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Abstract. The absence of exactness in the observation of the outcomes 
of a random experiment always entails a loss of information about the 
experimental distribution. This intuitive assertion will be formally proved 
in this paper by using a mathematical model involving the notions of 
fuzzy information and fuzzy information system (as intended by Tanaka, 
Okuda and Asai) and Zadeh's probabilistic definition. On the basis of 
this model we are first going to consider a family of measures of 
information enclosing some well-known measures, such as those defined 
by Kagan, Kullback-Leibler and Matusita, and then to establish methods 
for removing the loss of information due to fuzziness by increasing 
suitably the number of experimental observations. 
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1. Introduction 

An experiment is the process by which an observation is made. When 
a random experiment is performed it results in one outcome that cannot be 
previously predicted. In this way, in a random experiment one must 
distinguish two fundamental  elements: the sample space (set consisting of 
all poss ib le  exper imen ta l  ou tcomes )  and the abil i ty to observe  the 
outcomes. 

Given a random experiment and a sample from it, the aim of the 
Statistical Information Theory is to quantify the information contained in 
the sample and to use this information in making inferences about  the 
experiment. When one tries to state such a quantification it is usually 
assumed that the ability to observe allows the statistician to identify each 
observable event with a subset of the sample space. 

In this paper, we will suppose that the person responsible for observa- 
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tion cannot always crisply perceive the results of the experimental perfor- 
mance, but each observable event may only be identified with a fuzzy 
subset of the sample space (Zadeh (1965)). 

More precisely, we will assimilate each observable event with fuzzy 
information, which is defined (Okuda et al. (1978), Tanaka et al. (1979) 
and Zadeh (1978)) as follows: 

Let X = (X, fix, P), P ~ P, be an experiment, where (X, fix) is a measur- 
able space and P belongs to a specified family of probability measures P on 
(X, flx). We hereafter assume that the sample space X is a set in a 
Euclidean space (usually R) and fix is the smallest Borel o--field on X. 

DEFINITION 1.1. A fuzzy event Y on X, characterized by a Borel- 
measurable membership function p~ from X to [0, 1], where p~(x) repre- 
sents the "grade of membership" of x to )7 is called fuzzy information 
associated with the experiment X. 

The scheme in Fig. 1 explains the mechanism to obtain fuzzy informa- 
tion (Tanaka et al. (1979)). 

Obviously, the assimilation of each observable event with fuzzy infor- 
mation permits us to describe the non-crisp observations with greater 
closeness to real-life than with the rounding or grouping of experimental 
data. In addition, it provides us with "less error" than the rounding and 
with "more precision" than the grouping of data. 

In practice, the grade of membership/~;(x) is often regarded as a kind 
of "probability with which the observer gets the fuzzy information Y when 
he really has obtained the exact outcome x". This interpretation justifies 
the assumption of orthogonality for the set of all observable events from X, 
that is, to consider that this set is a fuzzy information system associated 
with X, where (see Tanaka et al. (1979)) 

DEFINITION 1.2. A fuzzy information system (f.i.s.) Y( associated 
with the experiment X is a fuzzy partition with fuzzy events on X, that is, a 
finite set of fuzzy events on X satisfying the orthogonality condition 

.~Iz~(x) = 1 for all x ~ X .  

P 
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Process leading to fuzzy information associated with a random experiment. 
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Assume that a simple random sampling of size n from the experiment 
X = (X, fix, P), P ~ P, is going to be considered in order to make posterior 
inferences about that experiment. If the ability to observe does not permit 
one to perceive exactly the experimental outcomes, the following notions 
(Gil et al. (1984, 1985a, 1985b), Casals et al. (1986) and Gil (1988)) supply 
an operative model to express the available sample observations with fuzzy 
imprecision: 

Let X I~l= (Xn, flx., P), P ¢ P, be a simple random sample of size n 
from X, and let X be an f.i.s, associated with X. 

