
Ann. Inst. Statist. Math. 
Vol. 40, No. 4, 769-783 (1988) 

ON SEQUENTIAL PROCEDURES FOR THE POINT 
ESTIMATION OF THE MEAN OF A NORMAL POPULATION 

AJIT CHATURVEDI 

Department of Statistics, Lucknow University, Lucknow-226004, India 

(Received September 4, 1986; revised May 7, 1987) 

Abstract. The sequential procedures developed by Starr (1966, Ann. 
Math. Statist., 37, 1173-1185) for estimating the mean of a normal 
population are further analyzed. Asymptotic properties of the "regret" 
and first two moments of the stopping rules are studied and second-order 
approximations are derived. 
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1. Introduction 

Let us consider a sequence X1, Xz, . . .  of independent random observa- 
tions f rom a normal populat ion having unknown mean/1 c ( - ~ ,  0¢) and 
unknown variance o -2 e (0, oo). Given a random sample X1, X2,..., X, of  size 

n, let us define X ,  = n -1 E Xi and a 2 = (n - 1) -1 ~ ( X i  - Sn) 2. Suppose the 
i=I i=I 

loss-occurred in estimating/~ by X ,  be 

(1.1) L . ( C )  = A I X .  -/.zl ~ + Cn' , 

where A, s, C and t are known positive constants. Using the fact that 
~,~ ~ N(IL, cr2/n), the risk corresponding to the loss (1.1) comes out to be 

(1.2) v,,( C)  : ~ + Cn t , 

where K =  (s/2) 2 s/2 1"((s + 1)/2)/1"(1/2).  The fixed-sample size n -- no, which 
minimizes v, (C) ,  is given by 
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( KiTS ) 2/(s+2t) 
(1.3) no-- ~ . 

But, as we have already assumed,  tr is unknown,  the fixed sample size 
procedure fails to minimize v,(C) simultaneously for all tr. We adopt  a 
sequential procedure to obtain sample size "close" to the optimal  but 
unknown  no, and the following stopping rule N is defined in confirmity 
with (1.3). 

{ (KcrSn) 2/(s+2t,} 
(1.4) N = i n f  n>_m:n>_ ~ , 

where m (_> 2) is the starting sample size. Using the fact that  ( n -  1). 

tr2/tr2= ~,1 Z2 ' with Z j -  N(0, 1), we can re-write the s topping rule N as 
j=l 

follows: 

(1.5) N = i n f  n _> rn:x~n-1) -< (n - 1 )  n0 /  J" 

Following Starr (1966) and Starr and Woodroofe  (1969), we define the 
"risk-efficiency" and "regret" of the above ment ioned sequential procedure 
by 

(1.6) q( C) = -f( CI / v,o( C) , 

and 

(1.7) o2(C) - -¥ (C)  - V,o(C), 

respectively, where ~(C)  is the risk associated with the sequential procedure,  
i.e., 

(1.8) ~(C)  = - -  K d E ( N  -s/2) + CE(Nt) , S 
and Vno(C) is obtained on substituting n = no in (1.2), i.e., 

(1.9) V~o(C)= C - - + 1  no. 
s 

Starr (1966) determined a condi t ion on the starting sample size m for 
which the above defined sequential procedure is asymptotically (as C -- 0) 
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risk-efficient. Later on, Starr and Woodroofe (1969) studied the asymptotic 
behaviour of the "regret" for C = t = 1, i.e., when the cost of  sample is 
linear and is unity for each observation. For  s = 2 and t = 1, Nagao and 
Takada  (1980) further studied this sequential procedure. They obtained an 
upper bound for E ( N )  and E(NI ) ,  for / > 0 and C fixed. They also proved 

that for all m _> 3, lim q ( C )  = 1 and lim o9(C) = 0. A stronger bound for 
C~0 C~0 

og(C) is available in Ghosh and Mukhopadhyay  (1980). 
In the next two sections, we shall derive second-order approximations 

for ~o(C), E ( N )  and E ( N  2) for all s and t. In the remaining part  of this 
note, we shall denote by k any generic constant independent of C, [y] will 
be used for the integral part  of y, and I ( S )  will stand for the indicator 
function defined on the set S. 

2. Second-order approximation for w(C) 

We first establish few basic results. 

LEMMA 2.1. P ( N =  m)  = Oe(Clm-Ws), as C ~ O. 

