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Abstract. Methods of robust estimation in diffusion processes are given 
by means of M-estimation. It is shown that the asymptotic variance of an 
M-estimator is obtained by applying a certain integral operator to the 
influence function and integrating its square. Under the condition of 
boundedness of the influence function, the existence of an optimal robust 
M-estimator is shown and an approximately optimal practical method is 
given. Moreover, as another criterion of robustness we consider a norm 
of integral type and show that the corresponding optimal robust M- 
estimator is obtained by solving a boundary value problem of a second 
order differential equation. Finally, as an illustrative example the 
Ornstein-Uhlenbeck process is discussed. 

Key words and phrases: Diffusion process, M-estimator, influence 
function, Sobolev space, second order differential equation. 

1. Introduction 

The purpose of the present paper is to give methods of robust 
estimation in diffusion processes realized by stochastic differential equa- 
tions discussed in Section 2. For  that purpose, we consider the method of 
M-estimation, i.e., the estimators are defined as solutions of some estimating 
equations. Their asymptotic properties are given in Section 3. 

Contaminations of stationary distributions of diffusion processes make 
M-estimators biased. In Section 4, we calculate the influence function, the 
measure of influence of infinitesimal contamination.  Then it is interesting 
to see that the asymptotic variance of the M-est imator is not the square 
integral of its influence function but that of  its image by some integral 
operator.  For  that reason it does not seem to have an explicit Huber-type 
representation as in Ktinsch (1984). Theoretically, we show the existence of 
an optimal robust M-estimator under the condition of uniform bounded- 
ness of influence functions. We propose a practical method which gives an 
approximately optimal M-estimator in Section 5. 
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On the other hand, we can consider other optimality problems by 
using different criteria for robustness. In Section 6, we adopt an integral- 
type norm as our measure of influence functions. It is shown that the 
optimal robust M-estimator is given as a solution of a boundary value 
problem of a second order differential equation. Finally, an illustrative 
example of this method is given. 

2. Model and maximum likelihood estimator 

We treat the following stochastic differential equation: 

(2.1) 
dX( t )  = a ( X ( t ) ) d W ( t )  + f ( X ( t ) ,  O)dt , 

X(O) = x(O), 

where 0 is a parameter in O, an interval in R, f ( x ,  O) and o-(x) are functions 
of class CI, o-(x) > 0 and W(t) is a standard Wiener process. A sufficient 
condition for the existence and uniqueness of a (strong) solution of the 
stochastic differential equation is Lipschitz continuity and linear growth of 
the coefficients f ( . ,  0) and a ( . ,  0) (see e.g., Ikeda and Watanabe (1981)). 
We assume that our diffusion process is a solution of the equation (2.1). 

Moreover, the diffusion processes with ergodicity are treated here. Let 
the boundaries _+ ~ of the phase space be inaccessible, 

(2.2) 
x 2 

B(x, O) = fo 2a- (y)f(y,  O)dy , 

(2.3) 
x 2 

m(x,O) =fo 2a (y) exp B(y,O)dy. 

Then if r~ = m ( ~ , 0 )  - m( - ~ , 0 )  < ~ ,  the diffusion process defined by 
(2.1) has the ergodic property and its stationary distribution is given by 
v(x, O) = [m(x, O) - m( - oo, 0)]/r~ with density /l(x, 0) = v(dx, O)/dx (see 
It6 and McKean (1965), Mandl (1968) and Gihman and Skorohod (1972)). 

The log-likelihood ratio based on the observation (X(t); 0 _< t <_ T) is 
given by the formula 

(2.4) 
T 2 

A(T, O) = fo f (X(t) ,  O)a (X(t))dX(t) 

1 fff(x(t),o)ao_ (x(O)d  
2 

(e.g., Liptser and Shiryayev (1977)). If H(x,O):= B(x,O)/2, by It6's 
formula, as in Lfinska (1979) we have 
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(2.5) 
T 

A(T,  O) = H ( X ( T ) ,  O) - H(X(O), O) - f o  h(X(t) ,  O)dt, 

where 

(2.6) h(x, O) = [ f ( x ,  O)a(x)-L]2/2 + aZ(x)O/Ox[f(x, O)a(x)-2]/2 . 

Therefore, under some regularity conditions, the maximum likelihood 
estimator (MLE) is a solution of the following estimating equation: 

r 

(2.7) A(T,  O) = I2I(X(T), O) - H(X(0), O) - fo L(O)H(X(t),  O)dt = O, 

where ..... stands for derivatives with respect to the parameter, L(O) is the 
generator corresponding to the diffusion process defined by (2.1): 

1 0 
(2.8) L(O) = f ( x ,  O)D + -~ o '2(x)D 2, D - 

Ox 

and 

(2.9) L(O)t:I(x, O) : ti : f f a  -2 + (1 / 2)o-2D[j'a-2]. 

It is well known that A(T,  O) given in (2.7) is a martingale when 0 is true. 
We can calculate the MLE from (2.7) in practice. For the consistency, 
asymptotic normality and efficiency of the MLE's in diffusion processes, 
refer to Kutoyants (1977, 1978, 1984), L~inska (1979) and Rao and Rubin 
(1981). McKeague (1984) discusses the asymptotic behaviour of the MLE's 
in misspecified models. 

