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Abstract. For finite sets of probability measures, sufficiency is character-
ized by means of certain positively homogeneous convex functions. The
essential tool is a discussion of equality in Jensen’s inequality for
conditional expectations. In particular, it is shown that characterizations
of sufficiency by Csiszar’s f~divergence (1963, Publ. Math. Inst. Hung.
Acad. Sci. Ser. A, 8, 85-107) and by optimal solutions of a Bayesian
decision problem used by Morse and Sacksteder (1966, Ann. Math.
Statist., 37, 203-214) can be proved by the same method.
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1. Introduction

Let Pi,..., P« be probability measures on a measurable space (Q, 7).
Put u=1/kXP1+ -+ Pi) and p;=dPi/du, 1 <i<k. Let b; be the
probability that P; is the “true” distribution. Then

fsup {b1p1,..., bipir}du

k k
=sup { i‘:ZIb,-fﬁpid;t: Elf,-: lo, fitestforeach 1 <i<k,

is the maximum probability of guessing the “true” P; (cf. Morse and
Sacksteder (1966), Torgersen ((1976), p. 194) and Gyorfi and Nemetz
(1977)). Morse and Sacksteder used these quantities in order to characterize
sufficiency. For the same purpose and k = 2, Csiszar (1963, 1967) employed

f-divergences f go(p1, p2)du, where g(x1, x2) = f(x1/ x2)x2 for x1,x2 >0 and f
is a convex function on (0, o) (see Lemma 1.3 and Example 1(c)).
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We shall characterize sufficiency by means of integrals ng(bl Diseens

bxpr)du where b; >0 and g is a positively homogeneous convex map with
values in (— o, o] which equals the sup-function or a k-dimensional
generalization of the above function g used by Csiszar. In particular, we
shall see that the results of Csiszar (1963, 1967) and Morse and Sacksteder
(1966) can be proved by the same method. The essential tool is a discussion
of equality in Jensen’s inequality for conditional expectations and certain
positively homogeneous convex maps which have similar properties as the
sup-function (see Lemma 1.1) and the map g introduced in Lemma 1.3.
Integrals of the above type with a general real valued g have been studied
by Gyorfi and Nemetz (1977) as a measure of dissimilarity of distributions.
For later reference we state the following obvious result.

LEMMA 1.1. For x=(xi,..., xx) € [0,00)" put g(x) = sup {xi,..., xz}
and C; = {x € [0,)": x; = g(x)}. Then g is a positively homogeneous convex
function; and if x,y €[0,00)", 0 <t <1, and g(tx +(1 - t)y) = 1g(x) +
(1 -10g(y), then x,y € C; for some 1 <i<k.

The definition of a positively homogeneous or convex real valued
function defined on a convex cone or subset of a linear space makes sense
for an extended real valued function the range of which is contained in
(—oe,00] if one assumes Qoo =0, boo =0 for b>0, and o + b = for
— o0 < b < 0. Concerning continuity we consider the usual topology on
( — o0, ]. Using these conventions, functions like 1/x or - log x can be
considered as continuous convex maps from [0, o) to ( — oo, co] which carry
0 into . In Lemma 1.3 we shall see that positively homogeneous convex
maps from [0, 0)*\{0} to ( — 0, ¢}, k = 2, which are defined by means of a
continuous convex map from [0, )" ' to ( ~ oo, 0] have similar properties
as g in Lemma L.1. If x = (x1,..., xx) € [0,%0), put x’ = (xi,..., xe-1). For
he(0,00) " define Lum = {u € [0,00) " ¢h,u) < 1}, Lo = {u €[0,00)" ":¢h, u)
> 1}, G = {x €[0,00): ¢, x> < xi}, and Cao = {x € [0,00):Ch, x> = xe} ((, D
denotes the inner product). For 0 < s <oo put x/s = (x1/s,..., Xx/$).

