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Abstract. We consider the progressively truncated estimating functions 
and estimators as a generalization of the progressively truncated likeli- 
hood estimating functions and maximum likelihood estimators. We show 
the uniform consistency and weak convergence of the progressively 
truncated estimators. 
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1. Introduction 

In a survival analysis observations are lifetimes of individuals under 
study and are often censored either at a predetermined length of time or at 
a given proport ion of the numbers of failures because of time, cost and the 
other consideration (see Lawless (1982) and Sen (1981)). Let observations 
X 1 , X z , . . . , X ,  be independent and identically distributed (i.i.d.) random 
variables with the distribution function Fo(x) and the positive density 
function Jb(x) on R + = {x > 0} where 0 e O, a subset of R k = ( - ~ ,  ~)k. 
Sequentially in time we have at first the smallest observation X,:I, next the 
second smallest X,:2, and so on, and lastly the largest X,:,,  where 
X,:I _< X,:2 _< ... ~ AT,:, are the order statistics of X1 ..... X,. However, in 
fact, we must perform the statistical inference about parameter 0 either 
with observations {X,. _< t} of type I censoring or with {X,:~ _< ... _< X,:r} of 
type II censoring. 

Sen (1976) proposed the progressively censoring (PC) scheme "which 
allows us to monitor  the experiment from beginning until a statistically 
valid decision with prescribed risks is made" and showed a Wiener process 
approximation for the PC likelihood ratio statistic. Sen and Tsong (1981) 
extended the result to the multiparameter ease. Inagaki and Sen (1985) 
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considered the progressively truncated (PT) maximum likelihood estimator 
and showed the uniform strong consistency and weak convergence of it to 
a Gaussian process. 

In this paper, as a generalization of the PT maximum likelihood 
estimators, we consider the PT estimators which are defined as estimators 
based on the PT estimating functions. We discuss the relationship between 
the PT estimating functions and the PT estimators along the lines of Huber 
(1967) and Inagaki (1973). In Section 2 we define the PT score functions 
and the PT estimating functions. We state the assumptions used through- 
out this paper. It is verified that the PT estimating functions at the true 
parameter 00 converge to a Gaussian process. In Section 3 we prove the 
uniform consistency of the PT estimators. In Section 4 Huber's lemma 
about the asymptotic differentiability of estimating functions is extended to 
the PT situation. The weak convergence of the PT estimators to a Gaussian 
process is shown by using asymptotic relationships between the PT esti- 
mating functions and the PT estimators. An example is discussed in 
Section 5. 

2. Assumptions and preliminaries 

For the distribution function Fo(x) and the empirical one F,(t), the 
survivor function and the empirical one are denoted by 

P o ( x )  = 1 - F o ( x ) ,  

f t . ( x )  = 1 - F . ( x ) ,  

respectively. Let ~u(x, O) be a score function of an observation value x and 
a parameter 0 and let us define the PT score function as 

q/(x, 0) if x <  t ,  

(2.1) 9',(x, 0) = ~(t,O) if x > t ,  

where 

(2.2) ~( t, O) = f® ~u(x, O)Fo(dx) / Fo(t) . 

Then, the PT estimating function is defined by 

n 

(2.3) ~,:,(0) = ,E 9',(x,-, 0) .  

When the observation for n subjects is truncated at time t ( > 0), we obtain 
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the observable random variables, {Xi < t, i =  1,..., n} and ft,(t), and then 
,.~,:, = ,.~(X,:~ < t, i = 1,..., nF,(t)) stands for the a-field generated by them, 
letting ,.~,:0 = ._~({~b}) and ._~,:.~ = ._~I(XI,...,X~). Further, for an infinite 
sequence {X~, i = 1, 2 , . .  } of i.i.d, random variables, set .-~t = ,.~(Xi ___ t, 
i = 1,2,... ), letting .-~o = ..~({~b}) and ,.~.. = .-~(Xi, i = 1,2,... ). 

We shall make the following assumptions throughout this paper. 
(A1) The parameter space O is a compact subset of R ~ and the true 

parameter 0o (say) is an inner point of O. 
(A2) 9'(x, 0) is a k-vector valued measurable function for any fixed 

0 ~ O and is separable. 
(A3) (i) For every 0 ~ O, the mean vector of 9'(Xi, 0), 

(2.4) 2(0) = E~u(X~, O) = ~u(x, O)Foo(dx), 

exists and vanishes only at 0o: 2(00) = 0. (ii) For every 0 ~ O, the covariance 
matrix of ~'(Xi, 0), 

(2.5) 1"(0) = Covoo [~,(x; ,  0)] 

= f {~,(x,  0)  - 2(0)}{~, (x ,  0)  - 2(O)}'Foo(dx), 

exists and F(Oo) is a positive definite. 
(A4) (i) Let 

u(x,O;d) = sup {lg'(x,T) - ~u(x,0)[: Iv - 01 < d}. 