3. M-estimation and asymptotic behaviour 

Practically, we can hardly get clean data generated from a model (2.1) 
in the strict sense, since it is natural to regard it as contaminated by some 
noises and misspecification of the true models. 

Although we often adopt Gaussian models, which are feasible and 
relatively easily treated theoretically, if the observations are contaminated 
by additive noises of long-tailed distributions, they do not belong to the 
class. 

Consider the Gaussian system X defined by the following stochastic 
differential equation: 

d X ( O  = - A X ( t ) d t  + d W ( t ) ,  X(O) = x(O), 
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where A is a positive definite matrix. If small independent effects Z( t )  with 
long-tailed distributions are added to X(t): 

Y(t )  = x ( t )  + z ( t ) ,  

then the observation Y(t)  has long-tailed distribution and not Gaussian. 
The second type of contamination is caused by innovation outliers. 

For example, let X be a 1-dimensional nonlinear stochastic dynamical 
system with equilibrium point x - - 0  satisfying the following stochastic 
differential equation: 

d X ( t )  = - OX(t)dt  + a ( X ( t ) ) d W ( t ) ,  X(O) = x(O) , 

where 0 is a positive constant. Assume that we estimate the parameter 0 by 
using the locally linearized model 

d X ( t )  = - OX(t)dt  + b d W ( t ) ,  b > O, 

either for lack of knowledge about the form of the diffusion coefficient 
a(x)  or for computational convenience. Then the stationary distribution of 
the locally linearized model is normal N(O, b2/20).  On the other hand, in 
the case where a(x)  = (b 2 + ax2) 1/2, a > 0, the true model has a distribution 
whose density is proportional to (ax  2 + b~) -Il +O/a) and heavy-tailed. 

Moreover, there exists another type of contamination when we treat 
processes, caused by patchy outliers. Martin and Yohai (1986) stress this 
point; however, we will not discuss it in the present paper. 

Contamina t ion  of the stat ionary distr ibution of the observation 
process makes the MLE biased. So our question is how to get robust 
estimators in some sense for contaminated data. 

The problem of robust estimation has been studied for i.i.d, models. 
We can refer to Huber (1981) and Hampel et al. (1986). For dependent 
models, many authors study it in time series (see Denby and Martin (1979), 
Kleiner et al. (1979), Bustos (1982), K~nsch (1984), Martin and Yohai 
(1985, 1986), and Bustos and Yohai (1986)). They use M-estimators, G M -  
estimators, etc. to construct robust estimators. KOnsch (1984) and Martin 
and Yohai (1986) are based on influence functions and influence func- 
tionals, respectively. In this paper, we consider the problem of robust 
estimation in diffusion models in the way of M-estimation, i.e., the 
estimator is given as a null point of an estimating equation. 

DEFINITION 3.1. For functions a(x ,O)  and A(x ,O) ,  an estimator 
0(T) at which 
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(3.1) 
T 

M(T, O) := A(X(T) ,  O) - A(X(O), O) - fo  a(X(t), O)dt , 

vanishes, is called an M-est imator corresponding to (a, A). 

The MLE is an M-estimator with 

(3.2) a = L(O)IgI = h and A =/-jr. 

Note that our estimating function (3.1) and the differential of the contrast 
function defined in L/mska (1979) are the same. The asymptotic behaviour  
of the M-est imator  is described in the same manner, but  to construct  
robust  estimators it is convenient to treat a wider class of functions a and 
A, i.e., Sobolev-type space. Especially, we remove the continuity of a(x, O) 
in x, so we briefly show the asymptotic behaviour  of our M-estimators 
here. 

For  simplicity, we assume thatf~r2(x)lt(x, O)dx < ~ for all 0 ¢ O in this 

paper. Let F =  {A; DA ~ LZ(tTzfl( • ,0 ) ) ,  L(O)A c L2(~(  • ,0 ) ) ,  0 E O}, where 
the derivatives w.r.t, x are in the sense of Schwartz's distributions. We treat 
stat ionary diffusion processes for simplicity and consider the following 
conditions. 

(I) 
(II-1) 

(II-2) 

(III) 

(IV) 

A(.,O)~F,O~O. 
For 0 e O and 0' ~ Int O, a ( . ,  0) e Ll(/l( • , 0')). 

(O/o0) fa(x, O)ll(x, O')dxlo-¢ = fgt(x, O')l~(x, O')dx # O, O' ~ Int O. 

For 0' e Int O, 0 --- M(T,  0) is continuous at 0', T > 0, a.s. Po,. 
i7(. , 0) ~ Ll(ll(. , O)) and for 0 e  Xnt O. _~I( T,O) / T-" - f gt(x, O) 

• l~(X, O)dx in Po continuously, i.e., even if 0 in M is replaced by an arbitrary 
sequence s (T)  -- 0, the convergence holds. 

(V) DG(.,  0) ~ L2(a2/t( • , 0)), 0 ~ O, where G is defined by 

(3.3) G(x, 0) -- - foeXp ( - B(y, O))dy 

• f~2a(u, O)a-2(u) exp (B(u, O))du. 

Note that L(O)G(., 0) = a ( . ,  0) and M(T, O) is a local martingale under Po 
when A = G. 

