ON SEQUENTIAL PROCEDURES FOR THE POINT ESTIMATION OF THE MEAN OF A NORMAL POPULATION

AJIT CHATURVEDI

Department of Statistics, Lucknow University, Lucknow-226004, India

(Received September 4, 1986; revised May 7, 1987)

Abstract. The sequential procedures developed by Starr (1966, Ann. Math. Statist., 37, 1173–1185) for estimating the mean of a normal population are further analyzed. Asymptotic properties of the "regret" and first two moments of the stopping rules are studied and second-order approximations are derived.

Key words and phrases: Normal mean, point estimation, loss, risk, stopping rule, regret, martingales, uniform integrability, second-order approximations.

1. Introduction

Let us consider a sequence $X_1, X_2,...$ of independent random observations from a normal population having unknown mean $\mu \in (-\infty, \infty)$ and unknown variance $\sigma^2 \in (0, \infty)$. Given a random sample $X_1, X_2,..., X_n$ of size n, let us define $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ and $\sigma_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$. Suppose the loss-occurred in estimating μ by \overline{X}_n be

(1.1)
$$L_n(C) = A |\overline{X}_n - \mu|^s + Cn^t,$$

where A, s, C and t are known positive constants. Using the fact that $\overline{X}_n \sim N(\mu, \sigma^2/n)$, the risk corresponding to the loss (1.1) comes out to be

(1.2)
$$v_n(C) = \left(\frac{2}{s}\right) \frac{K\sigma^s}{n^{s/2}} + Cn^t,$$

where $K = (s/2) 2^{s/2} \Gamma((s+1)/2)/\Gamma(1/2)$. The fixed-sample size $n = n_0$, which minimizes $v_n(C)$, is given by

AJIT CHATURVEDI

(1.3)
$$n_0 = \left(\frac{K\sigma^s}{Ct}\right)^{2/(s+2t)}.$$

But, as we have already assumed, σ is unknown, the fixed sample size procedure fails to minimize $v_n(C)$ simultaneously for all σ . We adopt a sequential procedure to obtain sample size "close" to the optimal but unknown n_0 , and the following stopping rule N is defined in confirmity with (1.3).

(1.4)
$$N = \inf\left\{n \ge m: n \ge \left(\frac{K\sigma_n^s}{Ct}\right)^{2/(s+2t)}\right\},$$

where $m \ (\geq 2)$ is the starting sample size. Using the fact that (n-1). $\sigma_n^2/\sigma^2 = \sum_{j=1}^{n-1} Z_j^2$, with $Z_j \sim N(0, 1)$, we can re-write the stopping rule N as follows:

(1.5)
$$N = \inf \left\{ n \ge m; \chi^{2}_{(n-1)} \le (n-1) \left(\frac{n}{n_0} \right)^{(s+2t)/s} \right\}.$$

Following Starr (1966) and Starr and Woodroofe (1969), we define the "risk-efficiency" and "regret" of the above mentioned sequential procedure by

(1.6)
$$\eta(C) = \overline{\nu}(C) / \nu_{n_0}(C) ,$$

and

(1.7)
$$\omega(C) = \overline{\nu}(C) - \nu_{n_0}(C) ,$$

respectively, where $\overline{\nu}(C)$ is the risk associated with the sequential procedure, i.e.,

(1.8)
$$\overline{\nu}(C) = \left(\frac{2}{s}\right) K \sigma^s E(N^{-s/2}) + C E(N^t) ,$$

and $v_{n_0}(C)$ is obtained on substituting $n = n_0$ in (1.2), i.e.,

(1.9)
$$v_{n_0}(C) = C\left(\frac{2t}{s}+1\right)n_0^t.$$

Starr (1966) determined a condition on the starting sample size m for which the above defined sequential procedure is asymptotically (as $C \rightarrow 0$)

risk-efficient. Later on, Starr and Woodroofe (1969) studied the asymptotic behaviour of the "regret" for C = t = 1, i.e., when the cost of sample is linear and is unity for each observation. For s = 2 and t = 1, Nagao and Takada (1980) further studied this sequential procedure. They obtained an upper bound for E(N) and $E(N^l)$, for l > 0 and C fixed. They also proved that for all $m \ge 3$, $\lim_{C \to 0} \eta(C) = 1$ and $\lim_{C \to 0} \omega(C) = 0$. A stronger bound for $\omega(C)$ is available in Ghosh and Mukhopadhyay (1980).