DEFINITION 1.3. An n-tuple of elements in X, (5i,...,£~), represent- 
ing the algebraic product of £t,..., ~, is called sample fuzzy information o f  
size n f rom X ((~, Y') = algebraic product of ~ and Y', with ltc~,~')(x, x') = 

DEFINITION 1.4. A fuzzy  random sample o f  size n from X, iY InJ, 
(associated with the random sample X I"t) is the set consisting of all 
algebraic products of n elements in Y(. 

Remark 1.1. It should be emphasized that we could use a more 
general definition for the concepts in Definitions 1.3 and 1.4, so that the 
membership function of each n-tuple (Yl,...,Y,) would be given by the 
expression ~ ...... ~)(xl,..., x,) =f(/t~,(x0,...,/~o(xn), ~, . . . ,  ~,), f being a func- 
tion taking on the values in the unit interval [0, 1] and satisfying some 
natural conditions. But, in practice, when we consider examples involving 
probabilities one of the most operative and suitable functions f is the 
product of the first n components. This suitability is confirmed by the fact 
that the probabilistic independence of the experimental performances 
implies that (in Zadeh's sense (1968)) of the fuzzy observations from them, 
wheneverfis the product as above. 

The first purpose in this paper is to quantify the amount of informa- 
tion contained in a fuzzy random sample. This purpose is going to be 
achieved by extending the family of the non-parametric measures of (non- 
additive) divergence of order a, and their limit as a -- 1. 

In terms of such a family we will formalize the intuitive statement "the 
presence of fuzziness entails a loss of information". The second objective of 
this paper is to take advantage of some properties of the considered 
measures in order to remove the loss of information caused by the 
fuzziness by adequately increasing the sample size. 
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2. A non-parametric family of divergence measures for fuzzy infor- 
mation systems; loss of information and sample size 

The mathematical model for a random experiment containing fuzzy 
observations may be completed by the introduction of the probability of a 
fuzzy event (Zadeh (1968)). 

Let X = (X, fix, P), P ~ P, be a random experiment and let X be an 
f.i.s, associated with it. Each probability measure P on (X, fix) induces a 
probability distribution P on J~ defined by: 

DEFINITION 2.1. The probability distribution on X induced by P is 
the mapping P from J( to [0, 1] given by 

P(£) = fv/L~(x) dP(x), for all Y e _~ 

(the integral being the Lebesgue-Stieltjes integral). 

It is worth pointing out that Definition 2.1 becomes a generalization 
of the Total Probability Rule when the grade of membership /~.~(x) is 
interpreted as the probability with which the observer gets the fuzzy 
information Y when he really has obtained the exact outcome x. 

With the concepts we have defined we can establish an operative 
model for a random experiment with previous probabilistic uncertainty 
(randomness in the experimental outcomes) and actual fuzzy imprecision 
(fuzziness in the observation). Thus, although the probabilistic framework 
is not enough by itself to provide us with a suitable model characterizing 
such a random experiment, the Theory of Fuzzy Sets complements the 
Probability Theory and supplies concepts permitting us finally to construct 
that model in the probabilistic setting. More precisely, the approach based 
on the assimilation of each imprecise observable event with fuzzy informa- 
tion, and involving the notion of fuzzy information system and Zadeh's 
probabilistic definition, will allow us to pass from the original probability 
space (X, fix, P) to a new probability space (,~, ax, P), where a ,  is a c~-field 
on the (nonfuzzy) set )~ (e.g., parts of )~) (see Fig. 2). 

The main advantage of this approach is that many statistical problems 
with imprecise data can be mathematically handled as statistical problems 
with a finite number of exact data (although the first problem is essentially 
an extension of the second one). On the basis of this argument several 
measures, principles and procedures have been extended in previous papers 
(Gil et al. (1984, 1985a, 1985b), Casals et al. (1986) and Gil (1988)) from 
the nonfuzzy case to the fuzzy one. In the same way, we are now going to 
extend a family of information measures. 