Remarks 3.1. (1) Lfinska's condition that fa(x,O) (x,O)dx = 0 for 

Fisher consistency is an essential one. Our assumption that f~2(x)l~(x, O)dx 
< ~ and (V) lead to the condition (see the proof  of  Theorem 3.1). 

(2) For  the following two theorems it is sufficient to take F as 
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{A; DA ~ L2(o-2/1( • , 0)), L(O)A ~ LI(/I( • , 0)), 0 E O}. 

THEOREM 3.1. I f  (I), (II-1, 2), (III) and (V) hold and 0 E Int O is 
true, a consistent M-estimator O( T) exists. 

First, we prepare 

LEMMA 3.1. When O' ~ Int O, for  0 E 0 

[A(X(T) ,  O) - A(X(O), 0 ) ] / T - -  0 ,  

as T ~ oo a.s. ( Po,). 

PROOF. By the extended version of It6's formula (Krylov (1980)), 

(3.4) [A(X(T) ,  O) - A(X(O), 0 ) ] / T  

1 T 1 r 
7 f  ° L(O')A(X(t), O)dt + -Tfo DA(X(t) ,  O)a(X(t))dW(t) .  I 

In order to prove the lemma, it is sufficient to show that  the first term in 
the r.h.s, of (3.4) converges to zero a.s., because the last term converges to 
zero a.s. by Lepingle 's  s t rong law of large numbers  for mar t ingales  

(Lepingle (1978)). Moreover ,  it is sufficient to show that  fL(O')A(x,O) 
• IL(x, O')dx = 0, which is its a.s. limit. By (I) and Schwartz's inequality, 

fa2(x), DA(x,  0)1. fl(x, O')dx <_ { f a2(x)it(x, O')dx }1/2 

. { f l DA(x,  O),2a2(x)/~(x, O')dx }l/2 < o~ . 

It is easy to see that  for .4(x, 0) := DA(x,  O) 

,4(x, 0) = exp ( - B(x, 0')) 

_ ] • f~ 2G- L'(O')A(y,O). exp B(y,O')dy + c , 

where c is a constant  and L'(O') = f ( . ,  0') + (1/2)cr2( • )D. If 

k "=f_~2~-2L'(O')~(y,O). exp B(y,O')dy + c ~ O, 



ROBUST M-ESTIMATORS IN DIFFUSION PROCESSES 805 

exp  B(x, 0') • .4(x,  0) - -  k as x ~ ~ and tha t  con t rad ic t s  the integrabi l i ty  of  

aa(x)/l(x,  O')A(x, 0). There fo re ,  k = 0. Similar ly,  c = 0, cons ider ing  the case 

x ~ - ~ .  Hence ,  fL'(O')X(x, O)/~(x, O')dx = 0 and the p r o o f  is comple ted .  

PROOF OF THEOREM 3.1. F o r  any  su f f i c i en t ly  smal l  ~ > 0, by  

L e m m a  3.1, M(T, 0 ± ,~)/ T converges to 

as T -~ ~ a.s. (Po). Set 

- f a (x ,  0 + ~)/~(x, O)dx 

F r o m  (3.3), 

k : - f ~  ~a(x,  O)p(x, O)dx. 

DG(x, 0) -- - exp ( - B(x, o))f;rha(u, O)p(u, O)du. 

If  k ~ 0, exp B(x, 0) .  DG(x, O) ---" k as x ~ - ~ and 

fa2(x)DG(x , 0) .  p(x, O)dx = +_ 

This is a cont rad ic t ion .  In fact,  by (V), 

i jo  x>oo x o> ,x 

Hence ,  fa(x,O)p(x, O)dx = 0. The  signs of  M(T,O ± fi) are d i f ferent  fo r  

large T b y  (II-2), so there  exists a O(T) in (0 - ~, 0 + fi) f r o m  0 I I ) .  

THEOREM 3.2. I f ( I ) - ( V )  hold, when 0 e Int  O is true, V~(O(T)  - O) 
~ N(O,Z) in law as T--* ~,  where _r = A~ U 2, 

: f tDa(x ,  O)~(x)f~,(x, O)dx, 

v = u(o) = - fa (x ,  o)~,(x, O)dx. 

PROOF. By T a y l o r  expans ion ,  
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- T-'/2M(T, O) = T-'191(T, -O)Tm(O(T) - 0 ) ,  

where 0 is between O(T) and 0. With (IV) this implies that 

(3.5) UTm(O(T)  - O) + T-1/ZM(T, O) ~ 0 

in Po. On the other hand, 

(3.6) T-1/ZM(T, O) = T-'/Z[A(X(T), O) - A(X(O), 0)] 

- T-'/2[G(X(T), O) - G(X(O), 0)] 

+ T -~/2 f f D G ( X ( t ) ,  0) .  a (X( t ) )dW(t ) .  

The first two terms in the r.h.s, of (3.6) converge to zero in probability 
because of stationarity, and the third term converges in distribution to 
N(0, zl) by a central limit theorem for martingales, e.g., Feigin (1985). The 
result follows from (3.5) and (3.6). 

