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Abstract. The problem of constructing bootstrap confidence intervals 
for the mode of a density is considered. Estimates of the mode are 
derived from kernel density estimates based on fixed and data-dependent 
bandwidths. The asymptotic validity of bootstrap techniques to estimate 
the sampling distribution of the estimates is investigated. In summary, the 
results are negative in the sense that a straightforward application of a 
naive bootstrap yields invalid inferences. In particular, the bootstrap fails 
if resampling is done from the kernel density estimate. On the other hand, 
if one resamples from a smoother kernel density estimate (which is 
necessarily different from the one which yields the original estimate of the 
mode), the bootstrap is consistent. The bootstrap also fails if resampling 
is done from the empirical distribution, unless the choice of bandwidth is 
suboptimal. Similar results hold when applying bootstrap techniques to 
other functionals of a density. 

Key words and phrases: Bootstrap confidence intervals, mode, kernel 
density estimates. 

1. Introduction 

The bootstrap, first introduced by Efron (1979), is a general, powerful 
technique for constructing confidence intervals by approximating the 
sampling distribution of a pivot. Some asymptotic theory has been developed 
by Bickel and Freedman (1981) and Beran (1984), among others. The 
asymptotic validity of the bootstrap has been established for constructing 
confidence intervals for a wide variety of statistical functionals T(F), when 
T(F) is, in some sense, a smooth functional of the unknown distribution F. 
Relatively little is known about the performance of bootstrap confidence 
intervals for functionals of a density. In particular, the bootstrap simulates 
the distribution of an approximate pivot by resampling from an estimate of 
the underlying population. Often, the empirical distribution is a good 
choice of resampling distribution. However, when the population is known 
to be smooth and have a density, it makes sense to simulate observations 
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from a continuous density. Moreover, if population parameters are estimated 
from an estimate f of the underlying density, an obvious choice is to 
resample from f .  In this paper, we study the performance of bootstrap 
confidence intervals for functionals of a density for various choices of 
resampling distributions. In short, naive choices of bootstrap procedures, 
such as resampling from the empirical distribution or certain density 
estimates, result in invalid inferences. This paper primarily focuses on a 
particular functional, the mode, though some general remarks are given in 
Subsection 2.4 in Discussion. A mode of a probability density f(t) is a 
value 0 which maximizesf  

We will consider estimates of the mode of a density via a kernel 
density estimate. That is, given a kernel K(a probability density on the real 
line), a bandwidth h,, and a sample X1 .... , X, from a c.d.f. F on R having a 
density f,  the kernel density estimate is given by: 

(1.1) 
I 

]n,h. : f n,h.(t; X1 ..... Xn) -~- ~ i=1 hn ]" 

The bandwidth h, may be data-dependent so that, in general, h, is a 
measurable function of X1,..., X,. 

If Kis  bounded, continuous, and lim K(t) = 0, then so isf,.h., SO there 
t ~ ± ~  

will be a point 0 such that 

(1.2) ] . ( 0 )  = s u p  ] . . , . ( t )  . 

Because ~ may not be uniquely defined by this equation, consider the 
mode functional M defined by: 

(1.3) M(f) = inf {mlf(m) = sup f ( t )} ,  

where f is a density on R. Then, the sample mode O,,h, is uniquely defined 
by: 

(1.4) 0,,h, = M(f, ,h,) .  

For ease of argument, we will use this definition throughout the paper, but 
all the results continue to hold if O,,h, is any random variable satisfying 
(1.2). 

In Romano (1988), the limiting behavior of kernel density estimates of 
the mode is obtained under minimal assumptions on the underlying density 
for both fixed and data-dependent bandwidths. However, to apply these 
results, one must explicitly estimate f(21(0) (and even higher derivatives o f f  
at 0, depending on the choice of bandwidth), which is quite an intricate 
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problem. In contrast, the bootstrap approach is automatic, and the 
asymptotic validity of this approach is the subject of this paper. As well as 
being applicable quite generally, the bootstrap is known to outperform 
conventional asymptotic approximations in some situations (see Beran 
(1987) for example). An interesting application (Silverman (1981)) of the 
bootstrap is testing whether a density is unimodal. In this case, no 
asymptotic approximation is known. However, the results here suggest that 
the bootstrap may not be valid either. In general, some asymptotic analysis 
is needed to justify the use of bootstrap methods, particularly in the 
context of bootstrapping functionals of a density. 

A brief description of the bootstrap is now given in the context of this 
paper. Data X~,..., Xn are sampled from an unknown probability distri- 
bution F, where F is assumed to belong to a collection F of distributions. 
The interest lies in estimating some parameter T(F), and perhaps con- 
structing a confidence interval for T(F). We are thus led to considering a 
pivot R,(X~,..., Xn; F), which is just some functional depending on both 
X1,..., Xn and F. For example, an estimator Tn = ~n(X1,..., AT,) of T(F) 
might be given, in which case a natural choice of R, might be 

Rn(X1,..., X,; F) = ci,[L(X1 .... , X,) - T(F)] ,  

where fin is some normalizing sequence. Let Jn(F) be the law of Rn(X1,..., Xn; 
F)  when XI,..., Xn are i . i .d.F.  In order to construct a confidence interval 
for T(F), the sampling distribution, J,(F), of Rn(X~,..., Xn; F) must be 
known or estimated. The bootstrap procedure is to estimate J,,(F) by 
Jn((~,), where (~n = (~n(X1,..., X,) is some estimate of F i n  F. The (asymptotic) 
validity of the bootstrap follows by first showing 

(1.5) p(J.(dn), J .(F)) --" 0 ,  

in probability or almost surely (under the law F), where p is any metric 
metrizing weak convergence. If, furthermore, J,,(F) converges weakly to a 
strictly increasing continuous limiting distribution J(F), then it follows 
that any upper a quantile of J,(t~,) converges in probability to the upper a 
quantile of J(F). It then follows that confidence intervals constructed from 
the appropriate quantiles of Jn(t~,) will have (asymptotically) the correct 
coverage probability. To prove (1.5), one typically first proves that J,,(F) 
converges weakly to J(F). Then, one shows Jn(F,,) converges weakly to this 
same limiting distribution J(F) whenever F, is a sequence of distributions 
belonging to a certain set of sequences CF = {Fn e F, n > 1 }. The validity of 
(1.1) then follows if the sequence of estimates t~n falls in this set with 
probability one (see Theorem 1 of Beran (1984) for example). 