In the next two sections, we shall derive second-order approximations for $\omega(C)$, E(N) and $E(N^2)$ for all s and t. In the remaining part of this note, we shall denote by k any generic constant independent of C, [y] will be used for the integral part of y, and I(S) will stand for the indicator function defined on the set S.

2. Second-order approximation for $\omega(C)$

We first establish few basic results.

LEMMA 2.1. $P(N = m) = O_e(C^{(m-1)/s})$, as $C \to 0$.

PROOF. We have from (1.5) that

$$P(N=m) = P[\chi^{2}_{(m-1)} \leq kC^{2/s}],$$

or,

$$ke^{-kC^{2s^{-1}}} \cdot C^{(m-1)/s} \leq P(N=m) \leq kC^{(m-1)/s}$$

and the lemma follows.

LEMMA 2.2. For any $0 < \theta < 1$,

$$P(m+1 \le N \le \theta n_0) = O(C^{(m-1)/s}), \quad as \ C \to 0.$$

PROOF. We have

$$P(m+1 \le N \le \theta n_0) \le \sum_{n=m+1}^{\theta n_0} P\left[\chi_{(n-1)}^2 \le (n-1)\left(\frac{n}{n_0}\right)^{(s+2t)/s}\right]$$

$$\le \sum_{n=m+1}^{\theta n_0} \inf_{h>0} \left[\exp\left\{h(n-1)\left(\frac{n}{n_0}\right)^{(s+2t)/s}\right\} E(e^{-h\chi_{(n-1)}^2})\right]$$

$$= \sum_{n=m+1}^{\theta n_0} \inf_{h>0} \left[\exp\left\{h(n-1)\left(\frac{n}{n_0}\right)^{(s+2t)/s}\right\} (1+2h)^{-(n-1)/2}\right].$$

This inequality is also valid for the value h_0 of h, which minimizes the function

$$f(h) = \exp\left\{h(n-1)\left(\frac{n}{n_0}\right)^{(s+2t)/s}\right\}(1+2h)^{-(n-1)/2}$$

i.e., $h_0 = [(n_0/n)^{(s+2t)/s} - 1]/2$. Setting $h = h_0$, we obtain

$$P(m + 1 \le N \le \theta n_0)$$

$$\le \sum_{n=m+1}^{\theta n_0} \left[\left(\frac{n}{n_0} \right)^{(s+2t)/s} \cdot \exp\left\{ 1 - \left(\frac{n}{n_0} \right)^{(s+2t)/s} \right\} \right]^{(n-1)/2}$$

$$\le n_0^{-(s+2t)(m-1)/2s} \cdot \left[\exp\left\{ 1 - \left(\frac{m+1}{n_0} \right)^{(s+2t)/s} \right\} \right]^{(m-1)/2}$$

$$\cdot \sum_{n=m+1}^{\theta n_0} n^{(m-1)(s+2t)/2s} \cdot (\xi e^{1-\xi})^{(n-m)/2},$$

where $\xi = (n/n_0)^{(s+2t)/s} < 1$ for all $n \le \theta n_0$, so that, $\xi e^{1-\xi} < 1$. Now, using ratio rule for series convergence, we obtain the lemma.

COROLLARY 2.1. For any $0 < \theta < 1$,

$$P(N \le \theta n_0) = O(C^{(m-1)/s}), \quad \text{as } C \to 0.$$

PROOF. We can write

$$P(N \leq \theta n_0) = P(N = m) + P(m + 1 \leq N \leq \theta n_0),$$

and the proof follows on applying Lemmas 2.1 and 2.2.

LEMMA 2.3. As $C \rightarrow 0$,

$$N_0 = \left(\frac{1}{n_0}\right)^{1/2} (N - n_0) \xrightarrow{\mathscr{Q}} N(0, 1) .$$

PROOF. The proof follows from Theorem 3 of Ghosh and Mukhopadhyay (1979).

LEMMA 2.4. For all m > 1 + 2s/(s + 2t), N_0^2 is uniformly integrable in $C \le C_0$, for some $C_0 > 0$.