Let P~ and P2 be two probability measures in the specified family P in 
the experiment X. 
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ORIGINAL PROBABILITY SPACE 
(X,/~x, P) 

X = set of exact observations 
fix = smallest Borel ix-field on X 
P = probability on fix 

VAGUE OBSERVATION FROM X 

FINAL PROBABILITY SPACE 
(.~, ax, P) 

~' = fuzzy information system 
a~' = v-field on )~ 
P = Zadeh's probabili ty 

Fig. 2. Mode l i za t ion  within the probabi l i s t ic  f r amework  of the r a n d o m  exper iments  conta in-  

ing vague observat ions .  

DEFINITION 2.2, The (non-additive) directed divergence of  order a 
(a # I) in favor of  P1 against Pz per observation from P2 in .,Y is the value 

I*(PllP2;~)= (2 ~-~ - 1)-~{ ~,~ [PI(Y)]a[P2(~?)] ~-~-I  }, 
P2(~)>0 

where P~ and/32 are the induced probability distributions from P~ and /2 ,  
respectively. 

Obviously, for a = 2 the measure I*  reduces to the extension of 
Kagan's divergence (1963), for a =  1/2 it reduces (unless a positive con- 
stant) to the extension of Matusita's measure of squared distance (1967) 
and the Kullback-Leibler directed information (1951) is the limit of I* as 

Interpretations, properties, axiomatic characterizations and applica- 
tions of the nonextended measures can be found in the literature (see 
Rathie (1973), Mathai and Rathie (1975), and references in them). Similar 
interpretations and properties could be immediately derived for the 
measures in Definition 2.2. 

The absence of exactness in the observations from the performance of 
a random experiment (which determines herein the presence of fuzziness) 
entails a loss of information. This intuitive assertion is now formalized 
through the following theorem suggesting that the divergence in an experi- 
ment is at least equal to the corresponding divergence in an f.i.s, associated 
with it, whatever the pair of probability measures on the experiment may 
be. 



632 MARIA ANGELES GIL 

THEOREM 2.1. Let X = (X, fix, P), P ~ P, be a random experiment 
and assume that the divergence of order a between P~ and P2 in X exists 
and is finite. Let X be an f i.s. associated with X. Then, 

I*(P11P2;X) ~ I~(e, I e 2 ; s ) ,  

with equality if and only if fl(x)/ f2(x)= P1(~)/ t~2(2) for almost all 
x ~ supp 2 and for all 2 ~ X such that PI(Y) > 0, P2(-~') > 0 (where f ( . )  
represents the density associated with Pz with respect to a a-finite measure 
on (X, flx), and supp Y = {x e X,p.ffx) > 0}). 

PROOF. Indeed,  if we denote  gi(x;Y)= ¢t~(x)f(x)/Pg(£) for all x 
supp )7 and /~z(Y)> 0, and )~ denotes  the a-finite measure  on (X, flx) 
determining d e n s i t i e s f  for Pi, we have 

£,pp~gi(x; )?)dy(x) = 1, i = 1, 2 .  

Then,  on the basis of  the Jensen  inequality,  we obtain for a > 1, 

1 =  { fs~pp~gi(x;Y)[&(x;~)/gi(x;Y)]dy(x) /l-a 

<-fsupp~gi(x; )~)[g)'(X; x)/gi(x; ~.)]1- ady(x) 

= [Pi07) /~(f f ) l l -a[1  / ~i(-3~)] • 

£y, ix)>o}Ct~(x)f(x)[f~(x)/f(x)]l-~dy(x), i,j ~ {l, 2}, i ¢ j ,  that  is, 

I*(P11P2;X)=(U-'-I)-I{ .~ [JS'(X)][/Sz0~)/I5107)]l-a-- 1 } 

~< (2 a - l -  1) -1 j;c~l>olfl(x)[fffx)/f,(x)] dy - 1 

° = Id (PIIP2,X). 