Next, we consider the main problem of the present work, that of 
constructing a confidence interval for the location of the mode. Let F be 
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the collection of all distributions F on the line having a dens i tyfand  mode 
M ( f ) .  Given a sample X1,..., X~, let f,,h, be the kernel density estimate o f f  
defined by (1.1). Here, we consider confidence intervals for M ( f )  based on 
the pivot 

R.,h.(X,,..., X.; F) = (nh3) m [M(f.,h°) - M ( f ) ] ,  

where F has density f. Let J.,h.(F) be the law of R.,h.(X1,..., X.; F)  when 
XI,..., X~ are i . i .d.F. As the notation suggests, the choice of pivot depends 
on the choice of bandwidth h.. For now, suppose h. is a fixed (nonrandom) 
sequence. The bootstrap procedure is to approximate J~.h.(F) by J~,ho(G.), 
where (~. is an estimate of F in F. Let CF be the set of sequences {F~} such 
that F~ has a densityf~ such that, for j =  0, 2 and 3,f~ it converges t o f  Ijl 
uniformly in some neighborhood of M ( f ) .  Assume nhS./log ( n ) -  oo and 
(nh7) m ~ d for some d <  oo. In Section 2 we will see that, under weak 
assumptions o n f a n d  the kernel K, J~,h.(F~) converges weakly to a common 
continuous limit law J (F)  whenever {F.}cCF. By the results given in 
Romano (1988), the assumptions on hn cover the optimal rate at which h~ 
should tend to zero; that is, h. should be of order n -1/7. Now, let (~n,b° be the 
distribution having density f,,b,. If nb 7 / log (n) -- oo and b~ -- 0, then { (~,bo} 
lies in CF with probability one. Hence, the bootstrap will be valid in this 
case if we resample from G,,.b,. But, note that this specifically rules out the 
case h, = b,. Moreover, in the case h~ -- b,, it is shown that the bootstrap is 
not valid as the convergence (1.5) fails. Hence, the naive bootstrap approach 
will fail, but by resampling from a kernel density estimate which is 
smoother than the one which yields the estimates of the mode, the 
bootstrap will be valid. 

The essential reason why the bootstrap approach fails in the case 
h. = b~ is that the law of the pivot under F~ must converge to a limiting 
distribution, uniformly for F.  close to F. Uniformity here means F. and its 
first three derivatives be close to those of F. However, it is the case that the 
third derivative off.,h, is not a consistent estimate of the third derivative of 
f(even in a pointwise sense) under the assumption (nh7) m -- d if d < oo. 
Because the limiting distribution of the sample mode depends on the third 
derivative o f f ( in  the bias term), failure of the bootstrap results. Of course, 
the optimal choice of bandwidth h. to estimate the mode is chosen so that 
the bias term is of the same order as the variance, and so is not negligible 
in the limit. In fact, all bootstrap approaches considered actually estimate 
the variance of the kernel density estimate of the mode correctly, and it is 
specifically the bias of the kernel density estimates that causes all the 
trouble. In other words, the bootstrap estimate of bias of the kernel density 
estimate of the mode (properly normalized) is not consistent if one resamples 
from the original kernel density estimate. 

In Section 2, the main weak convergence results on the bootstrap are 
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presented• Fixed and random bandwidth sequences are considered. A 
modified pivot is also introduced so that one can resample from the 
empirical distribution, under certain conditions on the choice of bandwidth• 
However, it is seen that the bootstrap will not succeed for optimal choices 
of the bandwidth in this case. Some further remarks about bootstrapping 
functionals of a density are also given. Some simulation results are 
presented in Section 3. The proofs are given in Section 4. 

2. Main results 

If F is a c.d.f, on R with density f and mode 0 = M ( f ) ,  and 
h. = h.(X~,..., X.) is specified, consider the pivot 

(2.0 R.(X,,..., X.; F) = [(nh3)m(O..s. - 0)], 

where f.,h.(t)=f.,n,(t; X1,. . . ,X.) is  given by (1.1) and O.,h. = M(f.,h,). Let 
J.,h.(F) be the law of R.(X~,..., X.) when X1,..., X. are i . i .d .F.  Also, set 
J.,h.(X; F) to be the c.d.f, under F of R.. 

To construct a confidence interval for 0, we need to estimate the 
sampling distribution J.,h.(F). The bootstrap method is to estimate J.,h.(F) 
by Jn,h.(Gn), where (~. is a suitable estimate of F. Since the empirical c.d.f. 
of n observations F. does not have a density (with respect to Lebesgue 
measure), J.,h.(F.) does not make sense and we are led to considering 
another pivot defined as follows. Set 

• [ (nh , )  ( 0 , . h . -  ~.)], T.(X1,.., X.; F)  = 3 112 - 

where 

t - y )  
K dF(y), 

and ~. = M(f . ) .  Let L.,n,(F) be the law of T n ( X I  . . . .  , X.; F) when X1,..., X. 
are i . i .d .F .  Another bootstrap procedure is to approximate J.,h.(F) by 
L..h.(P.), where z¢. is the empirical c.d.f, of n observations from F. 

Before stating the main results, we need some weak assumptions. The 
assumption on the underlying density of the observations is stated below as 
Assumption (A), while the assumption on the kernel is given in (B). 

(A) Assume f has a unique mode 0 such that for every ~ > 0 ,  
sup f ( t ) < f ( 0 ) .  Also, f has a continuous third derivative in some 

{t: lt--Ol >t~ } 

neighborhood of 0 with fill(0) < 0. 
(B) Assume the kernel K is symmetric and has a continuous second 

derivative of bounded variation. Also assume that, for some p > 0, K 2+p 
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and I g " l l  z+p are integrable. For later use, define 

I(K) = f [K"~(z)] 2 dz and H(K) = f z2K(z )dz  . 