LEMMA 1.2. Let f be a continuous convex map from [0, )" 10
( — o0, 0]. Then the following assertions hold.
(a) There exists lilrgxsf(y/s) €(— oo, o] forall y €0, o)1,

(b) Suppose there is an he (0, oo} such that if u,ve[0,00)7",
0<t<l1,and f(tu+ (1 — o) = tf (1) + (1 — 1) f(v), then u,v € Ly for some
i €{1,2}. Then f(y) < for all y € [0, ) '\{0}.

PROOF. (a) For fixed y €[0, )" " let F denote the map from [0, o)
to ( — oo, 00] which carries ¢ into f(zy). F is convex. This implies that there is
a 7o such that F(¢) <co for all t > #, or F(¢) = oo for all £ = t,. In the first
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case the existence of llitm( 1/8)F(t) € (— o0, 00] is well known; in the second

case (1/#)F(t) = o for all t = #. Now

lim(1/))F(r) = limsF(1/s) = limsf(y/s) .

(b) If ye[0,0)" and y#0, then there are b<1<c such that
by € Lui, cy € L)\ L. Putting t = (¢ — 1)/ (¢ — b), u = by, and v = cy, we get
y=tu+(1—1vand f(y) <tf(u) + (1 — ) f(v) < co.

LEMMA 1.3. Let f be given as in Lemma 1.2 and let g denote the
map from [0,90)"\{0} to ( — o, <] defined as

gxX)=xxf(x'/xx) if x>0

and
) =Hps/(/9)  if w=0.

Then the following assertions hold.

(a) g is measurable, positively homogeneous, and convex.

(b) If f fulfills the premise of Lemma 1.2(b), then g(x) <co for all
x € [0,0)*\{0} with x’ + 0 and xi # 0.

(c) Suppose that f fulfills the premise of Lemma 1.2(b) and that
x,y €[0,20)"\{0}, % >0,0< 1< 1, and g(tx + (1 — £)y) = 1g(x) + (1 — H)g(y).
Then x,y € Cu for some i€ {1,2}.

PROOF. Lemma 1.3(b) follows immediately from Lemma 1.2(b).

(a) From the definition of g its positive homogeneity is clear. Since f
is continuous, we have

g(x) = lim(xx + (1/m) f(x'/ (i + (1/n)))

for all x € [0,90)*\{0}. Hence g is measurable.
The convexity of g follows because, if x, y € [0,0)*\{0}, 0 << 1, and
sn=t(xx+ 1/n) + ({1 - (yx + 1/n), then

gitx+ (1 -y = li’{nsnf((tx’ + (1 —0)y")/sn)
= lir{ns,,f((t(x;c + 1/n)/s))x' | (xx + 1/n)

+((1 =)y + 1/n)/s2)y’[ (i + 1/ n))
= li'rlns,,((t(xk +1/n)/sy) f(x'[(xx + 1/R))
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+((1 =D+ 1)/ s) f(V'[(ye + 1/ n)))
=1g(x)+ (1 -0gy).

(c) ft<e<], z=cx+(1—-¢)y, and b=t/c, then tx+ (1 -ty =
bz+ (1 —~b)y and bg(z) + (1 — b)g(y) = tg(x) + (1 — t)g(y). Hence g(bz +
(1 - b)y) = bg(z) + (1 — b)g(y). Replacing x in Proof of (a) by z, ¢ by b,
and s, by tzx + (1 — )yr, we obtain z’/ z, y’/ yr € Ly for some i € {1,2}. This
implies z,y € Cp; for some i€{l,2}, and therefore x,ye Cu for some
ief{l,2}.

Examples 1. (a) If f is a strictly convex continuous map from
[0,00)""! to ( — 0, 00], the assumption in Lemma 1.2(b) is fulfilled for each
he (0,000 .

(b) Suppose h € (0, 00y ! and fr(u) = [<h,w) — 1]. Then gu(x) = <A, x">
— xi| corresponds to f;.

(¢) For k=2, ng(pl,pz)d,u is Csiszar’s (1963, 1967) f-divergence.

Examples are given in Csiszar ((1963), pp. 86-87, and (1967), p. 301) and
Gyorfi and Nemetz (1977).