PROOF. We have from (1.5) that 

P ( N  = m)  2 = P[X (m-l) --< k C  z/s] , 

or, 

ke -kc~ '.C Im-1)/s <_ P ( N  = m)  < k C  (m-1)/s , 

and the lemma follows. 

LEMMA 2.2. For any 0 < 0 < 1, 

P ( m  + 1 < N <  Ono) = O(C(m-l)/s), as C ~ O . 

PROOF. We have 

Ono 

P ( m +  l<N<_Ono)<_  Y_, 
n--m+l 

P[x 2 
(n-l) _<(n- 1) n o :  j 

0oo [ 
Z inf exp 

n = m +  1 h > O  

0no [ {  ] 
= Y. inf exp h ( n - 1 )  ( l + 2 h )  -I"-w2 . 

n=m+l h>0 
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This inequality is also valid for the value h0 of h, which minimizes the 
function 

f ( h ) = e x p  { h ( n -  l)(-~oo )'S+2t)/S}(l + 2h) -tn-l'/2 

i.e., ho = [(no~n) ts+ztJ/s - 1]/2. Setting h = ho, we obtain 

P(m + l <_ N <_ Ono) 

0no [(n),s+2,js / 
_< Y, - -  • exp 1 - 

n=rn+ 1 Flo n o  ] 

<- n°(S+2t)(m-1)/2S " [ exp { 1 -  ( m -}- ' )(s+2t)/s 

Ono i.l (m-1){s+ 2t)/2s . ( ~el-~)(n-m)/2 ' 
n = m + l  

where ~ = (n/no)(S+2t)/s< 1 for all n <_ Ono, so that, ~el-¢< 1. Now, using 
ratio rule for series convergence, we obtain the lemma. 

COROLLARY 2.1. For any 0 < 0 < l, 

P(N <_ Ono) = O(C (m- l)/s) , 

PROOF. 

as C ~ O .  

We can write 

P(N <_ Ono) = P ( N  = m) + P(m + 1 <_ N <_ Ono) , 

and the proof  follows on applying Lemmas 2.1 and 2.2. 

LEMMA 2.3. As C ~ 0, 

No = ( N -  no) N(0, 1). 
no ] 

The proof follows from Theorem 3 of Ghosh and Mukhopadhyay PROOF. 
(1979). 

LEMMA 2.4. For all m > 1 + 2 s / ( s  + 2t), N 2 is uniformly integrable 
in C <_ Co, for  some Co > O. 

PROOF. Denoting by F(x), the c.d.f, of X =  INol, we have, for some 
a > 0 ,  



(2.1) 

where 

and 

ON SEQUENTIAL PROCEDURES FOR THE POINT ESTIMATION 

E [ X 2 I ( X >  a)] = - f ~  x2d(1 - F(x) )  

= a 2 P ( X >  a) + 2 f f  x P ( X >  x ) d x  

= 1"Cl -~- ~ 2  "~- ~ 3  + 7[4 , 
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~Zl = a z P ( N  < no - a(no)l/2) , 

re2 = a2p(N > no + a(no)l/2) , 

rg3 = 2 f f  x P ( N <  no - x ( n o ) m ) d x ,  

f oo 
n4 = 2 x P ( N >  no + x(no)l/2)dx. 

Let us choose a > 2(no) -m for C _< C1. Denot ing  by L = [no + x(no) -1/2] 
one has for x > a and C __< C1, 

(i) L - 1 >_ no + x(no) m - 2 

>- no + a(no) m - 2 

> no. 

(ii) L _> no  + x ( n o )  1/2 - 1 

1 1/2 I 
>- no + --~ x(no) + T a(n°)'/2 - l 

> no + 1 , -~1/2 
- 2 xtno) 

> 1 + kx(no) -1/2 . 

F r o m  (i), (ii) and Markov's  inequality, we obtain, for q > I, 

P ( N  > no + x(no) m) 

<_ P ( N  >_ L + 1) 

-< Z t L - ~ ) - ( L - 1 ) - > ( L -  1) L 1~+2tm_l 
no ! 

(2.2) 
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Thus, 

(2.3) 

and 

2 -< e[;fIt-1) - (L - 1) >_ kx(no) 1/2] 

< kx-2q Floq 2 E{ZIL-1 t - (L - 1)}2q 
= k x  -2q no q (L ~ 1) q 

= kx-2q < k a  -2q . 