For every 6 > 0, 

~33f~ [KIJl(z) ldz ~ 0 for j = 0, 19 2.  z:lzl>~/h.) 

Also assume I K[ 3 and z2lKI21(z)[ 2 are integrable. 
Throughout this paper, p will denote any metric metrizing weak 

convergence of distributions, 

THEOREM 2.1. (Resampling from the empirical distribution-fixed 
bandwidths) Let X1, X2,... be i.i.d. F. Assume F has a density f with mode 
0 satisfying (A), and K satisfies (B). Let F~ be the empirical c.d.f, o f  
(X1,..., 3(,). I f  nhS,/log (n) ~ ~ and h~ --" O, then 

( i )  p(tn,h.(F), L,,h.(F~)) ~ O for almost all sample sequences Xl, )(2, 
S 3 ~  . . . .  

(ii) Moreover, L,(F) converges weakly to the law o f  Z, where Z is a 
Gaussian random variable having mean 0 and variance given by: 

f(O) 
Var (Z) - [fl2)(0)]2 • I (K) .  

(iii) I f  nh 7 --* O, then p(L.,h.(f'.),J.,h.(F))~ 0 with probability one; 
otherwise,/fliminf nh 7 > 0 and fl31(O) ~ O, then liminf p(L.,h.(F.), J..h.(r)) > 

0 with probability one. 

Theorem 2.1 allows us to make confidence intervals for the mode 0, by 
approximating the quantiles of Jn.h.(F) by the corresponding quantiles of 
L,,ho(Fn), under the assumption nh 7 ~ O. Unfortunately, this rules out 
optimal choices of the bandwidth since they must satisfy nh 7 --, d for d > 0. 
Perhaps a more natural approach in the context of the mode is to estimate 
Jn,h.(F) by Jn, h.(~n), where d ,  is some estimate of F with a density. In 
Theorem 2.2, we study the choice where d ,  is the distribution having 
density j~,. 

THEOREM 2.2. ( Resampling from the kernel density estimate-fixed 
bandwidths) Let X1, X2,... be i.i.d. F. Assume F has a density f with mode 
0 satisfying (A). Assume K satisfies (B) and K has compact support. Let 
F*,h, be the (random) c.d.f having density j~n,h, given by (1.1) Assume 
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nhS./log (n) --* oo and (nh7) 1/2 --* d. 

(i) I f  b. = h., then liminf p(J.,h.(F), J.,h.(F*,b.)) > 0 with probabil i ty  
one. Indeed, 

EJ~,h.(x; F*,o.) -- P( V + Z <_ x) , 

where V and Z are independent Gaussian random variables, Z has the same 
Gaussian distribution as given in Theorem 2.1 and V has mean - c and 
variance tr 2, where 

d fl3)(O.____~) H(K) 
c = -~-. fiE)(0 ) • 

and 

S 0 -2 = f ( 0 )  [ -= Kll) (w)K(y  - 

(ii) On the other hand, suppose ~ .  is an estimate o f  F based on 
X1,.. . ,  X .  such that G. has a density ~. and, f o r  j = O, 2 and 3, ~,~fl) converges 
to flJ) uniformly in some neighborhood o f  M ( f )  a.s. and M(~,.) --" M ( f )  
a.s. Then, 

p(J.,h.(F), J~,h.(G.)) --" 0 a.s. 

Thus, suppose nbV/log (n)--. oo and b. --" 0 as n--. oo. (Here, J~(F) is the 
law o f  the p ivot  given in (2.1) using bandwidth h., not b..) Then, 

p(J~(F), J,(F*,b.)) --" 0 a.s. 

Remark  2.1. 
(1) In words, statement (i) in Theorem 2.2 says that the uncondi- 

tional distribution of J.,l(F*,b.) converges to a Gaussian distribution with 
mean - c and variance Var(Z) + a 2. The ordinary pivot Jn,h.(F) converges 
weakly to the law of Z. Roughly speaking, the random distribution 
J.,h.(F*,b.) converges weakly to a random Gaussian distribution having the 
same variance as Z1, but a random mean depending on the sequence X~, 
Xz,.... Hence, the unconditional distribution of * Jn,h.(F n,b.) converges weakly 
to a mixture of Gaussian distributions, which turns out to be Gaussian as 
well. 

(2) The assumption in Theorem 2.2 that K has compact support can 
probably be weakened and is used only in the proof of (i). Since the naive 
bootstrap approach fails when resampling from the kernel density estimate, 
no attempt has been made to weaken this assumption on K. 
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(3) Part  (ii) of the previous theorem says that  we can boots t rap  
estimates of the mode based on kernel density estimates with bandwidths 
satisfying nh 7 --. d (the opt imal  rate), but  this is true as long as we resample 
f rom a kernel density estimate with a bandwidth  b, satisfying nb7/log (n) --- 
oo and bn ~ 0. In contrast ,  if bn = h, satisfies nh 7 --. d, the boots t rap  will 
fail. 

Generalizations of the previous theorems are needed, allowing for the 
possibility of a data-dependent  bandwidth.  

THEOREM 2.3. (Resampling f rom a kernel density estimate-random 
bandwidths) Let X1, X2,... be i.i.d, observations f rom a distribution F with 
density f and mode 0 satisfying Assumption (A) and K satisfies Assumption 
(B). Let v, be any f i xed  sequence o f  numbers such that nvS,/log (n) --- oo and 
( n v 7 )  1/2 ~ d. Given a statistic S, = S,(Y~ .... , Yn) > O, let Q,(F) be the law o f  
S,( YI,..., Y,) when Y1,..., Y, are i.i.d. F. Let the bandwidth h, = h , (XI , . . . ,X , )  
be defined by h,(X1,..., X,) = v, . S,(X~,..., X,). Let co, be any f i x ed  sequence 
o f  numbers satisfying nco7/log(n)--, oo and co,--. 0 as n--. o~. Let T, = 
T,(X~,..., X,) satisfy T, --, t in probability for  some t > O. Let F*,b, be the 
(random) distribution having density 

where b, = co, • In. Let C~s denote the law placing mass 1 at s. Assume, for  
almost all sample sequences X1, X2,... 