(d) Suppose k = 2. Define strictly convex functions f; by fi(u) = — '
if0<t<1andfi(u)=u'if 1 <t<oo. Then gixi,x2)= —xix} "if0<z<1
and g,(x1, x2) = x{x; " if 1 < 1 < o0 correspond to f,.

(e) If f(u) = ulogu, then g(x) = o iff x; = 0 and x; # 0. Thus, even if
fis real valued, g is in general not.

2. Sufficiency and Jensen'’s inequality

First we study equality in Jensen’s inequality for conditional expecta-
tions where the convex functions have some special properties like g in
Lemma 1.1 or 1.3. For arbitrary convex functions this problem has been
investigated in full generality by Kozek and Suchanecki (1980) and earlier
by Pfanzagl (1974b). It seems that their results do not (at least not in a
simple way) imply Proposition 2.1 below.

In the following let .27 be a o-algebra over a set Q. Suppose & C .His
a sub-c-algebra and P is a probability measure on .Z. For 4, Be & we
shall write 4 C B[P] and A= B[P] if P(AN B)=0 and P(A N B) +
P(A° N B) =0, respectively. Recall that for each measurable map Y from
Q to [0,0] a conditional expectation E(Y |&#) with values in [0, o] can be
defined (cf. Bauer (1968), p. 244). If Y is a measurable map from Q to
(— o0,00] with E(Y |&#) < P-ac., one puts E(Y|S#)=E(Y'|F) -
E(Y |&#). Furthermore, we set P(A|SP) = E(14]&7) for A € ¥, and
E(Z\S#) = (E(Z/|P),..., E(Zx|F)) if Z.,..., Zx are measurable maps from
Q to (— oo,0] such that each E(Z;|&) <o P-a.e. The next lemma is
implied by results in Rubin and Wesler (1958) and Pfanzagl (19744). R
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denotes the set of real numbers.

LEMMA 2.1. Let C C R* be a convex Borel set and g a measurable
convex function from C to ( — o, 0] such that C' = {x € C: g(x) < o0} is not
empty. For i=1,...,k let X; be a real valued measurable function on Q
with E|Xi| <oo. Suppose X(w) € C for all € Q where X = (Xa,..., Xx).
Then the following assertions hold.

(a) E((geX)|L)< o P-ae.

(b) goE(X|) < E(geX|SF) P-a.e.

(¢) If E(ge X |S#) < oo P-ae., then there is a Markov kernel y from
(Q,Z) to (R*, B such that w(-,B)= P({X € B}|P) P-a.e. for all
Be B w(w,CY=1, andfyt//(w,dy) e C forallwe Q.

(d) If goE(X|F#)=E(goX|F)<oo P-ae., then y can be chosen

such that g( fyt,//(a), dy)) =fg(y)t//(a), dy) for all w € Q.

The premise of the following proposition holds for the situation in
Lemma 1.1 or 1.3(b) (see Corollaries 2.1 to 2.3).

PROPOSITION 2.1. Assume the situation of Lemma 2.1. Moreover,
let C, Ci,...,Cn be convex subsets of C with the following properties: If
xeC, yeC, 0<t<1, and g(tx+ (1 - 1)y) = tg(x) + (1 — )g(y), then
x,y € Ciforsomei=1,..,n;C#@,C=C1U - U C, C\C is convex, and
G ﬂjQCf is convex for all i=1,...,n and @ # J C{l,...,n}. Suppose

goE(X|FP)=E(geX|F)<w P-ae.

Then
E(X|F)e CiﬂjQCfﬂ CiCi{XxecCiP],

foralli=1,...,n.

PROOF. We only need to prove the assertion for i = 1. Put M, = G,
M; = C,~ﬁjQC,-“f0r2Si_<_n, Hi={Xe€ M}, and I ={i: P(H;) > 0}. Foriel

define P;= P(- N Hy)/ P(H)). Let Ei(-|$#) denote the conditional expecta-
tion with respect to &P and P, i € I. Let y be given as in Lemma 2.1. For
i € [ there are Markov kernels y; such that yi(-, B) = P({X € B}|<#) P-

ae., wi(-,M)=1, and fyt//f(w, dy) € M for all w € Q and B € B*. We have

E(hoX|P) = LPHIP)EhoX|P)  Pae.,
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if 74 is a measurable function with E{AoX | <o (see Pfanzagl (19746),
p. 492). Hence