4. Influence function and robustness 

Let x be the stationary distribution of X = (X(t)). Under some condi- 
tions, we have 

1 M(T ,  O) - - f a ( x ,  O)dK (4.1) T 

as T ~ o~ a.s. If the value 0* at which the r.h.s, of (4.1) vanishes is unique, 
we write Y(K) for this 0 ' .  Moreover,  if the convergence in (4.1) is in the 
sense of uniform topology on C(O), then the M-estimator O(T) converges 
to Y(x) as t ~ ~ a.s. To ensure that, for example, we may consider 
conditions of uniform boundedness and the equicontinuity of the family 
{M(T, • ) /T;  T>_ 0}. For  such a and x, 

(4.2) fa (x ,  Y( c))dK = O . 

Here note that K does not have to be a member  of {v(. ,0)}.  Fisher 
consistency is written by Y(v ( . ,  0)) = 0, for all 0, and it is assumed for our 
M-estimators. 

Consider the case where the stationary distribution v ( . , 0 )  of (X(t)) 
under Po changes into (1 - e)v(. ,  O) + ex, where s: is a probabil i ty distri- 
bution on R. For  example, let Z, be a stochastic process such that X + Z is 
stationary with marginal distribution K. The process Z is a contaminat ion 
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and ~ may be an arbitrary distribution. Let V~ be a {0, 1 }-valued Markov 
process with stationary distribution P{Vt = 0} = 1 - e, P{Vt = 1} = e. Sup- 
pose that V and (X, Z) are independent.  When our contaminated observed 
process Y is a mixture of the true one and the contaminated one: 

Y, = (1 - v , ) x ,  + v , ( x ,  + z , )  = x ,  + v , z ,  , 

it is easy to show that the marginal distribution of the observed process Y 
is (1 - ~)v + ex. 

From (4.2) 

(4.3) fa(x, Y((1 - t )v( . ,  O) + o¢))d((1 - t )v( . ,  O) + tK) = 0 

holds. Differentiating with respect to t at t = 0 we obtain 

(4.4) 
0 

Y'(K, a, v ( . ,  0)) := ~-  Y((I - t )v( . ,  O) + ttc)tt=0 

-'fa(x 0)~ ~ U  ~ 

where 

(4.5) U = u(o) -- -fa(x,  o)/4x, o)dx. 

When v = C~x, 

(4.6) Y ' ( x ,a , v ( . ,O) ) :=  Y'(Sx, a ,v( . ,O))  = U-la(x,O) 

is called the influence function of the M-est imator at v( . ,  0). The influence 
function is a measure of sensitivity of estimators to changes in the 
stationary distribution of X. 

From Fisher consistency, 

fa(x,O)~(x,O)dx= O, 

and by differentiating we get a differential representation of it: 

(4.7) - U+fa(x, O)p(x, O)dx = O, 

where # is the derivative of kt(x, 0) with respect to 0. 
The influence function of the MLE is often unbounded and then f rom 

(4.4) it is seen that contamination of the stationary distribution of the 
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process, especially for large Ix[, greatly influences its bias. Recall the 
second example of Section 3. There the contaminated stationary distribu- 
tion is long-tailed and the influence function of the MLE is a quadratic 
function of x. Following Hampel (1974), we require the boundedness of the 
influence function as a criterion of robustness. Then our task is to choose, 
under the boundedness condition of the influence function, a pair of 
functions a and A possessing the minimum of the asymptotic variance of 
the corresponding M-estimator or a pair possessing a relatively small 
variance comparable to MLE, the minimum variance estimator whose 
influence function is unbounded in general. 

As we have seen in Section 3, the asymptotic variances depend not on 
A but on a, essentially. So we take G as A in the sequel. Our approach 
based on influence functions is quite different from Huber's minimax 
approach (Huber (1981)). Our procedure is similar to that of Ktinsch 
(1984). In the first step, our optimal robust problem is the following: 

(PI) Minimizef[a(x)DG/U]2lt(x,O)dx under 

(4.8) f L(O)G / U . /.z(x, O)dx = O, 

(4.9) ess.sup IL(O)G/ UI <-c(O) 

(4.10) fL(O)G/ U. ~(x, O)dx = 1, 

and 

where c(O) is a constant and 

(4.11) G ~ F(O) := {G;DG ~ L2(o-2/t( • ,O)),L(O)G ~ LZ(fl(., 0))}. 

Note that L(O)G = a and the asymptotic variance is not equal to the square 
integral of the influence function. The condition (4.10) is provided for the 
purpose of normalizing G~ U. 

If we set ~ = DG/U, the problem (P1) is equivalent to the following 
problem: 

(P2) Minimizef(2a2~(x, 0)dx under 

(4.8') f L'(O)( . ~(x, O)dx = 0,  

(4.9') ess.sup I L'(0)~P -< c(O) 

(4.10') fL'(O)¢. ~(x, O)dx = 1, 

and 

where c(O) is a constant and 

(4.11') ~ ~ F'(O) := {~; ~ e LZ(o-z,tt( • , 0 ) ) ,  L'(O)~ E L2(/~( -, 0))}. 
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Let /~(., 0) /kt( . ,  0 ) e  L 2 ( f l (  • , 0 ) )  and C be a subset of F'(8) whose 
elements satisfy the conditions (4.8')-(4.10'). Then we have 

THEOREM 4.1. I f  C is non-empty, there exists an optimal solution of  
(P2) in C. 