7r2 <_ k a  2(1-q) 

(2.4) ~4 ~ kJa  X 1-2q d x .  

Now, choose C2 such that a > (no)1/2/2 for all C _  < C2. Hence, for x --_ a, 

(2.5) ~3<~2 x P N<_-~no 

+ P ~ no < N < n o -  x(no) 1/2 dx 

~'~°)'~ x P (  1 no)dx] 
+ ~(no)'2/2 N <- --~ . 

We have proved in Corollary 2.1 that, for C _< C3, 

( ' )  P N<_ 7 no <- k C  (m-1)/s , 

so that, for C -< C4 = min (C2, C~), 

(2.6) qn,~,,2/~ x P  N < _ "-~ no dx <_ ka 21L-Im-ll~s+2t)/2"~ 

Let us write L1 = [no/2], L2 = [no - x(no)m]. We note that 

- -  _>  1 - ( 1  - -  x(rlo)-l/2) 11+2'/s~ 

> kx ( r io )  -1/2 " 

Now, we have 
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( ( :o )"""')}] :¢=L,+I X I N - ~ I - ( N - 1 ) < - ( N - 1 )  1 -  

Z(N-1} -- ( N -  l) < - LI 1 - - -  
N=LI+ 1 no ] 11 /  

] U 2 N=L,+I {XI~-It - ( N -  1) _< - k x ( n o )  1/2} . 

Since 2 {XIN-~)- ( N - 1 ) : N _ >  2} is a stationary martingale sequence, using 
Kolmogorov's inequality for martingales, one gets, for q > l, 

(2.7) 
(l ) 

P -~- no < N < no - x ( n o )  1/2 

<_ kx-2q(no)-q 2 E{XIL2-L, - l l -  (L2 - LI - 1)} 2q 

-- kx-Zq . 

Substituting from (2.6) and (2.7) in (2.5), we obtain 

[ ] (2.8) re3 <_ k a 2{l-(m-1)(l+2t/s)/2} q- x 1-2q d x  . 

A similar inequality can also be obtained for re1. 
Utilizing the inequalities (2.3), (2.4) and (2.8), we obtain from (2.1), for 

q > 1 and C _< Co = min (C1, Ca), 

(2.9) [ E E [ X 2 I ( X >  a)] <_ k a 2(1-q) + x l-2q d x  

+a2{1-1m-,)(l+2t/s)/2}+f~°)"2/2xl-2qdx] " 

The expression on the r.h.s, of (2.9) tends to zero as a----~ for all 
m > 1 + 2 s / ( s  + 20, implying that N~ is uniformly integrable in C <  Co. 

The main results of this section are stated in the next two theorems. 

THEOREM 2.1. F o r a l l m >  1 + 2 s / ( s +  2 t ) , a s C - - - , O ,  

1 
~ ( C )  = -~- C t ( s  + 2t)n[~ -l + o(CIS+21/Is÷2'l) . 

PROOF. From (1.8) and (1.9), substituting the values of ¥(C)  and 
V~o(C) in (1.7), and using Taylor series expansion, we obtain for ] W -  no] _< 
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I N -  nol , 

(2.10) 

where 

and 

 o(c) = - -  
2Ct n~o~+2t)/2 . E[N_~/2 _ no~/2] + C E [ N  t _ n[~] 

S 

2Ct n~oS,2t)/2 . E[  s n_lS/2+l ) (N-  no) 
s I. - T  o • 

1 wt_ 2 ] + CE tn~ -~. ( N -  no) + -~  t(t - I ) ( N -  no) 2 

= I~ + 12 (say) ,  

where 

I1 = -~- Ct(s + 2)n[~ -2 . E ( N -  no) 2 

and 

] 
Denot ing  by P, the c.d.f, of  N, we can write 

11 -- 111 + 112 , 

1 2~nt_2 ( ( N _ n o ) 2 ( W ) ~  ~/2+2) 112 = ~ Ct(s + ) o AN>.,,/2 d P .  