[y dyy=SwC. My [ypic-.dy) P,
and
Jew . d)=Sw(-. M) [swi(-.dy)  Pac.
By Jensen’s inequality,
g ( fyvn(w, dy) ) $f gy, dy),

forallwe Qandiel
We conclude that there 1s a P-null set N such that

[ywi@.d) = Sy, M) [y, dy)
g (fyw(w, dy) ) =[sw(w.dp),
and
g ( [ywiw.dy) ) < Zy(w, Mg (fyt//f(co, dy) )
< Sy (0, M) [s(Iyi(o, dy)
= [gw(w,dy) forall weQ\N.

Hence, if w € Q\N, fyt//(co,dy) e C, and 0 < w(w, M) <1 for some i€l
then

[yw (@, dy) = (o, M) [yyi(o, dy) + (1 - y(o, M)x

and
(o, )= v, Mg ( [y, )+ (1 = v, Mg

for some x € C. Since C\C is convex, fyt//i(co,dy) or x is in C. Thus
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fyt//(co, dy), x, fyc//i(w,dy) € C; for some 1 <j<n. Using fyt//i(w, dy) e M;,
we see thatfyt//(co, dy) € C ﬂngf N C implies w(w, M) =0fori=2,...,n.

We conclude
fl{XE my L7y e nOGN adP :fW( <, M) Liex i) e noGn adP=0,
for all i = 2,...,n. Since jgle,- = CY, the proposition follows.

From Proposition 2.1 we get the following special case of Theorem 2
in Pfanzagl (1974b).

COROLLARY 2.1. Assume the situation of Lemma 2.1. If g is strictly
convex and goE(X|P)=E(goX|FP) <o P-ae., then X=E(X|F)
P-a.e.

PROOF. The premise of Proposition 2.1 holds for each h € R* if we
putn=2Ci={xeC:th,x)<1}, C;={xe C:¢h,x)=1},and C= C. Let Q
denote the set of rational numbers. Then

X # BEX|L)} = U (KA X0 > 1>, EX|SP}

= S(EX L) e CNGIN{X e GN\CY),

is a P-null set.

COROLLARY 2.2. Assume the situation of Lemma 2.1 with C=
[0,0)*\{0}. Let g be given as in Lemma 1.3 and h € (0,)* as in Lemma
1.2(b). If goE(X|#) = E(goX|#) < P-ae., then the following asser-
tions hold.

(a) {E(X|S) e Cu\Cii} N{E(Xi|) >0} C{X € Cu}[P] fori+#].

(b) (ECGIP) >0} C U(EX |P) € G} N (X € GIP].

PROOF. (a) The premise of Proposition 2.1 holds with C={xe
Cxx>0}L,n=2 Ci=Cunand C, = Cpa.
(b) We have
2
(E(X|2) >0} \ ( UE(X|S) € Cu} N {X € Cu)

={EXx|P) >0} N ((EX|P) & Cu} N {X & Ci))
UEX|P) ¢ ClN{X ¢ Cud).
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By (a), the right hand side is a P-null set.

Some notation: Let M C [0, )" have the property that for all x € [0, o)
there is a /> 0 with 1x € M; for example M ={ x € [0, 20)": Zxi=1 t where

@#JCH{l,...,k}. Suppose that DC M N (0,0)" is dense in M. For each
x,a € R* we put X = (aix,...,aexi). The random vector X' is defined
analogously.

COROLLARY 2.3. Assume the situation of Lemma 2.1 with C=
[0,)". Let g and Ci...., Ci be given as in Lemma 1.1. Then the following
assertions hold.

(a) IfgoE(X|S)=E(geX|SF) P-ae., then

E(X|F)e Ciﬂg G C{XeC}[P],

fori=1,...k.
(b) IfgoE(X"|P) = E(goX""|SP) P-ae. forall b e D, then

0= Q({E(X 1) € G} O (X € CHIP].