There exist positive numbers do, bl, b2 and b3 such that for every d with 
0<d_<do ,  

(2.6) Eoo{u(Xi, 0; d)  p} _< bj, d, p = 1,2. 

(ii) For if(t, 0) defined in (2.2) and for d with 0 < d _< do, 

(2.7) sup{ffOo(t)l~(t ,v)-~(t ,O)l:tcR÷,lv-Ol<_d}<_bad. 

(A5) (i) Let 

~*( t, o) = f :  ~,(x, o) eoo(aX) / Poo( t) . 

Then, there exist positive numbers b4 and a with 0 < a < 1 such that 

(2.8) sup {ffOo(t)'-aJ ~(t, 0) - ~*(t, 0)l: t ~ R +, 0 e O} < b4. 
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(ii) For  any fixed t e R ÷, and 0 ~ Uo = {0:10 - 0ol < do} (say), there are 
positive numbers  b5 and a with 0 < a < l such that  

(2.9) sup {P0o(t)~-al ~(t ,  O) - ~*(t, 0)1/10 - 0o1: t e R +, 0 ~ Uo} _< bs.  

Set (A6) 

(2.10) ~,(o) = EOo{~,,(X,, 0)} 

= f~ ~u(x, O)Foo(dx) + ffOo(t)~(t, 0 ) .  

For  any fixed to > 0, let Ro = {t: t _> to}. Then,  2,(0) vanishes only at 0 = 0o 
for t ~ Ro and 4,(0) is differentiable at 0o where the Jaeobian 

A,(Oo) = (O/o0lJl2~i)(Oo)), i , j  = 1 , . . . , k ,  

is nonsingular  and Ao = sup  {IA,(0o)[:  t c Ro} is finite. Fur thermore ,  

(2.11) sup {1nl/22,(0o + n-1/2h) - A,(Oo)hl: t ~ Ro, Ihl <- M} 

- - 0  as n ~ o o .  

(A7) Set 

1",(0) = Cov0o [~u,(x,, 0) ] .  

For  every t ~ Ro, Ft(Oo) is a positive definite matrix. 

Remarks .  (a) Assumpt ion  (A3) implies that  the mean vector and 
covariance matr ix  of ~ut(Xi, O), 2t(0) and Ft(O), exist for every 0 ~ O. 
Fur thermore ,  it follows f rom the definitions and Assumpt ion  (A4) that  
2t(0) and Ft(O) are cont inuous in (t, 0) ~ R ÷ × O. (b) For  any 0 ~ O, 

For  any t > 0 

(2.12) 

4 0 0 )  = o, , ~ ( o )  = ~(o) , 

to(O)  --- o, r ~ ( o )  = r ( o )  . 

,~,t(Oo) = o ,  

uy*(t, Oo) = uy(t,  0 o ) ,  

1",(0o) = r ( O o )  - F,(Oo) , 
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where 

(2.13) 

Thus, Ft(Oo) is nondecreasing in t ~ R +. 

For 0 -< t < ~ ,  set 

(2.14) ~*(x,  0) = [ 
~u(x, 0) 

( ff*(t, 0) 

and 

£(Oo) = f '{~, (x ,  Oo) - #(x, Oo)}{~,(x, Oo) - #(x ,  Oo)}'Fo°(ax). 

if x<- t ,  

if x > t ,  

n 

(2.15) ~,*:,(o) = ~ ~,*(x,, o ) ,  

letting ~o(X, 0) = 2(0), ~*(x, 0) = ~u(x, 0), ~*:o(0) = n2(0) and 

n 

(2.16) ~*:~(0) = .__E 1 ~,(x, 0) = ~, (0)  (say). 

LEMMA 2.1. 
right by ~n(0). 

PROOF. 

{~*:t(0), .~, : , ;  t ~ R +} is a martingale closed on the 

It is easy to see that 

~,,*(x, o) = eOo[~,(x,, o)1~,:,] 

Eoo[~.(0)l~.:,] = ~ n ~ : t ( 0 )  . 

Sample function ~o = {~o:t(0o); t ¢ R +} with 

7t°,:,(Oo) = n-l: 7t,:,(0o) 

The proof is complete. 

LEMMA 2.2. 