Since, on the event " N <  no/2", n o / W  <- 2, 

(2.11) 11i <- kCn~-2 fN<.o/2 ( N -  no) 2 dP  
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1 
< kCn~P ( N <_ --f no ) 

= kC(,, - 1)/s+s/(s+2t) 

= o ( C  (s+2)/(s+zt)) , 

as C --" 0, for  all m > 1 + s/(s + 2t). It is to be noted  that  the second last 
express ion  on the r.h.s, o f  (2.11) is ob ta ined  on using Coro l la ry  2.1. On the 
event  " N >  no~2", no/W_< 2. Moreove r ,  since W / n o -  I w.p. 1 as C - - 0 ,  
we ob ta in  on  using L e m m a s  2.3 and 2.4 that ,  for  all m > 1 + 2s/(s + 2t), as 
C - - 0 ,  

1 
(2.12) I~2 -- --~ Ct(s + 2 ) n ~ - ' .  

In order  to tackle the term I2, we consider  the fol lowing two cases. 

Case 1. (When  t_< 2) Proceed ing  as for  11, we can prove  that  for  all 
m > 1 + 2s/(s + 2t), as C - -  0, 

1 o(C(S+2)/(s+2t)) (2.13) 12 = T C l ( t  - 1)n~ -1 + . 

Case 2. (When t _> 2) We can write 

12 = -~ Ct(t - 1)ng -z _<no/2 n---o ! " 

Since on the event  "N<no/2" ,  W/no< 1/2, on the event  "N>no/2" ,  
W/no < 3/2 ,  and W/no --" I w.p. 1 as C --  0, 12 converges  to the same limit 
as in Case 1. 

The theorem now fol lows on  making  subs t i tu t ions  f rom (2.11), (2.12) 
and (2.13) in (2.10). 

Remark 1. F o r  t = I, we conc lude  that  co(C) = (s + 2 ) /4  + o(C) for  
all m > 1 + 2s/(s + 2). In this case, S ta r r  and W o o d r o o f e  (1969) p roved  
that  co(C) -- O(1) iff m ___ s + 1. Thus,  our  b o u n d s  for  co(C) are sharper  
than that  achieved by Starr  and W o o d r o o f e  (1969). 
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R e m a r k  2. F o r s = 2 ,  t = l ,  we obtain co( C )  = C + o (  C)  as C---0, 
for all m _> 3, which is the result obtained by Ghosh and Mukhopadhyay 
(1980). Moreover, the result lim co(C)= 0, for all m _  3, obtained by 

C~0 

Nagao and Takada (1980) also follows immediately. 

The following theorem provides second-order approximations for the 
first two moments of N. 

THEOREM 2.2. F o r  all  m > 1 + 2s / ( s  + 2t), as C -" 0, 

(2.14) 

(2.i5) 

E ( N )  n o + ( v  1 ) ( l + 2 t )  -1 = - - -  + o 1 , ( )  
S 

( E ( N  2) = n2o + 2no 1 + (v - 1) + o ( C  2/ts+2tl) , 

w h e r e  v is speci f ied .  

PROOF. Let us consider the difference 

(2.16) N ]ls+ 2t)/s _ SN 
R c =  ( N - 1 )  no/ 

N-I 
where SN = 3-', Z~, with Z j -  N(0, 1). 

j=l 

The mean v of the asymptotic distribution of R c  can be obtained from 
Theorem 2.2 of Woodroofe (1977). By (2.16), Wald's lemma for cumulative 
sums, and Taylor series expansion, we obtain for I W -  nol -< I N -  n0[, 

E(SN)  = E ( N -  1) 

1 
1 + 2t/s 

no 
- -  E [ N  12÷2zl/s- N 11÷2tl/s] - v 

= E  no+ 2 + ~  ( N - n o ) +  2+  1+ 
s 

W no) 2 _ 1 +  1 + - -  • - 

no / no s no 

- -  - -  - -  - -  V ° 

s S / \  r/o ] no 
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Proceeding exactly along the lines of proof of Theorem 2.1, it can be 
shown that as C --- 0, for all m > 1 + 2s/(s + 20 

or, 

E ( N - 1 )  = E[{ n° + ( 2 + 2t ) ( N -  n°) + (l + °(1)) 

{ ( - 1 +  1 + - -  • - -  - v ,  
S no 

and (2.14) follows. 
To obtain second-order approximations for E(N2), let us write 

E(N 2) = n~ + E{N 2 - n 2} 

=n2°+2n°E{N-n°}+n°E{ ( N - n ° ) 2 }  " n o  

Utilizing (2.14), we obtain 

{( } E(N 2)=ng+2no 1+ ( v - 1 ) + o ( 1 )  + n 0 { l + o ( 1 ) } ,  

and (2.15) holds. 

a. Estimation of p under log-cost function 

In this section, we consider a different loss function. Let us take 

(3.1) L,(C) = A I X , - / z l  s + Clog n .  