In the same way, we can verify that  I*(P2I P1;X) >- I*(P2I P1;X).  
Fo r  0 < a < 1 we can fol low similar a rguments  to the preceding ones 

by taking into accoun t  the change in the sense of  the concavi ty  and the 
change in the sign of  t he  constant  (2 ~- ~ - 1) -~. 

In virtue of the Jensen inequali ty,  the equali ty is clearly obtained when  
A(x)/f2(x) = P ~ ( ~ ) / P 2 0 ? ) ,  a.e. [y] ( that  is, a.s. [P1] and [/2]) in supp ~. [] 
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Assume that  a simple r andom sample of size m from an experiment  
X = (X, fix, P), P c P, is considered as informative enough to draw posteri- 
or inferences about  the experimental  distribution. However,  if the observer 
cannot  exactly perceive the experimental  outcomes a loss of informat ion  
(in the sense of the directed divergence of order a) arises. 

We are now going to verify that  this loss of informat ion can frequently 
be removed by increasing appropriate ly  the sample size f rom m to n, so 
that  if .,~ is the result ing f.i.s. I*(PI[P2;.~ (")) >>_ I*(P~IP2;X (m)) for all 
P1, P2 e P .  

In order to determine such a value n we must  previously compute  the 
informat ion  in the r andom sample X Ira) and the informat ion in the fuzzy 
r andom sample X(n). This last computa t ion  is not easy to accomplish with 
any measure of informat ion (for instance, it is in fact unmanageable  to find 
the Shannon  amoun t  of in format ion  contained in a fuzzy r a n d o m  sample 
because of the lack of exact relations connecting the amount  in .~ln) with 
that  in the f.i.s. , (  and the sample size). Nevertheless, the measures in 
Definit ion 2.2 satisfy the following proper ty  that  makes easy to calculate 
the informat ion in a fuzzy r andom sample. 

THEOREM 2.2. Let X(") be a fuzzy  random sample o f  size n from an 
f i.s. X and associated with a simple random sample X on). Then, 

I*(P~IP2;.~ I")) = (2 a-1 - 1)-1{[(2 ~-~ - 1)I*(P~[P2;.~) + 1]" - 1}, 

for  all PI, P2 e P. 

PROOF. Indeed, under  the assumed hypotheses 

Pi(-~I,..., Xn) = Pi( .~l) '"Pi( .~n) ,  i = 1, 2 ,  

hence, 

/[ In/ Ia*(PIIP2;X(n)) = ( 2 a - l -  1)-1 ~8 [/51(X)]~[P2(x)]1-~ - 1 . 
P~(~)>o 

[] 

On the basis of Theorem 2.2, we can try to look for the min imum 
integer n(a), if it exists, with n(a) >_ m log [(2 a-1 - 1)I*(PllP2;X) + 1]/ 
log [(2 a-1 - 1)I*(PI[P2;X) + l] for all P~, P2 ~ P.  If such an integer exists, 
then I*(PIIP2;~ I"l~lt) >_ I*(PIIP2;XIml), that  is, a fuzzy r andom sample 
.~(nt~)) resulting f rom n(a) independent  performances of X can be regarded 
as informative at least (in the sense of the directed divergence of order a) as 
a simple r andom sample of size m f rom X. Therefore, if X Ira) were 
considered as informative enough  to draw posterior  conclusions about  X, 
.~(nta)l may  also be cons ide red  as in fo rma t ive  enough  for  the same 
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purposes. 
We now examine two examples illustrating the preceding ideas: 

Example  2.1. An investigator is interested in the control of a certain 
microorganism. He intends to prepare slides after treatment by a chemical 
and then count the organisms per square centimeter ( random experiment 
X) .  Nevertheless, the t rea tment  does not permit  him to identify with 
sharpness the presence of a microorganism and, consequently, he cannot 
establish the exact number of microorganisms per square centimeter, but 
rather he can only perceive one of the following observations: Yl = "a very 
small number of microorganisms are found",  £2 -- "a moderate number of 
microorganisms are found" and £3 = % great number of microorganisms 
are found", that the investigator describes by means of the membership 
functions in Fig. 3 (Obviously, we may construct an f.i.s. Y( = {x~, x2, x3, £4}, 
on X = {nonnegative integers}, where #_~4(x) = 1 if x = 21,..., = 0 otherwise). 