(2.2) p(Q,(F*,b.), Q,(F)) ~ O, 

and furthermore, for  some s > 0, 

p(Q,(F),  G) ~ O . 

Then, 

p(J.,h.(F), J. ,h.(F*n,b.))  ~ 0 a . s .  

Moreover, J,,h,(F) converges weakly to the law o f  Z - c.s 7/2. 

By choosing S, in Theorem 2.3 to be scale equivariant,  the resulting 
estimate 0,,h. is scale equivariant.  The uni form consistency assumption (2.2) 
is weak and holds for typical est imators of scale such as interquartile range 
or s tandard deviation. For  optimal  choice of S,, see R o m a n o  (1988). 
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Before further discussion of the above results and, in particular, the 
choice of bandwidth, it is helpful to understand the consistency properties 
of kernel density estimates and their derivatives. Silverman ((1978), Theorem 
C) proved that, under certain restrictions on the kernel K, if the underlying 
densityfhas a uniformly continuousj-th derivative, then for fixed bandwidth 
sequences hn and j  >_ 1, it is necessary and sufficient that hn --- 0 and n-~h~ 2j-1 
• log (hn) -- 0 as n --, oo in order for 

sup I.fl£!ho(t) -flJ)(t)l  -- O, 

in probability and almost surely. In the context of this paper, uniform 
consistency may be too strong a requirement. For instance, in order to 
consistently estimate the bias of the kernel density estimate of the mode, it 
is necessary to consistently estimate fl3)(O). In this case, it is not necessary 
that fl3)(t) be consistently estimated uniformly in t (as we do not assume 
fl31 even exists everywhere); however, some uniformity is needed because 0 
is unknown. But, even if 0 were known, the point here is that the 
conditions on the choice of bandwidth do not change much in order to 
yield convergence in probability of:(n3!h.(0) to  fl3)(O) rather than uniform 
convergence  of:(n3!h, to fl3). The following proposition substantiates this 
claim. 

PROPOSITION 2.1. Assume the kernel K has compact support and 
has a bounded, integrable j-th derivative. Also, assume f is a bounded 
density which is j-times continuously differentiable in a neighborhood o f  x. 
Let X1, X2,... be i.i.d, observations having density f ,  and let 

Then, for  f i xed  bandwidth sequences hn, it is necessary and sufficient that 
h, --. 0 and nh 2:+ l --. oo as n --, ~ in order for  

fl~!h~(x) "" f~J)(x) , 

in probability and in the mean-squared (L 2) sense. 

DISCUSSION. 

2.1 Assumptions. See Romano (1988) for a discussion of the assump- 
tions on the kernel K and bandwidth hn assumed in the previous theorems. 
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2.2 Bootstrapping the location o f  the mode. In the case of fixed 
bandwidths, Theorem 2.2 gives that bootstrapping J,,h.(F) is not valid 
when resampling from the original kernel density estimate. Indeed, the 
asymptotic behavior of the bootstrap distribution is random and thus, with 
probability one, does not converge to the weak limit of Jn,h.(F) as n --- ~.  
The problem is due to the bias of the location of the sample mode as an 
estimate of the mode/9. However, by resampling from F*,b, where nbT/log (n) --. 
~,  the bootstrap will be valid, and confidence intervals for /9 based on 
J,,h.(F,,bo) give asymptotically correct coverage probabilities in this case. 
Alternatively, the bootstrap approximation L~,h~(P~) may be used, but then 
one is forced to use a suboptimal bandwidth sequence. 

2.3 Choice o f  bandwidth. The choice of a bandwidth which is scale 
equivariant results in a scale equivariant estimator of the location of the 
mode. The next issue is to determine the rate at which the bandwidth tends 
to zero. Section 2 of Romano (1988) shows that the optimal choice of 
bandwidth satisfies nh 7 ~ d for some d > 0. However, as discussed in 2.2 
above, bootstrapping is not valid when resampling from either the empirical 
distribution or the kernel density estimate if (nh7) 1/2---. d and d ~  0. In 
short, the problem is that, in order to estimate the bias of the sample mode, 
fl31(0) must be estimated consistently, which apparently cannot be done 
under the assumption (nh7) 1/2-. d. Indeed, Proposition 2.1 shows ft3)(0) 
cannot be estimated consistently (by)?~3)(0)) under the assumption (nh7) 1/2 
d even if/9 is known. Thus, one is forced to resample from a smoother 
kernel density estimate3~,b° with bn satisfying nb7/log (n) - ,  ~ .  In such case, 
one can bootstrap estimates based on optimal choices of the bandwidth 
satisfying nh 7 --, d and hn may be data-dependent as well (by Theorem 2.3). 

Alternatively, the conventional asymptotic approach (i.e., the Gaussian 
approximation to the distribution of the sample mode) may be used, but 
then one must estimate /9 by one choice of bandwidth and ft3)(/9) by 
another. Another possibility occurs by changing one's point of view. By 
Theorem 2. l, p(L~,h,(P~), L~,h~(F)) -- 0 a.s.; thus, one can construct a confidence 
interval not for/9 but for ~ ,  where 

f . ( t )  = ho 

and ~n = M(fn) .  In short, the results are extremely delicate and suggest 
that applications of these results may work only when the sample size is 
very large. In Section 3, simulations show the methods are not highly 
accurate for samples of size 100, and the results are quite sensitive to the 
choice of bandwidth. 
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2.4 Bootstrap confidence bands f o r  the unknown density. Jhun 
(1985) proposed bootstrap confidence bands for the unknown density 
based on the pivot 

s u p  I • 

Under smoothness conditions on the kernel K and the underlying density f ,  
he showed the bootstrap approach will be valid when resampling from the 
empirical distribution for nonrandom bandwidth sequences h. satisfying 
nh. ~ oo and nh~ ~ 0 as n--* ~.  The case nhS.--q  (0 < q <  ~)  was not 
considered. However, the optimal rate at which h~ should tend to zero is 
precisely this rate nhS.--, q. Unfortunately, the same phenomenon occurs 
here as in the case of the mode. The reason is that the optimal rate for the 
choice of bandwidth occurs when the asymptotic bias is comparable to the 
asymptotic variance, and so is not negligible in the limit. In this case, the 
asymptotic bias is 

!ira (nh.)l/2[E f.,h.(t) - f ( t ) ]  ---fl21(t) • H ( K )  . 