PROOF. (a) The premise of Proposition 2.1 holds with C= C and
n=k.
{b) We have

AEXIS) € CJU X ¢ CY)
k
cCYUy ({E(X"”|Q) € C,-OQC}E}
Nx® ¢ c) ) 7).

Replacing X in (a) by X ®) shows that the right hand side is a P-null set.

We shall modify Corollaries 2.2 and 2.3 in order to obtain criteria for
sufficiency for finite sets of probability measures (see Corollaries 2.4 to
2.8). The essential result is Theorem 2.1. First we need another lemma.
Suppose D and M are defined as above. Let D, C (0, )" and D, C (0, )
be given such that {(hia,...,x-1ax-1,ar):he€ D\ and ae D>} is a dense
subset of M.
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LEMMA 2.2. For all x,y €[0,)"\{0} with y«>0, the following
assertions are equivalent.

(@) xx>0and x/xic=y/y

(b) For all he Dy and a € D; there is an i €{1,2} with X, y'” € Cy,
where Cy; has the same meaning as in Lemma 1.3.

(c) Forallbe D thereisanie{l,... k} with x®,y"" € C;, where C; is
defined as in Lemma 1.1.

PROOF. Obviously, (b) and (c) follow from (a) since in these asser-
tions the convex sets are even cones.

(b) implies (a): Since yx >0, there are he D; and a € D, such that
¥ € Cu\Cro. Hence x'¥ € Cy1. This implies xx > 0 since x # 0. We conclude
that for all 4 € D\ and a € D,, there is an i € {1, 2} such that x'“/xx, '/ yx €
Cri. Assume x/xx# y/yr. Then, there are he D, and a € D; such that
%'/ xx € Cu\ Cn2 and '/ yx € Ci2\ C1. This is a contradiction.

(c) implies (a): Since yx >0, there is a b e D with y® € Cr. Hence
xx >0 since x# 0. Now we use induction on k. The case k=1 is clear.
Suppose the assertion holds for k— 1= 1. If x;=0 for all i<k, we get
»i=0 for all i<k. Assume that x;>0 for some i< k. Without loss of
generality let x; > 0 and xx = yx = 1. Hence y, > 0. Put

M ={(z1,..., zk-1): (21,..., z) € M for some z; < sup {z::i < k}},
D ={(by,..., bi-1): (by,..., bx) € D for some by < sup {bi:i < k}} .

We get xi/x1=yi/y1 for all i<k. Suppose xi# yi. Then x/xi# y/y.
Hence, there is a b € D with x”/x, € C for some j < k and y”/y| € Ci. This
is a contradiction.

THEOREM 2.1. Suppose that in Corollary 2.3 we have gOE(X(b’lg)
= E(go X"|P) P-ae. Sfor all b € D, or suppose that in Corollary 2.2 we
have go E(X'“|P) = E(go X'“|SP) < oo P-ae. for all ae D, and f fulfills
the assumption of Lemma 1.2(b) for all h € D,. Then the following asser-
tions hold.

(a) {E(X«|S£)>0}={Xc>0}[P].

(b) X/;Ykl{,\'pm = E(X |S?)] E(X| ) lipxa) >0 P-a.e.

() If :2.1 Xi=1 P-a.e., then
Xlixs0 = E(X|P) lirxuoy>a  P-a.e.
PROOF. It is known that {X; > 0} C{E(Xk|S?) > 0}[P]. Therefore

(a) and (b) follow from Corollaries 2.2, 2.3 and Lemma 2.2.
(c): Because of (a) and (b) we have the following equalities
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Xlxo>n= Xl{xk>0}/( ?X,)
k-1
= FE(X |g)l!E(Xk|S7’)>O}/(( 1+ i);l E(Xi|S#P)] E(Xx|F) ) E(Xklg))

= E(X|S#) 145(,m.</)>0}/( jEE(X,|Q) )
= E(X ) Ligxusy >0y P-ae.

If in Theorem 2.1 the function fis equal to f; defined in Example 1(d)
(0<t<1), we can put D,={(1,1)} and the corresponding premise in
Theorem 2.1 means that equality holds in Hoélder’s inequality for condi-
tional expectations (f = 1/p).