(2.17) 

and 

EOo{~,*(Xi, 0)} = ~°{~,(X;, 0)} = 2 0 ) .  

Immediately from the definitions, it follows that ,.~,:, is nondecreasing in 
t e R +, ~*:®(0) = ~, (0)  and 
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has the f o l l o w i n g  m o m e n t  structures: 

Eoo{ ~O:t(Oo)} = O,  

Eeo{ ~ : . (0o)  ~o:.(Oo)'} = F.^.(Oo). 

where  s A t = min (s, t). 

PROOF. 

s, t ~ R + , 

From (1.3), (2.3) and (2.5), we have 

E~o{~:,(Oo)} : O. 

Let us consider a k-vafiate Gaussian process 7/o = {~u?(0o);t~ R ÷} 
defined by 

(2.18) ~.O(0o) = ~/ . (x .Oo)W°(Foo(dx)) .  t ~ R + . 

with ~ (0o) = 0 with probability one and 

E ~,z(oo)  = ~ ( O o ) :  ~/(x.Oo) W ° ( F , ( d x ) ) .  

where W ° = {W°(t),0 < t < I} is the Brownian bridge on [0, 1] so that W ° 
is Gaussian with E{ W°(t)} = 0 and E{ W°(s) W~(t)} = s ^ t - st for s, t e [0, 1]. 
Then, the following lemma holds. 

LEMMA 2.3. {~°(0o), ._~,; t ~ R +} is a mar t ingale  c losed on the right 

by  ~°(0o) and  ~ o  has the same  m o m e n t  s t ruc ture  as ~ #  de f ined  in (2.17): 

E{~/°(Oo)} = O, 

E{~°(Oo)~°(Oo) '} = F,^,(Oo), s ,  t e R + . 

PROOF. From the definitions, we have, ._~, is nondecreasing in t c R ÷ 
and ~u-?(0o)= ~°(0o). Since 

The proof  is complete. 

Eoo{ ~°:.(0o) ~%(0o)'} = Eeo{ ~%(0o)  ~:s(0o) '} 

= EOo{~/s(X.. Oo)~,s(X, 0o)'} 

= rs(Oo) .  

The martingale property of Lemma 2.1 implies that for 0 < s < t, 
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~'° (°°) = f o  ~,(x, 0o) W°(Foo(dx)) = fo ~,(x, 0o) W(Foo(dx)), 

where W(t), 0 < t ___ 1 is a Wiener process, it follows that 

Eo0[ ~,o (00) I ~ , ]  = fo ~"(x, 00) W(Foo(dx)) 

E = ~,,(x, Oo)W°(Voo(dx)) = ~0(0o) ,  

and hence, {~°(0o), ,-~t; t E R ÷} is a martingale. Thus the first part of the 
lemma is proved. The latter part is easy to understand. 

Furthermore,  we have the following theorem which could be proved 
similarly as in the proof of Theorem 1 of Sen and Tsong (1981). 

THEOREM 2.1. The process Vo = { ~o,(00); t ~ R ÷} converges weakly 
to the Gaussian process ~o = { ~?  (00); t ~ R +} in the extended Skorokhod's  
topology on Dk[R+]. 

3. Uniform consistency of the PT estimators 

We define the PT estimator T.:, by the value of 0 which the PT 
estimating function ~v.:,(0) vanishes. However, in order to prove the 
uniform consistency (3.2) below, it is only required that T.:, is ..~.:,- 
measurable and {T.:,; t ¢ R ÷} belongs to Dk[R +] and satisfies the following 
condition: 

(3.1) sup {n-ll ~,:,(Tn:,)[: t e R +} --" 0 ,  

in probability as n ~ oo. 

THEOREM 3.1. 
to> 0 

Under the condition (3.1), it holds that f o r  any f i x e d  

(3.2) sup {I T,:, - 0o1: t c R0} --" 0 ,  

in probability as n --. 0% where R0 = {t; t > to}. 

For the proof of this theorem we provide the following lemma. 

LEMMA 3.1. For every e > 0 there exists ¢5 > 0 such that 

(3.3) lira Poo[inf {n-~l ~,:,(0)1: t ~ Ro, 0 ~ Oo} > 3] = 1,  
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where Oo = {0 • O;10 - 0ol >- e}. 