PROOF. Denoting by F(x), the c.d.f. of $X = |N_0|$, we have, for some a > 0,

(2.1)
$$E[X^{2}I(X > a)] = -\int_{a}^{\infty} x^{2}d(1 - F(x))$$
$$= a^{2}P(X > a) + 2\int_{a}^{\infty} xP(X > x)dx$$
$$= \pi_{1} + \pi_{2} + \pi_{3} + \pi_{4},$$

where

$$\pi_1 = a^2 P(N < n_0 - a(n_0)^{1/2}) ,$$

$$\pi_2 = a^2 P(N > n_0 + a(n_0)^{1/2}) ,$$

$$\pi_3 = 2 \int_a^\infty x P(N < n_0 - x(n_0)^{1/2}) dx ,$$

and

$$\pi_4 = 2 \int_a^\infty x P(N > n_0 + x(n_0)^{1/2}) dx .$$

Let us choose $a > 2(n_0)^{-1/2}$ for $C \le C_1$. Denoting by $L = [n_0 + x(n_0)^{-1/2}]$ one has for $x \ge a$ and $C \le C_1$,

(i)

$$L - 1 \ge n_0 + x(n_0)^{1/2} - 2$$

$$\ge n_0 + a(n_0)^{1/2} - 2$$

$$> n_0 .$$
(ii)

$$L \ge n_0 + x(n_0)^{1/2} - 1$$

$$\ge n_0 + \frac{1}{2} x(n_0)^{1/2} + \frac{1}{2} a(n_0)^{1/2} - 1$$

$$\ge n_0 + \frac{1}{2} x(n_0)^{1/2}$$

$$\Rightarrow \left(\frac{L}{n_0}\right)^{(1+2t/s)} \ge 1 + kx(n_0)^{-1/2} .$$

From (i), (ii) and Markov's inequality, we obtain, for q > 1,

(2.2)
$$P(N > n_0 + x(n_0)^{1/2})$$

$$\leq P(N \geq L + 1)$$

$$\leq P\left[\chi^2_{(L-1)} - (L-1) \geq (L-1)\left\{\left(\frac{L}{n_0}\right)^{(1+2t/s)} - 1\right\}\right]$$

$$\leq P[\chi^{2}_{(L-1)} - (L-1) \geq kx(n_{0})^{1/2}]$$

$$\leq kx^{-2q} n_{0}^{-q} E\{\chi^{2}_{(L-1)} - (L-1)\}^{2q}$$

$$= kx^{-2q} n_{0}^{-q} (L-1)^{q}$$

$$= kx^{-2q} \leq ka^{-2q}.$$

Thus,

(2.3)
$$\pi_2 \leq k a^{2(1-q)}$$

and

(2.4)
$$\pi_4 \le k \int_a^\infty x^{1-2q} \, dx \, .$$

Now, choose C_2 such that $a > (n_0)^{1/2}/2$ for all $C \le C_2$. Hence, for $x \ge a$,

(2.5)
$$\pi_{3} \leq 2 \left[\int_{a}^{(n_{0})^{1/2}/2} x \left\{ P\left(N \leq \frac{1}{2} n_{0} \right) + P\left(\frac{1}{2} n_{0} < N < n_{0} - x(n_{0})^{1/2} \right) \right\} dx + \int_{(n_{0})^{1/2}/2}^{(n_{0})^{1/2}} x P\left(N \leq \frac{1}{2} n_{0} \right) dx \right].$$

We have proved in Corollary 2.1 that, for $C \leq C_3$,

$$P\left(N\leq\frac{1}{2}n_0\right)\leq kC^{(m-1)/s},$$

so that, for $C \le C_4 = \min(C_2, C_3)$,

(2.6)
$$\int_{(n_0)^{1/2}/2}^{(n_0)^{1/2}} x P\left(N \le \frac{1}{2} n_0\right) dx \le k a^{2\left(1 - (m-1)(s+2t)/2s\right)}$$

Let us write $L_1 = [n_0/2], L_2 = [n_0 - x(n_0)^{1/2}]$. We note that

$$1 - \left(\frac{L_2}{n_0}\right)^{(1+2t/s)} \ge 1 - (1 - x(n_0)^{-1/2})^{(1+2t/s)}$$
$$\ge k x(n_0)^{-1/2} .$$