This loss function was considered by Starr (1966) under Section 4, and it 
implies that the cost of sampling n observations is proportional to log n, 
when C is the known cost per unit observation. The risk corresponding to 
the loss (3.1) is 

2Ko ~ 
(3.2) v,( C) - - -  + C log n snS/2 

The value n* of n, which minimizes (3.2) is 

( ( 1+ E{N-no}=V 1 +  - 1 + - -  + o ( 1 ) ,  
S 
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(3.3) n * =  -~- , 

and setting n -- n*, the min imum risk is 

2C 
(3.4) vn*(C) = - - +  C l o g  n * .  

s 

In the ignorance of a, the following stopping rule N is suggested: 

(3.5) N = i n f  n >_ m: n >_ --~ a~ . 

The risk associated with the sequential procedure (3.5) is 

(3.6) E [ L N ( C ) ]  = vN(C)  

= 2C E + CE(log N)  
s -N- 

As usual, we define the "risk-efficiency" and "regret" by 

(3.7) r/(C) = ])N(C)/I )n*(C) ,  

and 

(3.8) ~o(C) = VN(C) -- v ,*(C)  , 

respectively. 
Starr  (1966) proved that  lim r/(C) = 1 for all m _> s + 1. Here, we shall 

C ~ 0  

study the asymptot ic  behaviours of "regret" and first two moments  of the 
s topping t ime N. We shall repeatedly use the nota t ion  Result  A[B] to 
indicate that  the proof  of result A is similar to that  of B, where the result 
may be in the form of a lemma, corollary or theorem. 

LEMMA 3.112.1]. A s  C ~  O, 

P ( N =  m)  = O e ( C  (m-l) /s)  . 

LEMMA 3.2[2.2]. F o r  a n y  0 < 0 < 1, as C ~ O, 

P ( m  + 1 <_ N<_ On*) = O ( C  Im-ws) . 
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COROLLARY 3.112.1]. For any 0 < 0 < 1, as C ~ O, 

P ( N  < On*) = O ( C  Im-1)/s) . 

LEMMA 3.3[2.3]. A s  C--* O, 

N* = ( I / 1 / 2  ~ 
n* t ( N -  n*) N(0, 1) . 

LEMMA 3.4[2.4]. For all m > 1 + 2/ s, N .2 is uni formly  integrable in 

C < Co f o r  some Co > O. 

The following theorem provides second-order approximation for the 
regret co(C). 

THEOREM 3.1. As C--" O, 

co(c)-  Cs 4n* l- o ( C  l+2/s) , 

for  all m > 1 + 2/s.  

PROOF. From (3.4) and (3.6), substituting the values of vn*(C) and 
VN(C) in (3.8) and using Taylor series expansion, we get after some 
algebraic manipulations, for I W -  n*l -< I N -  n ' l ,  

(3.9) co(C) = 2---C-C n *s/2 E [N -~/2 - n *-~/2] + CE [log N -  log n*] 
S 

where 

and 

= h - I2 (say) , 

C n* 

C n* ) 2  
i 

Proceeding along the lines of proofs of various steps in Theorem 2.1, we 
can show that, for all m > 1 + 2/s ,  as C ~ 0, 
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1 11 = 2n---~ --~ + 1 + o(C1+2/s) , 

C 
/2 = 2n------w + o(C 1 +z/s). 

The proof  now follows on substituting the values of/1 and 12 in (3.9). 

In the next theorem, we shall establish second-order approximat ions  
for E ( N )  and E ( N  2). 

THEOREM 3.2. As C--" O, 

(3.10) E ( N )  = n* + vl - 1 + o(1) ,  

(3.11) E ( N  2) = n .2 + 2n'v1 - n* + o (C  -2/s) , 

f o r  all m > 1 + 2/ s, where vl is specified. 

PROOF. It follows f rom the definition of N that  

where SN is the same as defined in Section 2. Let vl be the mean of the 
asymptotic distribution of 

: ( N -  1)( -U)- sN. N 
R* 

The proofs of (3.10) and (3.11) are now similar to that  of (2.14) and (2.15), 
respectively, with necessary modifications at various places. 
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