But, by Proposition 2.1,fl21(0) cannot be estimated consistently byft.2,~M) 
if nhS. -- q. Furthermore, for fixed t, the bootstrap approximation (when 
resampling from the empirical distribution) to the distribution of 

(nhn) X/2 [f~,h.(t) -- f ( t ) ] ,  

has a mean which is identically zero. As in the case of the location of the 
mode, one could correct for this bias effect by consistently estimating 
fl21(t), but this can only be done by using a kernel density estimate with a 
bandwidth bn such that nbS. ~ oo. Even in the case nh~--. O, the bootstrap 
approach will fail when resampling from the kernel density estimate (using 
bandwidth h.) just as it did in the case of the location of the mode, but it 
will work if one resamples from a smoother kernel density estimate f.,b. 
with bn satisfying nb~/log (n) ~ ~ .  

In fact, the same phenomenon persists when bootstrapping the most 
simple functional of a density, f ( t ) ,  the density evaluated at a fixed point t. 
Moreover, it should now be clear that a similar phenomenon will persist 
when trying to bootstrap quantities involving derivatives of densities, since 
the bias terms will depend on even higher derivatives which cannot be 
estimated consistently (based on kernel density estimates). Some results 
about joint bootstrap confidence intervals for 8 and f (O)  are given in 
Romano (1986). Finally, it should be clear that similar results can be 
obtained for bootstrapping analogous functionals of a multivariate density. 
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3. Simulations 

In this section, some simulations results are presented to see how well 
various methods perform for finite samples. In all the numerical results 
presented, estimates of the mode are obtained by using the standard 
Gaussian kernel. 

First, consider confidence intervals for the mode based on Parzen's 
Gaussian approximation (1962), with the variance V(f) estimated by 
replacing the unknown density f in V(f) by the kernel density estimate f~. 
Suppose the data are 100 observations from the standard Gaussian distri- 
bution. The estimate of the mode is O,,h., where h, = h. S,, S~ is the sample 
standard deviation, and h is some constant. Based on 1000 simulated data 
sets, the estimated coverage probabilities are reported in Table I for 
various choices of confidence levels and various choices of h. If the true 
coverage probability of the method is p, and/~ is the proportion in the 1000 
simulations when the true value is covered, then the estimated standard 
error of/~ is the square root of p(1 -.6)/1000. For example, for a normal 
80% confidence interval with h = 0.4, the estimated true coverage proba- 
bility of 0.0119; the usual large sample 95% confidence interval for p is 
0.831 + 0.023. As suggested by the asymptotics, the results are quite 
sensitive to the choice of h, and overall are unsatisfactory. Notice that, 
while a choice of h = 0.4 results in a good estimated coverage probability 
for the nominal 90% level, this choice of h is not good at other levels. To 
see how well the approximation works for data from a skewed distribution, 
the same experiment was run based on 100 observations from the chi- 
squared distribution with 4 degrees of freedom, and the results are reported 
in Table 2. Again, the results show the method is sensitive to the choice of 
bandwidth and can be quite inaccurate. Simulations were also done for 
smaller sample sizes and, as expected, the Gaussian approximation is even 
less useful. 

Next, various bootstrap confidence intervals were simulated. Table 3 
reports estimated coverage probabilities for bootstrap confidence intervals 

Table 1. Estimated coverage probabilities based on normal approximation 1000 simulations: bandwidth 

= h-sample standard deviation, data are N(0, 1), n = 100. 

Coverage Level 

80% 90% 95% 99% 

h = 0.3 0.695 0.795 0.849 0.933 
h = 0.4 0.831 0.899 0.941 0.976 
h = 0,5 0.881 0.951 0.980 0.996 
h = 0,6 0.939 0,976 0,990 0,998 
h = 0.7 0.956 0.989 0.997 0.999 
h = 0.8 0.962 0.991 0.996 1.000 
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Table 2. Estimated coverage probabilities based on normal approximation 1000 simulations: bandwidth 
= h.sample standard deviation, data are Z2(4), n = 100. 

Coverage Level 

80% 90% 95% 99% 

h = 0.25 0.759 0.834 0.890 0.944 

h = 0.28 0.796 0.870 0.914 0.958 

h = 0.32 0.817 0.899 0.940 0.975 

h = 0.35 0.804 0.889 0.938 0.981 

h = 0.39 0.782 0.889 0.841 0.986 

h = 0.42 0.705 0.889 0.914 0.976 

h = 0.46 0.634 0.826 0.918 0.983 

h = 0.5 0.531 0.766 0.880 0.979 

Table 3. Estimated coverage probabilities based on bootstrap 500 simulations, 200 bootstrap replications: 
estimating bandwidth = h.sample standard deviation, resampling bandwidth = b.sample standard 
deviation, data are N(0, 1), n = 100. 