Now, we have

$$P\left(\frac{1}{2}n_{0} < N < n_{0} - x(n_{0})^{1/2}\right)$$

$$= P\left[\bigcup_{N=L_{1}+1}^{L_{2}} \left\{\chi_{(N-1)}^{2} - (N-1) \leq -(N-1)\left(1 - \left(\frac{N}{n_{0}}\right)^{(1+2t/s)}\right)\right\}\right]$$

$$\leq P\left[\bigcup_{N=L_{1}+1}^{L_{2}} \left\{\chi_{(N-1)}^{2} - (N-1) \leq -L_{1}\left(1 - \left(\frac{L_{2}}{n_{0}}\right)^{(1+2t/s)}\right)\right\}\right]$$

$$\leq P\left[\bigcup_{N=L_{1}+1}^{L_{2}} \left\{\chi_{(N-1)}^{2} - (N-1) \leq -kx(n_{0})^{1/2}\right\}\right].$$

Since $\{\chi^2_{(N-1)} - (N-1): N \ge 2\}$ is a stationary martingale sequence, using Kolmogorov's inequality for martingales, one gets, for q > 1,

(2.7)
$$P\left(\frac{1}{2}n_0 < N < n_0 - x(n_0)^{1/2}\right)$$
$$\leq k x^{-2q} (n_0)^{-q} E\{\chi^2_{(L_2 - L_1 - 1)} - (L_2 - L_1 - 1)\}^{2q}$$
$$= k x^{-2q}.$$

Substituting from (2.6) and (2.7) in (2.5), we obtain

(2.8)
$$\pi_3 \leq k \left[a^{2\{1-(m-1)(1+2t/s)/2\}} + \int_a^{(m_0)^{1/2}/2} x^{1-2q} dx \right].$$

A similar inequality can also be obtained for π_1 .

Utilizing the inequalities (2.3), (2.4) and (2.8), we obtain from (2.1), for q > 1 and $C \le C_0 = \min(C_1, C_4)$,

(2.9)
$$E[X^{2}I(X > a)] \leq k \left[a^{2(1-q)} + \int_{a}^{\infty} x^{1-2q} dx + a^{2\{1-(m-1)(1+2t/s)/2\}} + \int_{a}^{(m_{0})^{1/2}/2} x^{1-2q} dx \right].$$

The expression on the r.h.s. of (2.9) tends to zero as $a \to \infty$ for all m > 1 + 2s/(s + 2t), implying that N_0^2 is uniformly integrable in $C \le C_0$.

The main results of this section are stated in the next two theorems.

THEOREM 2.1. For all m > 1 + 2s/(s + 2t), as $C \rightarrow 0$,

$$\omega(C) = \frac{1}{4} Ct(s+2t)n_0^{t-1} + o(C^{(s+2)/(s+2t)}).$$

PROOF. From (1.8) and (1.9), substituting the values of $\overline{\nu}(C)$ and $\nu_{n_0}(C)$ in (1.7), and using Taylor series expansion, we obtain for $|W - n_0| \leq 1$

$$|N - n_0|,$$

$$(2.10) \quad \omega(C) = \frac{2Ct}{s} n_0^{(s+2t)/2} \cdot E[N^{-s/2} - n_0^{-s/2}] + CE[N^t - n_0^t]$$

$$= \frac{2Ct}{s} n_0^{(s+2t)/2} \cdot E\left[-\frac{s}{2} n_0^{-(s/2+1)} \cdot (N - n_0) + \frac{s}{4} \left(\frac{s}{2} + 1\right) (N - n_0)^2 W^{-(s/2+2)}\right]$$

$$+ CE\left[tn_0^{t-1} \cdot (N - n_0) + \frac{1}{2}t(t-1)(N - n_0)^2 W^{t-2}\right]$$

$$= I_1 + I_2 \quad (\text{say}),$$

where

$$I_{1} = \frac{1}{4} Ct(s+2)n_{0}^{t-2} \cdot E\left[\left(N-n_{0}\right)^{2}\left(\frac{n_{0}}{W}\right)^{(s/2+2)}\right],$$

and

$$I_{2} = \frac{1}{2} C t(t-1) n_{0}^{t-2} \cdot E \left[(N-n_{0})^{2} \left(\frac{W}{n_{0}} \right)^{t-2} \right].$$

Denoting by P, the c.d.f. of N, we can write

 $I_1 = I_{11} + I_{12} ,$

where

$$I_{11} = \frac{1}{4} Ct(s+2) n_0^{t-2} \int_{N \le n_0/2} (N-n_0)^2 \left(\frac{n_0}{W}\right)^{(s/2+2)} dP$$

and

$$I_{12} = \frac{1}{4} Ct(s+2) n_0^{t-2} \int_{N > n_0/2} (N-n_0)^2 \left(\frac{n_0}{W}\right)^{(s/2+2)} dP.$$