Assume that the number of microorganisms per square centimeter has 
a Poisson distribution with mean 5 or 10. 

Then, if P1 represents the Poisson distribution with mean 5 and P2 
represents the Poisson distribution with mean 10, we have 

Pl(x)  = e 55X/x!, P2(x) = e-l°lOX / x!  , 

hence, the induced probability distributions on _~ are given by 

0.75 

0.5 

0.25 

0 

4~ o o o o • ~ ~< • ~ ~" ~ ~ 

o o 

O 

o -k , o 
p[xl 

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 

Fig. 3. Membership functions of "a very small number  of mlc. are found"  (Yl,'k), 
"a moderate number of mic. are found" (~2, Q), "a great number of mic. are found" (-~3, *),  
and Poisson probability function (p, ,). 
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/31(£1) = 0.2176483, P1(~2) 

P~(~3) -- 0.0297682, /31(.~4) 

P2(~I) = 0.0107142, /32(~72) 

P2(£3) -- 0.4807695, P2(~4) 

= 0.7525832, 

= 0.0000003, 

= 0.5069262, 

= 0.0015901. 

Therefore, the following are the directed divergences of order a -- 2 in 
8: 

I*(PIIP2;¢() -- 4.5404294, I*(P2rP~;X) -- 15.4399540, 

whereas the directed divergences of order  a = 2 in X (Kagan's divergences) 
are given by 

I*(PIIP2;X) = 11.1824940, I*(P2IPI;X) = 147.4131591. 

Consequent ly ,  if a sample of size m = 30 f rom X were adequate 
enough to make posterior inferences about  the true probability distr ibution 
of X, then the loss of informat ion  caused by the fuzziness in the available 
informat ion  could be removed by taking a fuzzy random sample of size 
n (a) = 54, since 54 is the min imum integer higher than 30[log 148.4131591]/ 
[log 16.4399540]. 

Example 2.2. A geologist is interested in analyzing the length of the 
largest axis of boulders in the upper  reaches of a particular river (experi- 
ment  X) .  The literature dealing with this subject asserts that  for a half of 
the rivers in the country  this length follows a normal  distr ibut ion with 
mean 25 inches and s tandard deviation 10 inches, whereas for the other 
half  this length follows a normal  dis tr ibut ion with mean 30 inches and 
s tandard deviation I0 inches. 

Assume that  the geologist has not a mechanism of measurement  
sufficiently precise to determine exactly the length of the largest axis of 
boulders in the particular river. More precisely, suppose that  the lack of 
roundness  of these boulders only allows him to approximate  the length of 
their  largest axes by means  of the fol lowing fuzzy observations:  l l--  
"approximately lower than 10 inches", ~ -- "approximately 15 to 20 inches", 
13 = " a p p r o x i m a t e l y  25 inches" ,  74 = " a p p r o x i m a t e l y  30 inches" ,  75 = 
"approximately  35 to 40 inches" and 76 = "approximately higher than 45 
inches", which are characterized by the membersh ip  functions in Fig. 4 
(Clearly, an f.i.s. X = {71,..., ~} can be immediately constructed by defining 
fiT, = 1 - ZiflZ, i = 1,..., 6). 