Coverage Level 

80% 90% 95% 99% 

h --- 0.2, b = 0.0 0.710 0.887 0.962 1.000 

h = 0.2, b = 0.2 0.682 0.786 0.898 0.956 

h --- 0.2, b = 0.3 0.672 0.868 0.942 0.976 

h = 0.2, b = 0.4 0.724 0.882 0.952 0.984 

h = 0.4, b = 0.0 0.718 0.880 0.942 0.980 

h = 0.4, b = 0.4 0.646 0.852 0.924 0.978 

h = 0.4, b = 0.6 0.728 0.876 0.938 0.982 

h = 0.4, b = 0.8 0.764 0.898 0.960 0.988 

h = 0.6, b = 0.0 0.660 0.848 0.962 0.982 

h = 0.6, b = 0.6 0.628 0.846 0.918 0.982 

h = 0.6, b = 0.9 0.718 0.852 0.916 0.980 
h = 0.6, b = 1.2 0.758 0.902 0.944 0.984 

h = 0.8, b = 0.0 0.754 0.830 0.906 0.980 

h = 0.8, b = 0.8 0.704 0.842 0.914 0.980 

h = 0.8, b = 1.2 0.786 0.894 0.946 0.992 

h = 0.8, b = 1.6 0.776 0.888 0.960 0.998 

for simulated Gaussian samples of size n = 100. The mode is estimated by 
using a bandwidth of h. Sn, where Sn is the sample standard deviation. For 
each choice of h = 0.2, 0.4, 0.6 and 0.8, bootstrap confidence intervals were 
constructed by resampling from the kernel density estimate with bandwidths 
b = 0.0, h, 1.5h and 2h. The choice of b = 0.0 corresponds to resampling 
from the empirical distribution. For each choice of h and b, 200 bootstrap 
data sets were generated to construct the bootstrap confidence interval, and 
this was repeated 500 times to estimate coverage probabilities at levels 80%, 
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90%, 95% and 99%. In practice, more than 200 bootstrap samples might be 
generated, but this was not done here in order to keep the total number of 
computations at a reasonable level. Also, the work of Hall (1986) suggests 
this number is adequate if one is mainly interested in coverage probability. 
Table 4 reports the corresponding results for simulated samples of size 100 
from the chi-squared distribution with 4 degrees of freedom. Estimated 
standard errors can be obtained as described above for Table 1. While the 
results were not highly encouraging in that estimated coverage probabilities 
were not very close to the nominal levels, some interesting conclusions 
could be made. In particular, bootstrap confidence intervals constructed by 
resampling from the empirical distribution are more accurate for the 
simulated Gaussian data than for the simulated chi-squared data. This can 
be explained by the fact that the bias of the kernel density estimate of the 
mode is not negligible, except if the underlying density is symmetric (or 
locally symmetric) at the mode. As suggested by the asymptoties, resampling 
from the kernel density estimate with h = b results in estimated coverage 
probabilities far from the nominal levels. Finally, increasing the resampling 
bandwidth from b = h to b = 1.5 h and b = 2h improves coverage accuracy, 
and results in estimated coverage probabilities superior to those presented 
in Tables 1 and 2 based on a Gaussian approximation. Unfortunately, 
larger samples are perhaps needed in order to obtain highly accurate results 

Table 4. Estimated coverage probabilities based on bootstrap 500 simulations, 200 bootstrap replications: 
estimating bandwidth = h.sample standard deviation, resampling bandwidth = b . sample  standard deviation, 
data are Xz(4), n = 100. 

Coverage Level 

80% 90% 95% 99% 

h = 0.25, b = 0.00 0.758 0.872 0.928 0.986 

h = 0.25, b = 0.25 0.790 0.910 0.966 1.000 

h = 0.25, b = 0.37 0.822 0.924 0.972 0.996 

h = 0.25, b = 0.50 01818 0.926 0.968 0.992 

h = 0.32, b = 0.00 0.644 0.786 0.854 0.964 

h = 0.32, b = 0.32 0.824 0.940 0.980 1.000 

h = 0.32, b = 0.48 0.816 0.922 0.956 0.992 

h = 0.32, b = 0.64 0.820 0.920 0.962 0.994 

h = 0.39, b = 0.00 0.582 0.764 0.862 0.970 

h = 0.39, b = 0.39 0.770 0.876 0.950 0.996 

h = 0.39, b = 0.59 0.792 0.916 0.954 0.990 

h = 0.39, b = 0.78 0.804 0.908 0.956 0.992 

h = 0.46, b = 0.00 0.538 0.688 0.786 0.918 

h = 0.46, b = 0.46 0.744 0.856 0.894 0.980 
h = 0.46, b = 0.69 0.784 0.924 0.964 0.992 

h = 0.46, b = 0.92 0.792 0.918 0.954 0.990 
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based on bootstrapping. The simulations are encouraging for even larger 
sample sizes, but the problem of constructing a confidence interval for the 
mode for smaller sample sizes still remains a challenging one. In summary, 
the simulations reinforce the idea that generally automatic methods like the 
bootstrap need mathematical and numerical justification before their use 
can be recommended. 

4. Proofs 

In order to prove Theorem 2.1, we will need a triangular version of the 
asymptotic distribution of the sample mode and the size of the sample 
mode. That is, we will first study the asymptotic behavior of L(F . )  for an 
appropriate choice of nonrandom F.. The assumptions on F. will be 
satisfied with probability one when F. = F. is the empirical of n observa- 
tions sampled from F. 

PROPOSITION 4. I. Fix F with density f and mode 0 satisfying (A), 
and K satisfies (B). Also, assume nhS/log (n) --, oo and h, ~ O. Let F~ be a 
sequence o f  distributions on R. Set 

f . ( t)  1. f~.~, K ( t - y  = h, - ~ ) dF~(y), 

and ~ = M( f . ) .  Assume {F.} satisfies the following: 
(a) f .  and f~ 21 converge to f and f 121, respectively, uniformly in some 

neighborhood o f  O. 
(b) For every 3 > 0, limsup sup f . ( t )  <f(0) .  

n--oo {t:lt-Ol>c~} 

(c) (1/h.)EF.(IKIII((O. - X ) / h n ) l  m) -" f(O) = IKl'~(y)lr'dyfor m = 1, 
2,3. 

(d) (n/h.)1/2EF.(KII~((~J. - X)/h.)) --- O. 
Then, L.,h.(F.) converges weakly to the law o f  Z, where Z is a Gaussian 
random variable with distribution as given in Theorem 2.1. 