Since, on the event " $N \le n_0/2$ ", $n_0/W \le 2$,

(2.11)
$$I_{11} \leq k C n_0^{t-2} \int_{N \leq n_0/2} (N - n_0)^2 dP$$

$$\leq kCn_0^t P\left(N \leq \frac{1}{2} n_0\right)$$

= $kC^{(m-1)/s+s/(s+2t)}$
= $o(C^{(s+2)/(s+2t)})$,

as $C \to 0$, for all m > 1 + s/(s + 2t). It is to be noted that the second last expression on the r.h.s. of (2.11) is obtained on using Corollary 2.1. On the event " $N > n_0/2$ ", $n_0/W \le 2$. Moreover, since $W/n_0 \to 1$ w.p. 1 as $C \to 0$, we obtain on using Lemmas 2.3 and 2.4 that, for all m > 1 + 2s/(s + 2t), as $C \to 0$,

(2.12)
$$I_{12} \rightarrow \frac{1}{4} Ct(s+2)n_0^{t-1}$$
.

In order to tackle the term I_2 , we consider the following two cases.

Case 1. (When $t \le 2$) Proceeding as for I_1 , we can prove that for all m > 1 + 2s/(s + 2t), as $C \to 0$,

(2.13)
$$I_2 = \frac{1}{2} Ct(t-1)n_0^{t-1} + o(C^{(s+2)/(s+2t)})$$

Case 2. (When $t \ge 2$) We can write

$$I_{2} = \frac{1}{2} Ct(t-1)n_{0}^{t-2} \left[\int_{N \le n_{0}/2} \left(\frac{W}{n_{0}} \right)^{t-2} \cdot (N-n_{0})^{2} dP + \int_{N > n_{0}/2} \left(\frac{W}{n_{0}} \right)^{t-2} \cdot (N-n_{0})^{2} dP \right]$$

Since on the event " $N \le n_0/2$ ", $W/n_0 \le 1/2$, on the event " $N > n_0/2$ ", $W/n_0 \le 3/2$, and $W/n_0 \rightarrow 1$ w.p. 1 as $C \rightarrow 0$, I_2 converges to the same limit as in Case 1.

The theorem now follows on making substitutions from (2.11), (2.12) and (2.13) in (2.10).

Remark 1. For t = 1, we conclude that $\omega(C) = (s+2)/4 + o(C)$ for all m > 1 + 2s/(s+2). In this case, Starr and Woodroofe (1969) proved that $\omega(C) = O(1)$ iff $m \ge s+1$. Thus, our bounds for $\omega(C)$ are sharper than that achieved by Starr and Woodroofe (1969).

Remark 2. For s = 2, t = 1, we obtain $\omega(C) = C + o(C)$ as $C \to 0$, for all $m \ge 3$, which is the result obtained by Ghosh and Mukhopadhyay (1980). Moreover, the result $\lim_{C\to 0} \omega(C) = 0$, for all $m \ge 3$, obtained by Nagao and Takada (1980) also follows immediately.

The following theorem provides second-order approximations for the first two moments of N.

THEOREM 2.2. For all m > 1 + 2s/(s + 2t), as $C \rightarrow 0$,

(2.14)
$$E(N) = n_0 + (\nu - 1) \left(1 + \frac{2t}{s} \right)^{-1} + o(1) ,$$

(2.15)
$$E(N^2) = n_0^2 + 2n_0 \left(1 + \frac{2t}{s}\right)^{-1} (v - 1) + o(C^{-2/(s+2t)}),$$

where v is specified.

PROOF. Let us consider the difference

(2.16)
$$R_{C} = (N-1) \left(\frac{N}{n_{0}}\right)^{(s+2t)/s} - S_{N},$$

where $S_N = \sum_{j=1}^{N-1} Z_j^2$, with $Z_j \sim N(0, 1)$.