The space F '  := F'(O) endowed with Hilbertian norm 

I = 2¢r%z (x, O)dx + (x, O)dx 

is a Hilbert space. We write I 12 =f~2azFt(x, O)dx and L 2 = L2(tr2/t( • , 0)). 

Before the proof of this theorem we prepare the following lemmas. 

LEMMA 4.1. Let (~(n);n >_ 1) be an arbitrary sequence in C. I f  ~(n) 
converges weakly to ~ ~ F' in F', 

(1) ess.sup IL'(O)~I <-c(O), 
(2) there exists a subsequence (~(n')) o f  (~(n)) such that ~(n') 

converges weakly to ~ in L 2 and L'(O)~(n') converges weakly to L'(O)( in 
L2(kt(., 0)). 

PROOF. We omit the symbol 0. Since the sequence (((n)) is weakly 
bounded, (~(n)) is bounded in F '  by Banach-Steinhaus'  theorem. By 
definition I" 12 < I" IF', and so (~(n)) is also bounded in L 2. Therefore, there 
exists a subsequence (~(n')) of (~(n)) which converges weakly to some 
~' e L 2. Similarly, f rom boundedness of (L'((n)) in L2(/z), we can suppose 
that L'((n') also converges to some r/e La(kt) weakly in L2(/0. Let ~ be the 
space of all smooth functions with compact support, then for ~u e ~ ,  
(L'~', ~,)= (r/, ~u) holds from weak convergences of (((n '))  and (L'~(n')), 
where ( , ) is the canonical bilinear form on ~ '  x ~ and ~ '  is the space 
of Schwartz's distributions. Therefore, L '~ '= r /  and so ~(n') converges 
weakly to ~' in F'. Uniqueness of weak limits implies ~' = ~. 

For an arbitrary ~u e ~ ,  by convergence of L'~(n') to L'~ in distribu- 
tion sense, [(IL'~ [, ~u>t < c I ~uILIR), and so ess.sup I L'~I -< c. This completes 
the proof. 

LEMMA 4.2. C is weakly closed in F'. 

PROOF. Let ~ (n)e  C converge weakly to ( in F'. It is shown in 
Lemma 4.1 that I L'~I -< c. There exists a subsequence (~(n')) of (~(n)) such 
that L'(O)~(n') converges weakly to L'(O)~ in L2(/t(-,0)).  Since 1 and 
/~( . ,0 ) / /~ ( . ,0 )  e LZ(/.t(.,O)), (4.8') and (4.10') are easily seen; therefore, 
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PROOF OF THEOREM 4.1. Let k = inf{l~12;~ s C}, then there exists 
a sequence (~(n)) in C such that  I~(n)12 ~ k as n ~ oo. Since in CIL'~I < c, 
]~(n)lF' is bounded ,  and there exists a subsequence  (~(n'))  of  (~(n)) which 
converges  weakly  to some ~ in F ' .  L e m m a  4.2 implies that  ~ e C. By 
L e m m a  4.1 there exists a subsequence  (~(n")) of  (~(n'))  which converges  
weakly to ~ in L 2. F r o m  the Hilber t  space theory,  1312 - l iminf I~(n")12 -- k. 
Hence,  1~12 -- k, and this ~ is an opt imal  solution. 

Remark 4.1. As seen f rom the p r o o f  of  L e m m a  3.1 the condi t ion  
that  ~ s L2(a2Ft(., 0)) implies the consis tency condi t ion  (4.8'), and so it is 
not  necessary. But  to clarify consis tency we added the condit ion.  

5. A simple method for constructing robust estimators 

Prob l em (P2) is a l inearly cons t ra ined minimizat ion p rob lem and its 
numer ica l  app roach  has been  s tudied by  many  authors  (e.g., Powel l  
(1982)), but  there  is ano ther  way  to solve it approx imate ly ,  which is simple 
and gives relatively good  results. 

/~ is p ropor t iona l  to the influence funct ion of  the M L E  and we shall 
modi fy  it in [v( ÷ ), ~ )  and ( - ~ ,  - v( - )] to be bounded ,  where v( + ) and 
v ( - )  are cons tants  in /~÷= [0, oo]. It is not  necessary to take  them as 
v( + ) = v( - ). They  may  depend  on 0 in general.  Fo r  no ta t iona l  simplici ty 
we of ten omit  0 in the sequel. Le t / l (x ,  0) be differentiable in 0. Let 

(5 .0  4, = 

L(x) if x <  - o ( - ) ,  

2( = -J~a -2) if - v( - ) _< x -< v( + ) ,  

L(x) if v ( + )  < x ,  

where 

x 2 
(5.2) L(x) = exp ( - B(x,O))f_2k-a- (y) exp (B(y,O))dy, 

[ (5.3) I+(x) = - exp ( - B(x, 0)) 2k+a-2(y) exp (B(y, O))dy, 

and k and k+ are constants  defined by 

(5.4) 2( - v( - )) = I-( - v( - )) and 

(5.5) ,l(v( + )) = /+(v(  + )) .  