Then,  if P1 denotes  the Normal  dis tr ibut ion with mean 25 and 
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/& 1 /- 
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l.=g~ 
45 

/& 

Fig. 4. Membership functions of I'~ = "length approximately lower than 10", 72 = "approxi- 
mately 15 to 20", 73 = "approximately 25", 74 = "approximately 30", ls = "approximately 35 to 
40", 76 = "approximately higher than 45", and normal density functions with means 25 and 30 
and standard deviation 10. 

standard deviation 10 and P2 denotes the Normal distribution with mean 
30 and standard deviation I0, the induced probabili ty distributions on 
are given by 

Pl(T1) = 0.1018, 

PI(14) = 0.1733, 

P2(71) = 0.0403, 

P2(74) = 0.1954, 

Pm(12) = 0 . 2 9 4 3 ,  

P~(15) = 0.1873, 

P2(12) = 0.1873, 

P2(15) = 0.2943, 

P1(73) = 0 . 1 9 5 4 ,  

/31(16) = 0 . 0 4 1 6 ,  

/32(73) = 0 . 1 7 3 3 ,  

P2~76) -- 0 . 1 0 8 0 .  

Therefore, the directed divergences of order a = 1 / 2 in X are given by 

I1~2(PI [ P2;X) = I1~2(P21P1; J ~ )  = 0.0674. 

If the information from X were exact we could obtain the directed 
divergence of order a = 1 / 2 in X (Matusita 's measure of squared distance), 
where 

I~2(PIlP2;X) = I~2(P21P1;X) = 0.0732. 

Consequently,  if in order to draw posterior conclusions a sample of 
size m - - 6 5  from X were originally necessary, the adequate size of the 
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sample fuzzy information from X in order to remove the loss of informa- 
tion caused by the fuzziness is n(a) = 71, since 71 is the minimum integer 
higher than 65[log 1.0732]/[log 1.0674]. 

3. Alternative suggestions 

Consider that the family of probability measures P on the experiment 
X can be expressed by {Po, 0 e O }, 0 being a numerical or vector-valued 
parameter, and the parameter space O being an interval in a Euclidean 
space. 

According to Ferentinos and Papaioannou (1981), we could alterna- 
tively construct a family of parametric measures of  information from the 
non-parametric ones in Definition 2.2 by using the following method (0 
real) 

I*(0;.,~) = limionf [I*(Pol Po+,o;~)]l(,~O/, a ~ 1. 

It should be emphasized that, following ideas like those in Ferentinos 
and Papaioannou (1981), it can be verified that 

= [ a ( a -  ° - ' -  1)] 

(where f ( 0 ; ) ( )  is the Fisher information measure (1925) in the f.i.s. X, 
extended as measures in Definition 2.2). 

On the other hand, when we wish to look for the suitable size of the 
sample fuzzy information from .~ in order to eliminate the loss of informa- 
tion due to the fuzziness, we often find that it becomes practically impos- 
sible to determine a size suitable for all pairs of probability measures in P 
(or, for all 0 e O, in accordance with the alternative plan). This inconve- 
nience could be avoided by means of the knowledge of the prior probability 
distribution on the family P (or, on the parameter space O). Thus, with 
such a knowledge the expected directed divergence of order a with respect 
to the prior distribution may be defined and used with the purposes in 
Section 2. 

4. Concluding remarks 

The study in this paper could also be developed for the extension of 
the Kullback-Leibler measure (a ~ 1) and the gain of information of order 
a of R6nyi (1961). Obviously, this last study would lead to results equiva- 
lent to those herein examined. As we have just remarked, it is not operative 
to accomplish this kind of analysis for Shannon's amount of information, 
because of the lack of exact relations between the amounts corresponding 
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to ~lnl and X. 
On the other hand, the notions in Section 2 could be used to define a 

criterion like that in Ferentinos and Papaioannou (1982), and the following 
ideas in our previous papers (Gil et al. (1984, 1985b) and Gil (1988)), to 
compare fuzzy information systems. 

Finally, the results we have just achieved may be directly applied to 
the problem of the loss of information due to grouping of observations (see 
Kale (1964) and Ferentinos and Papaioannou (1979)), since a class of exact 
observations can be considered as a special example of fuzzy information 
(with the membership function given by the indicator function of that 
class). 
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