The mean v of the asymptotic distribution of R_c can be obtained from Theorem 2.2 of Woodroofe (1977). By (2.16), Wald's lemma for cumulative sums, and Taylor series expansion, we obtain for $|W - n_0| \le |N - n_0|$,

$$\begin{split} E(S_N) &= E(N-1) \\ &= \frac{1}{n_0^{1+2t/s}} E\left[N^{(2+2t)/s} - N^{(1+2t)/s}\right] - \nu \\ &= E\left[\left\{n_0 + \left(2 + \frac{2t}{s}\right)(N - n_0) + \frac{1}{2}\left(2 + \frac{2t}{s}\right)\left(1 + \frac{2t}{s}\right) \\ &\cdot \left(\frac{W}{n_0}\right)^{2t/s} \cdot \frac{(N - n_0)^2}{n_0}\right\} - \left\{1 + \left(1 + \frac{2t}{s}\right) \cdot \frac{(N - n_0)}{n_0} \\ &+ \frac{1}{2}\left(1 + \frac{2t}{s}\right)\left(\frac{2t}{s}\right)\left(\frac{W}{n_0}\right)^{2t/s-1} \cdot \frac{(N - n_0)^2}{n_0}\right\}\right] - \nu \;. \end{split}$$

Proceeding exactly along the lines of proof of Theorem 2.1, it can be shown that as $C \rightarrow 0$, for all m > 1 + 2s/(s + 2t)

$$E(N-1) = E\left[\left\{n_0 + \left(2 + \frac{2t}{s}\right)(N-n_0) + (1+o(1))\right\} - \left\{1 + \left(1 + \frac{2t}{s}\right) \cdot \frac{(N-n_0)}{n_0}\right\}\right] - \nu,$$

or,

$$\left(1+\frac{1}{n_0}\right)E\{N-n_0\}=\nu\left(1+\frac{2t}{s}\right)^{-1}-\left(1+\frac{2t}{s}\right)^{-1}+o(1),$$

and (2.14) follows.

To obtain second-order approximations for $E(N^2)$, let us write

$$E(N^{2}) = n_{0}^{2} + E\{N^{2} - n_{0}^{2}\}$$

= $n_{0}^{2} + 2n_{0}E\{N - n_{0}\} + n_{0}E\left\{\frac{(N - n_{0})^{2}}{n_{0}}\right\}.$

Utilizing (2.14), we obtain

$$E(N^{2}) = n_{0}^{2} + 2n_{0} \left\{ \left(1 + \frac{2t}{s} \right)^{-1} (v - 1) + o(1) \right\} + n_{0} \{ 1 + o(1) \},$$

and (2.15) holds.

3. Estimation of μ under log-cost function

In this section, we consider a different loss function. Let us take

(3.1)
$$L_n(C) = A |\overline{X}_n - \mu|^s + C \log n .$$

This loss function was considered by Starr (1966) under Section 4, and it implies that the cost of sampling n observations is proportional to $\log n$, when C is the known cost per unit observation. The risk corresponding to the loss (3.1) is

(3.2)
$$v_n(C) = \frac{2K\sigma^s}{sn^{s/2}} + C\log n .$$

The value n^* of n, which minimizes (3.2) is

AJIT CHATURVEDI

(3.3)
$$n^* = \left(\frac{K}{C}\right)^{2/s} \cdot \sigma^2,$$

and setting $n = n^*$, the minimum risk is

(3.4)
$$v_{n^*}(C) = \frac{2C}{s} + C \log n^*.$$

In the ignorance of σ , the following stopping rule N is suggested:

(3.5)
$$N = \inf \left\{ n \ge m : n \ge \left(\frac{K}{C} \right)^{2/s} \sigma_n^2 \right\}.$$

The risk associated with the sequential procedure (3.5) is

$$(3.6) E[L_N(C)] = \nu_N(C)$$

$$=\frac{2C}{s}E\left(\frac{n^*}{N}\right)^{s/2}+CE(\log N).$$

As usual, we define the "risk-efficiency" and "regret" by

(3.7)
$$\eta(C) = v_N(C)/v_n^*(C)$$
,

and

(3.8)
$$\omega(C) = \nu_N(C) - \nu_n^*(C),$$

respectively.

Starr (1966) proved that $\lim_{C\to 0} \eta(C) = 1$ for all $m \ge s + 1$. Here, we shall study the asymptotic behaviours of "regret" and first two moments of the stopping time N. We shall repeatedly use the notation Result A[B] to indicate that the proof of result A is similar to that of B, where the result may be in the form of a lemma, corollary or theorem.

LEMMA 3.1[2.1]. As $C \to 0$,

$$P(N = m) = O_e(C^{(m-1)/s})$$
.