Then 4, is a con t inuous  funct ion  and L ' (0 )¢  is equal  to k ,  - / i  and k+ for 
x < - v( - ), - v( - ) _< x _< v( + ) and v( + ) < x, respectively. 
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Assume tha t  I, IEo,~), LIt-~,ol, 2 = 
defini t ion 

(5.6) S(4)) :=  f4,xa=~dx 

811 

- r e  -2 and 1 c L2(a2/t( . , 0)) then  by 

(o(+) ~ . 
= o, , (¢/ . )2vax  - £,+ l+f dx 

-fS'-'r#dx, 
(5.7) Q(4') := fcb2a2lzdx 

,v(+) oo 
(¢ / , )2 lgdx + ~(+)I2+o2tldx J_o,_, 

+ 

Our  candida te  for  an approx imate ly  opt imal  M-es t imator  cor responds  to 

(5.8) { = DG/U= 4)/X(rb), 

whose influence funct ion is given by 

k-/S(ch) if x < - v( - ) ,  

(5.9) L'(O){ = - tl/S(ch) if - v( - ) _< x _< v( + ) ,  

k+/S(49) if o( + ) < x .  

Fo r  { defined in (5.8) we have 

PROPOSITION 5.1. Iflimcha212 = 0, (4.8')-(4.11') hold with 

(5 .10)  c(O) :-- s u p  {Ik+l, Ik - I ,  Iti(x, 0)1; - v(  - ) _< x_< v(  + )} /15 (401  • 

Moreover, fg~a~l, dx (the asymptotic variance o f  the M-estimator corre- 

sponding to L'(O)~) is given by Q(4))/S(cb) 2, which converges to 

Is 2], ( f /a)  I~dx , i.e., the reciprocal o f  the Fisher information, as v( + ), 

o ( - ) - ~ .  

Remark 5.1. This limit of  the asympto t ic  var iance is equal  to that  of  
the M L E ,  the m i n i m u m  asymptot ic  var iance of est imators.  
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LEMMA 5.1. L'(0)*/i. o'-2/.~ -1= - f o ' - 2 - 2 ,  where L'(O)* is the con- 
jugate operator of L'(O), i.e., L'(O)* = f ( . ,  0) - (1/2)Da 2. 

PROOF. By (2.2) and (2.3), we obtain 

~(X, O)= 0-~ [ 2r~t-lcr-2(x) e x p ( J o 2 ~ r - 2 ( u ) f ( u , O ) d u ) ]  

x -2 

[r. ~, x 2 
~- x 2 " |12a- (u)f(u,O)du|, ,~ 1o.., (So,O ~u,,,. o,..) ex. ~,o / 

so that 

r 1 2 ] 
o) 

x 2 

exp(S:,o',.,:,u O,..) 
x 2 

x 2 =-,~'o',x,:,xO, exp(~..~u,:~uO,.u) 
(using Leibniz's rule for the last term) 

= - f ( x ,  o)~(x, o). 

This completes the proof. 

PROOF OF PROPOSITION 5.1. To see (4.9') and (4.11') is trivial and 
(4.8') holds by Remark 4.1. By integration by parts and Lemma 5.1, 
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= fN_sb2aa#dx + [¢o'2/2t 2]_N,v. 

W h e n  N ~ ~ ,  we have 

813 

f L'(O)¢ . f~dx = f o ,~£#dx - S(¢) , 

and (4.10'). The last par t  is obv ious  f rom (5.6) and (5.7). 

In our case, the integrabil i ty condi t ion  implies the Fisher  consistency,  
as s ta ted above.  Howeve r ,  for  ~ defined by (5.8), we can show the 
consis tency condi t ion  (4.8') directly. In fact, by using (5.9) and (5.2)-(5.5), 

oo 
s (¢)  f L'(O)~ • #dx  = k ff~<-'l~dx + k+ £,+,#dx - J_ol_ " 

= - r e ' f (  - o (  - ) ,  0 ) ¢ 2 (  - o (  - )) 

• exp B( - v (  - ) ,  0 )  

+ m- ' / ( v (  + ), O)~-2(v( + )) 

r o ( + )  . 

• exp B(o( + ), O) -Jol_)h~udx. 

On the other  hand,  f rom (2.9) and integrat ion by parts,  we ob ta in  

u(+) . 
~l_)hl zdx 

, (s>a) x = m~-I fv(+) (/iO'-2 ~ - a _ v ( - )  T °2 O [Jr°-2] ) 2°'-2 exp 

(So) - m exp 2fa -2 dx J-o(-) 

[ :0(+) ) 
+ rh-'j~(o( + ), 0)a-2(o( + )) exp tao 2fa -2 

- ~ - ' f ( -  o( - ),O)a-2(- o ( -  )) exp ( fo'~<-'2fo .-2 ) 

= rh-lJ~(v( + ), O)a-2(v( + )) exp B(v( + ), O) 

- r~-~¢( - v( - ), 0)0--2( - v( - )) exp B( - v( - ), 0 ) .  
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Therefore,  

f L'(O)4 . ~ d x  = o . 

