,. . . .  

Examples of criterions, for which (A.2), (A.3) hold are given in the 
next section. We confine our attention to the so called regular optimality 
criterions (see Pazman (1980) and Silvey (1980)), which assure estimability 
of all parameters in a. 

THEOREM 2.1. Under (A.1), (A.2) and (A.3) one can f ind a ~- 
optimum experimental design ~ ~ ~, which is of  the form 

(2.8) 4(dx) = 4i(dx 
i=1 

where ~i, i -- 1, 2,..., r are defined by (2.4). 

PROOF. 
optimum iff 

(2.9) 

Recall Kiefer (1974) that under (A.1) a design ~ ~ is q~- 

max ~U(x, ~; m) = fx ~(x, ~; m)~(dx) ~:E X 

where ~(x, ~; m) ~= fT(x)F(M(~); m)f(x),  x ~ X. It suffices to show that for 
(2.8) condition (2.9) holds. From (2.1), (2.5), (2.6), (2.7), (2.8) and (A.2) it 
follows that 

(2.10) 7J(x, 4; m) = ~ ~ i ( X  (i), ~i; mi) 
i=1 

where 7Ji(x u), ~i;mi) ~ gT(x(i)F(Mi(~i);mi)gi(xli)). Now, our result follows 
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from (2. I0) and (2.4) since applying (2.9) to (2.4) we get 

(2.11) m a x  7ti(x Cil, ~i; mi) = f x 7ti(xCi)' " - (il ~i; mi)¢i(dx ) 
x (  i ) E x j  i 

and simultaneously we have X = X~ x 3(2 x .-. x At. On the other hand, 
(A.3) implies that ~Ui(x t;), ~i; m3 >- 0, i = 1, 2,..., r. Collecting these facts we 
conclude that for ~'= ~ both the maximum operation in (2.9) and the 
multiple integral can be iterated. This finishes the proof. 

3. Discussion 

Some comments concerning (A.1), (A.2) and (A.3) are in place. One 
can notice that (A.1) is a standard assumption made in the equivalence 
theorems in differential form (see Whittle (1973), Kiefer (1974) and Pazman 
(1980), but notice that we use maximization instead of minimization of q~). 
In these papers, one can also find interpretations and formulas for differen- 
tiation of criterions presented below in order to indicate that (A.2) and 
(A.3) hold for important classes of criterions. 

(1) From our theory Hoel's result follows, since for D-optimality 
~(M; m) = lndet M for M ~/14+ and F ( M ;  m )  = M -~. Assumption (A.3) 
clearly holds, while (A.2) follows from the relationships 

[ ]1 
(3.1) M -1 = I~I Mi = I~I Mi -~ 

i=1 i=1 ' 

provided that M~, i = 1,2,..., r are nonsingular. Proof of the fact that for A, 
B nonsingular (A @ B) -1 = A -1 @ B -l can be found in Lankaster (1969) 
and Graham (1981). Now, Hoel's result follows from the celebrated 
theorem of Kiefer and Wolfowitz (Kiefer (1974) and Fedorov (1982)) on 
equivalence of G- and D-optimality criterions for designs from ~. 

(2) In Fedorov (1982) the class of L-optimality criterions is defined. 
They are of the form ¢ ~ ( M ; m ) = -  t r [ W M  -l] for M c  M÷, where Wis an 
m x m nonnegative definite matrix of weights. In this case, (A.3) holds, 
since F (  M;  m)  = M -I W M  -~, M ~. M÷. Suppose that W can be decomposed 
as follows 

(3.2) w =  
i=l 

where W,., i = 1, 2,..., r are mi × m i  nonnegative definite matrices. Then 
(A.2) holds, since by (2.6) and (3.1) we obtain: 
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(3.3) 
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M-I WM-1 = ~-~ Mi -1 WiMi -1 . 
i=1 

Factorization (3.2) arises in a natural way in the following special cases 
(a) A-optimality, where Wis the m x m unit matrix, 

(b) Q-op t ima l i ty ,  in which w =  fx f ( x ) .  f r ( x ) d x  = IZI fxgi(x (')) 
i= I  

.gT(x(i))dx(i)" 
g 

(c) C-optimality with C =f(x0),  in which W=f(xo) . f r (xo)  = ~=~gi(x~o ')) 

= r,,tl) , t2/ , Irl~ is a given point at which • gr(x~oil), where x0 t~0 ,x0 ,...,x0 j 
~ ( M ;  m) = - f r ( x o ) .  M -1. f(xo) is to be maximized. 

(3) Consider  Lp-norm criterions of the form ~ b ( M ; m ) - - - [ ( I / m )  
• tr M-P] l/p, M ~  M÷, p being positive integer. As is known, for p - - - 0  we 
obtain D-optimali ty criterion, while for p = 1, A-optimality. We are inter- 
ested mainly in the case p - - - ~ ,  which corresponds to E-optimality. For  
this class of  criterions we have F ( M ; m ) =  m-VP.tr [M-P](1-p)/P.M-(p+I) a n d  

(A.3) clearly holds. Also (A.2) is fulfilled, since (2.6) and (3.1) imply 

M -p = ~ Mi -p and t r  [ m  -p] = 15I tr [Mi-P]. Summarizing, Hoel 's result can 
i= 1 i= 1 

be extended to a large class of regular optimality criterions and many 
examples of particular multivariable designs can be constructed from 
known one-dimensional examples. 
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