LEMMA 3.2[2.2]. For any $0 < \theta < 1$, as $C \rightarrow 0$,

$$P(m + 1 \le N \le \theta n^*) = O(C^{(m-1)/s})$$
.

COROLLARY 3.1[2.1]. For any $0 < \theta < 1$, as $C \rightarrow 0$,

$$P(N \leq \theta n^*) = O(C^{(m-1)/s}).$$

LEMMA 3.3[2.3]. As $C \rightarrow 0$,

$$N^* = \left(\frac{1}{n^*}\right)^{1/2} (N - n^*) \xrightarrow{\mathscr{Q}} N(0, 1) .$$

LEMMA 3.4[2.4]. For all m > 1 + 2/s, N^{*2} is uniformly integrable in $C \le C_0$ for some $C_0 > 0$.

The following theorem provides second-order approximation for the regret $\omega(C)$.

THEOREM 3.1. As $C \rightarrow 0$,

$$\omega(C) = \frac{Cs}{4n^*} + o(C^{1+2/s}),$$

for all m > 1 + 2/s.

PROOF. From (3.4) and (3.6), substituting the values of $v_{n^*}(C)$ and $v_N(C)$ in (3.8) and using Taylor series expansion, we get after some algebraic manipulations, for $|W - n^*| \le |N - n^*|$,

(3.9)
$$\omega(C) = \frac{2C}{s} n^{*s/2} E[N^{-s/2} - n^{*-s/2}] + CE[\log N - \log n^*]$$
$$= I_1 - I_2 \quad (\text{say}),$$

where

$$I_{1} = \frac{C}{2n^{*2}} \left(1 + \frac{s}{2} \right) E \left[\left(\frac{n^{*}}{W} \right)^{(s/2+2)} \cdot (N - n^{*})^{2} \right],$$

and

$$I_2 = \frac{C}{2n^{*2}} E\left[\left(\frac{n^*}{W}\right)^2 \cdot (N-n^*)^2\right].$$

Proceeding along the lines of proofs of various steps in Theorem 2.1, we can show that, for all m > 1 + 2/s, as $C \rightarrow 0$,

$$I_1 = \frac{C}{2n^*} \left(\frac{s}{2} + 1 \right) + o(C^{1+2/s}),$$

and

$$I_2 = \frac{C}{2n^*} + o(C^{1+2/s}) .$$

The proof now follows on substituting the values of I_1 and I_2 in (3.9).

In the next theorem, we shall establish second-order approximations for E(N) and $E(N^2)$.

,

THEOREM 3.2. As $C \rightarrow 0$,

(3.10)
$$E(N) = n^* + v_1 - 1 + o(1)$$

(3.11)
$$E(N^2) = n^{*2} + 2n^* v_1 - n^* + o(C^{-2/s}),$$

for all m > 1 + 2/s, where v_1 is specified.

PROOF. It follows from the definition of N that

$$N = \inf\left\{n \ge m: S_N \le (N-1)\left(\frac{n}{n^*}\right)\right\},\$$

where S_N is the same as defined in Section 2. Let v_1 be the mean of the asymptotic distribution of

$$R_C^* = (N-1)\left(\frac{N}{n^*}\right) - S_N \,.$$

The proofs of (3.10) and (3.11) are now similar to that of (2.14) and (2.15), respectively, with necessary modifications at various places.

Acknowledgement

The author is thankful to the referee for his many valuable comments.

REFERENCES

Ghosh, M. and Mukhopadhyay, N. (1979). Sequential point estimation of the mean when the distribution is unspecified, Comm. Statist. A-Theory Methods, 8, 637-652.

- Ghosh, M. and Mukhopadhyay, N. (1980). Sequential point estimation of the difference of two normal means, Ann. Statist., 8, 221-225.
- Nagao, H. and Takada, M. (1980). On sequential point estimation of the mean of a normal distribution, Ann. Inst. Statist. Math., 32, 201-210.
- Starr, N. (1966). On the asymptotic efficiency of a sequential procedure for estimating the mean, Ann. Math. Statist., 37, 1173-1185.
- Starr, N. and Woodroofe, M. B. (1969). Remarks on sequential point estimation, Proc. Nat. Acad. Sci. U.S.A., 63, 285-288.
- Woodroofe, M. (1977). Second order approximations for sequential point and interval estimation, Ann. Statist., 5, 984-995.