M o r e  generally,  if we choose  b o u n d e d  con t inuous  funct ions  k- (x ,  O) 
and k+(x,O) on ( - ~ ,  - o( - )] and [o( + )oo) ,  respectively,  such that  L 
and I÷ defined by (5.2) and (5.3) satisfy (5.4) and (5.5), we have the same 
result as in Propos i t ion  5.1 replacing (5.10) with 

c(O) =sup [ { I k - I ; x <  - o ( - ) } U { } k + l ; o ( + ) < x }  

U { I / ; I ;  - o (  - ) _< x _< v (  + ) ] ] / I  S ( 6 )  I • 

If  kt(x, 0) is decreasing exponent ia l ly  as I x l  - --  ~ and L andJ~/a are of  
po lynomia l  order,  then f rom (5.6) and (5.7) it is clear that  when o( + ), 
o(-  ) -  ~ ,  S(~b) and Q(~b) rapidly converge to the informat ion  and our  
M-es t ima to r  has an a lmost  min imum asympto t ic  variance,  while c(0) are 
of  po lynomia l  orders  and not  so large in many  cases. 

Finally,  we give an example.  Let X be a diffusion process (Ornstein- 
Uh lenbeck  process)  def ined by the fol lowing s tochast ic  differential  equa-  
tion: 

dX( t )  = - OX(t)dt + dW(t ) ,  X(O) = x(O) , 

0 > 0. Then 

f ( x ,  O) = - Ox, 

f l(x,  0) = (0/7[) 1/2 exp ( - Ox2), 

h(x,  O) = 02x2/2 - 0/2,  

a ( x )  : l ,  

,~ = ,t(x,  o)  : - / a  -2 

1:1 = Ox 2 - 1/2 . 

= X ,  

For  ~ defined by (5.1)-(5.8) 

= 

2 x 
L(x) /S(ck)  = exp (Ox )f_ 2k 

• exp ( - OyZ)dy/S(~b) 

x / S ( 6 )  

) fx  ° I+(x)/S(cb) = - exp (Ox 2 2k+ 

• exp ( - Oy2)dy/S(cb) 

if x <  - v ( - )  , 

if - o ( -  )<_x<_o( + ) ,  

if v ( + ) < x ,  

where k± are given by 
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oo ]-1 
k- = - o( - ) 2 exp (00( - )2)£ exp ( - Oy2)dy ' 

(-) 

k+= - v ( + )  2 e x p ( O v ( + ) 2 ) £  e x p ( - O y a ) d y  ' 
(+1 

and 

S(c~) = f°o((+))x2(O/Tz)U2 exp ( - Ox2)dx 

-£{~+ 2k+x(O/n)'/2 f7  exp ( -  Oy2)dydx 

Y? +(-°{-t2k-x(O/rO1/2 exp ( - Oy2)dydx. 
~ - o o  X 

The influence function of this ~ is given by 

= 

k-/ S(4~) 

( -  Ox 2 + 1/2)/S(qb) 

k+/ S(4~) 

if x <  - o ( -  ) ,  

if - v ( - )<_x<_o(+) ,  

if o ( + ) < x .  

Especially, for the MLE the counterparts are given by 

S(~)MLE) ~-" f22~dx = 1 / (20),  

~MLE = ~/S((J~MLE) = 20X, 

and the influence function 

L'(0)~MLE : --/4/S(~bMLE) = -- 20(Ox 2 -- 1/2) = -- 202X 2 + 0.  

Then the influence function of the MLE is a quadratic function and 
contaminat ion of the stationary distribution, especially for large Ixl, 
influences its bias greatly. We get the following table for our M-estimators 
when 0 = 1/2 and the variance of the MLE (i.e., the minimum variance) 
equals unity. Our simple M-est imator  has a small asymptotic variance and 
it is preferable with respect to robustness of estimation. 

Remarks 5.2. (1) The influence function of our M-estimator is 
discontinuous in general. 

(2) We must check the conditions of Section 3 for the function 
after making the function ~. In the above example they are easily checked 
for constant o( + ) and O = [a, b] (a, b > 0). 
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Table 1. 

N A K A H I R O  YOSHIDA 

Dividing points, bounds of influence functions and asymptotic variances. 

Asymptotic 
o( ) ( = •( + )) c(O) variance 

0.50 1.88 1.68 
1.00 1.30 1.26 
1.50 1.75 1.09 
2.00 2.45 1.02 
2.50 3.43 1.00 
3.00 4.68 1.00 
3.50 6.18 1.00 

6. Optimization problem with another criterion 

In Sections 4 and 5, we have treated gross error sensitivity, that is, we 
have required uniform boundedness of influence functions of estimators. 
For robustness of estimators, their influence functions should be small in 
some sense, and we can view the problem in another way by using a 
different measure of influence functions. 

Let w(x) be a positive function of class C ~ on R. Using the same 
notations as before, the influence function of the M-estimator correspond- 
ing to ~ is equal to L'(O)~ and we take as a measure of it the seminorm 

(6.1) f l L'( O)~ l Zw( x)dx . 

Since the influence of contamination of the stationary distribution of the 
process X on bias of M-estimators is given by (4.4) and if dx(x)  <_ w(x)dx,  

I Y ' (x ,a ,v ( ' ,O)) l  = fL'(O)&K(x) <_{flL'(O)~12w(x)dx }'/~. 
Therefore, change rates of M-estimators by contamination dominated by 
w(x)dx  are estimated by the seminorm (6.1). 