PROOF OF PROPOSITION 4.1. First note that assumptions (a) and (b) 
imply ~. -- 0. For purposes of the proof, construct X.,,,..., X.,. which are 
i.i .d.F..  Set 

37"(t) = ~ i=l h. ' 

and 0. = M(.f.). The assumptions imply (by an argument similar to Theorem 
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1.1 of Romano 0988) or see Lemma 4.1 in Romano 0986)) that 0n - ~, --, 0 
in F, ~ probability. Since K has a continuous 2nd derivative, so does f ,  and 
f,tl)(0,) = 0. By Taylor's theorem, 

0 =se."~(0.) =£ '~(~.)  + (0. - 0.)i.~2~(0"), 

for some random variable 0* between 0. and ~.. Hence, 

(nh3.)l/z f~l)(O.) 
(nh3.)l/2(O. - ~.) = - ~2)ra, ~ 

J n ~,t" nl  

The result will follow by showing: 

if J~ w . J ¢ : O  

3 1/2 O) ) 
(1) The law of S. = - (nh.) f .  (O.) converges weakly to the law 

fl2)(0) 
of Z. 

(2) s .  w .J -"fl2)(0) in F .  probability for any sequence 0* --- 0. 

PROOFOF (1). Note that 

( (nh3")~/21 ~2 V . . j ) ,  
S.  = f¢2)(0 ) n j=l 

where the V.,s are independent and identically distributed as 

-::, ) vo, l : -~ -~  (Oo-x.,~ 
hn 

By assumption (e) we have for m = 1, 2, 2 + p, 

h~m-lEF, I Vn, 11 m -" f (O) f_~ I KI1)(y)lmdy. 

By assumption (d), 

(nh~)l/2Er, V,,, 1 --" O . 

Hence, 

(nh3~) Varr.(f~ '(~.))  -- f (O) f?= IK'l)(y)12 dy , 

and so 
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e,,I vn.,-  E,,.(V,,.I)I 2+" 
n p12 a2+P(Vn, i) - O(nhn) -112 = o(1). 

Hence, by Lyapounov's central limit theorem, (1) is proved. 

PROOF OF (2). This follows easily from assumption (a) and Corollary 
5.3 of Romano (1986). 

PROOF OF THEOREM 2.1. The proof consists of two steps. First, we 
show Ln,h.(fi'n) converges weakly to the law of Z with probability one, and 
then we show Ln.h.(F) converges weakly to the law of Z. The proof of (iii) 
then follows from (i), (ii) and Theorem 2.1 of Romano (1986). As usual, let 

l -Xi  I l ~ 3 K  
}'n(t) = E i:, hn S 

and On = M(.fn). 

Step 1. Apply Proposition 4.1. So, we must show assumptions (a)-(d) 
hold with probability one if we take Fn = Pn. In this case, note that ~n = 0n. 
Also,fn is the random density)~n. 

(a) By Lemma 5.2 and Corollary 5.2 of Romano (1986),)~n converges 
to f uniformly in some neighborhood of 0 with probability one. The same 
is true for second derivatives by Proposition 5.1 and Corollary 5.3 of 
Romano (1986). 

(b) Apply Lemma 5.2 and Corollary 5.2 of Romano (1986). 
(c) Apply Corollary 5.5 of Romano (1986). 
(d) Use the identity 

EFoKIII( ~n- X 1 n On- Xi 

Step 2. Again apply Proposition 4.1, but take Fn = F. 
(a) Apply Lemma 5.1 and Proposition 5.1 of Romano (1986). 
(b) Apply Lemma 5.2 of Romano (1986). 
(c) Apply Proposition 5.1 of Romano (1986). 
(d) This follows because 

=ff®K <l' ~ f ( x )dx=  2"(,) 

and, by definition, 5, = M(ffn). 
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PROOF OF THEOREM 2.2. By Theorem 2.1 of Romano (1986), J,,h,(F) 
converges weakly to J (F) ,  the law of Z - c  given in the statement of 
Theorem 2.1. Proposition 4.1 of Romano (1986) studies the limiting 
behavior of J,,h,(F,) for nonrandom/7,.  We apply the results there taking 
Fn to be the random distribution * F n,b. having density fn, bo. To verify 
condition (a), f.,b. converges uniformly to f i n  some neighborhood of 0 with 
probability one by Lemma 5.2 and Corollary 5.2 of Romano (1986). The 
same is true for second derivatives by Proposition 5.1 and Corollary 5.3 of 
Romano (1986). Condition (b) holds with probability one by Lemma 5.2 
and Corollary 5.2 of Romano (1986). Now, depending on the assumptions 
on b., the verification of condition (c) shows the cause of the difference in 
statements (i)-(ii) of the theorem. Let 

(4.1) I,,t2 ( t0n n ) Er*b. K ll) fln(r*n,b.)-- On= hnn -]'In " 

From Proposition 4.1 of Romano (1986), the asymptotic mean of Jn,h.(F*,b.) 
is ft21(0). U,. To prove (ii), U, -~ c.fl2)(O) a.s., by an argument similar to 
the proof of Theorem 2.1 (ii) of Romano (1986). Thus, J,,h.(d,) converges 
weakly to J ( F )  with probability one, and the result follows. To prove (i), 
apply Lemma 4.2 (ii) (proved below), to get the law of Un converges weakly 
to the law of U, where U has a Gaussian distribution with mean d/2.ft31(O) 
• H ( K )  and variance o .2 as given in the statement of the theorem. If we also 
had U, ~ U a.s. as well, the rest of the argument would be easy. Indeed, 
Jn(F*,b.) would converge to the law of Z -  U, where U is random and 
depends on the sequence X1, X2,..,. Hence, the asymptotic distribution of 
the bootstrap distribution of the location of the mode is Gaussian, but with 
a random mean U, instead o f - c ,  and the result would follow. To get 
around the fact that the law of Un does not converge almost surely to U, 
apply Skorohod's Almost Sure Representation Theorem (see Romano 
(1986) for details). 

The following lemma is needed to prove Theorem 2.2. Note that not 
all the hypotheses of Theorem 2.2 are needed for the proof of (i) in Lemma 
4.1. 

LEMMA 4.1. Assume the hypotheses o f  Theorem 2.2. Define the 
random process 

Z.(w) = (nh.)m[f . (O - h.w) - Ev f .(O - h.w)] . 