Now we turn to sufficiency. Let ¢ and pu,..., px be given as in Section
1. Define p! = dP:|#/du|<#. We have p! = E(p;|&#) p-a.e. (conditional
expectation with respect to u), and & is sufficient for {P;,..., P} iff pi= p/
for all i=1,...,k. The following corollaries are implied by Jensen’s in-
equality and Theorem 2.1 where we put P=yu and X:= (1/k)p: for all
i=1,..,k

COROLLARY 2.4. &2 is sufficient for {Pi,..., P} ifffsup {bip1,...,
bipi}du :fsup {b1pi,..., bxpitdu for all b € D.

PROOF. Using Theorem 2.1(c) and the permutation invariance of the
sup-function, we get

(p1ye. e, p) lpsoy = (pi,..., pi) Lip >0y p-a.e.

forl<i<k.

By other methods Corollary 2.4 has been proved by Morse and
Sacksteder ((1966), Theorem 2) for D= M = [0, o)*. In the following let
¢2,..., Or be permutations of {2,..., k} with ¢i(k) = i.

COROLLARY 2.5. Assume the situation of Corollary 2.2. Suppose
the premise of Lemma 1.2(b) is fulfilled for all h € D\. Then & is sufficient

for {P,..., P«} ifng(axp{,azpdi(z),...,akpé(k))d,u=fg°(alp1,azp¢<2),...,
arpe)du < oo for all a € Dy and ¢ = ¢...., Pr.

PROOF. From Theorem 2.1(c) we get

(D1, Pé@s- > P60) Uiy > 08 = (D1, Po@)s- -, D) Lipsw>01  p-a.e. ,
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for ¢ = ¢2,..., 0. Hence p;=p/ p-a.e. for i=2,...,k; and this implies
p1=piu-ae.

For k=2, Corollary 2.5 has been proved in Mussmann (1979). Of
course, in this case ¢; is a trivial mapping.

COROLLARY 2.6. Assume the situation of Corollary 2.2 with strictly
convex f. Then &7 is sufficient for {P\,..., Pi} if

fgo(p{,p&z),..-,p$<k>)dﬂ =fg°(pn,p¢(z),---,p¢(k>)du <oo,
for ¢ = ¢,..., .

PROOF. Since f is strictly convex, in Corollary 2.5 we can take
Di = (0,00 " and D, = {(1, 1,..., )}.

For k =2, Corollary 2.6 has been proved by Csiszar ((1963), Satz 1,
and (1967), p. 310).

COROLLARY 2.7. Suppose h e (0,0)" " is fixed and D, = {h}. Then
S is sufficient for { Pi,..., Py} iff

f|01h1p1 + @mhaps) + -+ + @k-1he-1Pok-1) — ax Do | du
=f|alh1p1' + ;mhopéey + -+ + ar-1he-1Ppdp-1) — akpéanldue
forallae D;and ¢ = ¢s,..., Gk

PROOF. Replace g in Corollary 2.5 by g» from Example 1(b).

COROLLARY 2.8. Let D be a dense subset of the set M = {(au,..., ak-1)
€ (0, oo)k_l:al + -« + ax-1 = 1}. Then &2 is sufficient for {Pi,..., P} iff for
each A € & ae D, and ¢ = ¢s,..., P« there is an FPmeasurable test v,y with

flAde;(k) SfUAdP:b(k)

and

flAd(mPl + a:Poy + -+ + ak-1Psk-1))

EfUAd(mPl +aPsy + - + ak_1P¢(k-1)) .
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PROOF. A short computation shows that the inequalities of Corollary
2.8 imply that the equalities in Corollary 2.7 hold with A= (1,1,..., 1),
M= Mx{l},and D= D x{1}.

For k=2, Corollary 2.8 is Pfanzagl’s (1974a) characterization of
sufficiency. The proof of Corollary 2.5 shows that in Corollaries 2.5 to 2.8
the permutations ¢,..., ¢« are only needed if k=3 and if P;,..., Px-; are
not absolutely continuous with respect to Px.
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