We want to choose ~ for which the seminorm (6.1) is small and 
simultaneously the asymptotic variance 

(6.2) I~ 12 = f 2 2 dx, 

is also small. So we define the norm 

(6.3) 141w : f  2o2 dx + f l t'(O) 12w(x)dx , 

and we seek ~ which attains the minimum of 1. I w-norm. We call the M- 
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estimator corresponding to such ~ an optimal w-robust M-estimator. The 
MLE is an optimal zero-robust estimator in some regular classes of 
estimators. 

We assume that for 0 e O, f22a2judx < ~ and f 2 dx < Let F(w, O) 
be the completion of ~ with respect to the norm ] • {w. Then (F(w, 0), ] • ]w) 

is a Hilbert space. Let C(w,O)= F(w,O) N{ ~;f~2tfl~dx= 1 ](this integral 

corresponds to that of condition (4.10') by Lemma 5,1). Note that for 
~ F(w, O) the consistency condition holds. Now, our problem is 

(P3) Minimize I~lw in ~ ~ C(w,O). 
By the inequality (6.5) below, it is shown that the linear functional 

is bounded on F(w, 0). Hence, C(w, O) is a closed convex set 

in the Hilbert space F(w, 0), and it is well known that there exists a unique 
element G0 in C(w, O) such that I~ol = min {I ~1; ~ ~ C(w, 0)}. 

We can, however, get this optimal 4o by solving a boundary-value 
problem directly. Consider the second order differential equation 

(6.4) L'(O)*[w(x)L'(O)(] + aZ(x)~(x, 0)~ = 2(x, o)aZ(x),u(x, 0), 

where L'(0), L'(0)*, /t(x, 0) etc. are the same as before and differentials 
with respect to x are in the sense of distributions. 

THEOREM 6.1. There exists a unique solution of(6.4) in F(w, 0). 

PROOF. The following estimate holds: for ~ E F(w, O) 

(6.5) [f~2[lgxL~{f~2(77[ldx}l12{f~2(T2]ggx} 1i2 

{s <- ;tz~2~dx I~ I w. 

Therefore, the linear functional F(w,O)~ ~----,f~Rty2~dx is bounded. By 

Riesz' theorem there exists a unique ~l in F(w, O) such that for ~ e F(w, O) 

(6.6) f 4 ~la2udx + f ( L'( O)~ )( L'( O)~ Owdx = f ~2cr2~tdx . 

Especially, for ~ ~ 

f4{L'(O)*[wL'(O)~l] + &a2~ldx = f , a2 ax , 

hence (6.4) is shown. Uniqueness is obvious. 
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Let Go = ~,/I~1~. From Theorem 6.1 we have 

(6.7) 2 2 2 L'(O)*[wL'(O)~o] + a ,U~Xo = I~o1~,~,~ ~, 

since I~olw = 1/I~]lw. 

THEOREM 6.2. ~o is the unique solution o f  the problem (P3), that is, 
~o ~ C(w, O) and I~o [~ = min {I ~ I~; ~ ~ C(w, 0)}. 

PROOF. It is obvious that G0 ~ C(w, O) from (6.6). For ~ ~ ~ ,  

(6.8) o ~ I~ - ~o1~ 

--I~l~+ I~olg-2 { f~oaZl~dx + f(L'(O)~)(L'(O)~o)wdx } 
--4~lg+ I~01g-2 { f~oaZt~dx + f~L'(O)*[wL'(O)4o]dx } 

= 1~12  + I ~ o l w  2 - 21~olgf~,~a~/~dx W 

For ~ a C(w,O) there exists a sequence (~b(n)) in ~ such that ] ~ -  4)(n){w 

0 as n ~ ~ and so ]~b(n)lw ~ I~]w andfcb(n)2a2t~dx -- 1. By approxima- 

tion argument (6.8) implies that for ~ ~ C(w, O) 

0 _< 141~ + I~01~ - 21~01~-- I ~ l ~ -  I~012 W • 

Moreover, the uniqueness is obvious and we have the result. 

Finally, we give an illustrative example.  Consider  the Ornstein-  
Uhlenbeck process given in Section 5. For fixed w(x) the optimal equation 
(6.4) is given by 

(6.9) - ~" - (w'/w)~' + [402x 2 + 2(w'/w)Ox + 20 + 4l~/w]~ = 41~x/w , 

where . . . . .  stands for different ial  with respect to x and /~ = (0/2z) 1/2 
• exp ( -- Ox2). To get a numerical solution of problem (6.9) it is convenient 
to transform the variable ~ to an appropriate one. However, we will not go 
into details here. We have a table of asymptotic variances of optimal w- 
robust estimators for various functions w(x) when 0 = 1/2 and the variance 
of the MLE is unity. The optimal w-robust M-estimator corresponding to 
fast decreasing w(x) has a relatively small variance. 
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Table 2. Functions w(x) and asymptotic variances of corresponding optimal w-robust M-estimators. 

w(x) Asymptotic variance 

I 1.48 
1/2(I + Ix12) 1.13 
1/2(1 + Ixl 4) 1.03 
1/2(1 + Ixl 6) 1.02 
exp ( x2/2) 1.00 

6.1 Concluding remarks 
Theoretically, diffusion coefficients can be estimated without error. 

But practically it may be necessary to estimate them. It would be an 
interesting problem to investigate the effect of discretization of continuous 
observations on estimation of diffusion coefficients and to seek the robust 
procedures. 
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