Regard Zn(.) as a random variable taking values in C(R), the metric space 
o f  bounded continuous functions on R with a metric yielding the topology 
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o f  uniform convergence on compact sets. Then, 
(i) Z,(.) converges weakly to Z(.), a mean zero Gaussian process with 

covariance function 

eZ(wl)Z(w2)  =f(O) L~ K ( y  - w , )K(y  - w2)dy . 

(ii) Let U. be defined as in (4.1) with h. = b.. Then, the law o f  U. 
converges weakly to the law o f  U, where U is a Gaussian random variable 
with mean I~ = d~ 2.flSl(O). H ( K) and variance 

Var ( U ) - - f ( 0 ) L ~  [ f ~  K ' " ( w ) K ( y  - w)dw]2dy . 

PROOF OF LEMMA 4.1. 
(i) This result is essentially contained in Bickel and Rosenblatt 

(1973), but different conditions are assumed. A direct proof, based on 
Theorem 12.3 of Billingsley (1968), is given in Romano (1986). 

(ii) By a change of variables, 

U~ = (nhn),/2 L °~ KI,I ( On - O ) ~  ® "h~ + w ,h.(O - h . .w)dw 

) _ ~ + w [ Z.(w) + (nh.) E F f . ( O -  h. .w)  ]dw.  

We will show: 

(1) K Ill ((0, - O)/h, + w)Z,(w)dw converges weakly to the law of 
U-/~.  

(2) (nhn)l/2 f ~  K I') ((O~-O)/h~ + w)Eef'~,h.(O-- hn.w)dw--,  It. 

PROOF OF (1). Since (nh3)l/2(O~ - O) is tight and nh~ --* 0, it follows 
that (0~ - O)/h, --. 0 in probability. By (i), we know the law of Z~ converges 
weakly to the law of Z. By Theorem 4.4 of Billingsley (1968), it follows that 

(0.-0 ) 
-----~n ,Zn -'-* (0 ,  Z )  , 

weakly in the product space R × C(R). The distribution of Un clearly 
depends only on the distribution of ((0n-O)/hn, Zn). Apply Skorohod's 
Almost Sure Representation Theorem to conclude there exist t~*, Z*, and 
Z* (on some probability space) so that (t~n, Zn) and (0", Z*) have the same 
distribution, Z* and Z have the same distribution, and 
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O*-0 - - L ~ . '  z* ) - (0, z*) almost surely. 

Apply dominated convergence, using the fact that, for any M > 0, 

sup IZ*(w)- Z*(w)l -- 0 a.s. , 
{w:lwl-<n} 

and the assumption that K has compact support to conclude 

) -sl _ ~ + w Z*(w)dw KIli(w)Z*(w)dw a . s .  , 

(and hence weakly). It follows that f_ I K ( l l ( ( 0 n  - O)lh, + w)Z,,(w)dw converges 

weakly to f - i  KIl)(w)Z(w)dw" All we need now is the distribution of 

f~i Kllt(w)Z(w)dw" But, argue as above to conclude that f_ I KIl~(w)Z,,(w)dw 

also converges weakly to f-i K(')(w)Z(w)dw" We now show f-i Km(w)Z"(w)dw 

converges weakly to U -  #. Write 

fee  ?/ (4.2) KI1)(w)Z,,(w)dw = (nh,,) -1/2 E S,,i , 
-o~ i=1 

where the Sn, i are independent and identically distributed as 

f ~ K~,)(w)K( O-  h " ' w - X n  ) d w 
o~ hn 

- f[- f[- K<I>(w)K (0 - h..h°W - x  d w f  ( x ) d x  . 

Now, ES~,~ = 0 and 

Var [S,,i] = h~Li [ f l  K<i'(w)K(Y - w)dw]2f(O - h,,.y)dy 

-[h.f[f:_= K"i(w)K(y- w) f (O-  h:.y)dff . 

By dominated convergence, h;, ~ Var [S,,,i] --* Var (U). Similarly, h~ ~ El S,,il 3 
converges. Lyapounov's C.L.T. yields (4.2) converges weakly to the law of 
U - t t .  
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PROOF OF (2). As in Step 1 above, apply Skorohod's Almost Sure 
Representation Theorem so that ( 0 " -  O ) / h , , - - 0  almost surely. Also, if 

f , , (x)  = EFf' , ,(x),  then by Proposition 5.1 of Romano (1986), for j =  0, 1, 2 
and 3, we havef~J)(x)  converges toftJl(x) uniformly in some neighborhood 
of 0. Using these two facts, the argument is analogous to the proof of 
Theorem 2.1 (ii) of Romano (1986), where it was shown that (nh,,) m 

f_oo KI1)(w) f (  0 _ h , , .w)dw -.-- kt. 
o o  

PROOF OF THEOREM 2.3. A brief sketch of the proof is given, since 
nothing new is involved. As in Proposition 4.1, first study the asymptotic 
behavior of J., ~(F.) for fixed (nonrandom) sequences F., but this time as a 
stochastic process indexed by the bandwidth, just as was done in Theorem 
2.2 of Romano (1986). A slight generalization of the argument of Proposition 
4.1 will give the limiting finite dimensional distributions of such a process. 
The process will be tight by essentially the same argument given in the 
proof of Theorem 2.2 of Romano (1986). As in the proof of Theorem 2.2, 
argue that the assumptions on F. are satisfied with probability one when F. 
is taken to be F.. 

PROOF OF PROPOSITION 2.1. To prove sufficiency, assume nh 2j+l --. oo 
and h, --- 0. Proposition 5.1 of Romano (1986) yields 

g fIJ~.,h.(x) ~ fIJl(x) . 

Also, 

VarEi'   ,x,l nh "2l Vat[ '"(x 
< - -  

X - -  X1  

nh2J +2 

By Proposition 5.1 of Romano (1986), 

XI x -  
--. f (x)  fT= IK'Jl(z)12dz ± e z,:'J' ( h. ) 

h n  -- ' 

and sufficiency follows. Conversely, application of Theorem I, p. 316 of 
_ / , . 2 j  + 1 Feller (1971), shows the conditions ,u~n --. oo and h, --" 0 are necessary for 

f~)h,(x) to converge to f lJl(x)  in probability as n --- oo. 
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