PROOF. 
we have 

(3.4) 

is positive and 

(3.5) Fo = sup {IF(0)I: 0 • O} 

F r o m  Assumpt ions  (A3) and (A6) and Remarks  (a) and (b), 

2o = inf {12,(0)1: t • Ro, 0 • Oo} (say) 

Since 

(3.9) -1  n ~'*.:,(O)-n-'7"*.:,(Oj) 

= n-' Z {~u(X,, O) - ¢,(X,, 0j)} 
Xi<_ t 

+ {ft.(t)/ffoo(t)} f ~  {qt(x, O) - q/(x, Oj)}Fs~(dx), 

is finite. It follows f rom (2.3), (2.10) and (2.15) that  

(3.6) n -1~,,:t(0) - 2t(O) -1 , : {n ~ ' . : , (0 )  - ~(0)}  

+ { P . ( t )  - POo(O}(~( t ,  O) - ~ * ( t ,  0 ) } ,  

and hence,  f rom (2.8) and (3.4) 

(3.7) inf {n-ll ~,..t(O)l: t • Ro, O • 0o} 

_> 2o - sup {In-lgt*:,(0) - ;t(0)l: t • R +, 0 • Oo} 

- b4 sup {[ff,(t)/ffOo(t) - llffo,(t)~:t • R+}. 

Let us consider  an open covering of the compact  set Oo, { Ud(O); 0 • Oo}, 
with Ud(O) = {r; [r -- 01 < d} where  d is de te rmined  latter. Then,  there is its 
finite open  covering { Ud(Oj); j = 1,..., m} such that  0j • Oo, j = 1,..., m and 

n 

L; Ud(Oj) D 0o. Thus,  we see f rom (2.6) that  
i = 1  

(3.8) sup {[n-t~*:t(O) - ).(0)l: t • g +, 0 ¢ Oo} 

_< sup {In-1 ¢'*:,(~ .) - ,t(0j)l: t • R+, j  = 1, . . . ,m} 

+ sup {I n-l ~*:,(0) - n -1 q/*:,(0y) l: 

t • R +, 0 ¢ Ud(02), j = 1,..., m} + b i d .  

(say) 
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we have from (2.6) 

(3.10) sup {In-l~*:t(O) -n-l~*: ,(Oj) l: t  ~ R ÷, 0 ~ Ud(Oj),j-- 1,...,m} 

< s u p {  n-l E u (Xi 'Oj ;d ) -  E°°u(Xi'Oj;d) l: J=  l " ' " m  

+ bid[sup {ffn(t)/POo(t): t ~ g +} + 1]. 

Letting J = 20/6 and L = J/(bld)  - 1 for 0 < d <  J/bl ,  we obtain the follow- 
ing inequality from (3.7), (3.8) and (3.10): 

(3.11) Poo[inf {n-ll ~tn:,(0)l: t c Ro, O ~ Oo} > J] 

> 1 - Poo[SUp {In-1 ~*:,(0j) - 2(Oj)[:j= 1, . . . ,m, t  c R ÷} > J] 

n' I 

- eoo[SUp {P.(t)lFoo(t): t ¢ R +} > L] 

- Poo[SUp {lff~(t)lPoo(t) - 11Poo(t)~: t ~ R +} > t~lb4]. 

Lemma 2.1 and the martingale maximal inequality (see Karlin and Taylor 
(1981), p. 280) imply that 

(3.12) Poo[sup{In-~*:t(Oj)-2(Oj)l:j= 1,. . . ,m, tE R+} > J] 

m 

<_ Z Poo[In-~,(Oj) - A(Oj)l > 6 ]  
i=1  

<_ mFo/ (nJ 2) ~ 0 as n --, ~ , 

recalling the definition of Fo in (3.5). By the Chebyshev's inequality and 
(2.6), it follows that 

<- mb2d/(nJ 2) --" 0 as n ---- ~ .  

Chernoff and Rubin (1956) showed that sup {ft,(t)/ff0o(0: t ~ R +} is bound- 
ed in probability. That is, suitably choosing d > 0 and equivalently L > 0 
for any I /> 0, it holds that 

(3.14) Poo[sup {ff~(t)/ffoo(t): t ~ R +} > L] < ~/ for all n .  
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Similarly, for T >  0 such that ffoo(T) a < J / {b4(L  + 1)}, it holds that 

(3.15) P0o[SUp { l f f , ( t ) /  ffoo(t) - llffOo(t)~: t >_ T}  > 3/b4] 

_< Po0[sup {ff,(t)/ffOo(t): t e R ÷} > L] < t/ for all n .  

Furthermore,  it follows by Kolmogorov's theorem that 

(3.16) P00[sup {I ff,(t)/ffoo(t) - 11 ffoo(t)a: 0 < t <_ T}  > 3 /b , ]  

_ P0o[sup {lff,(t) - ffo0(t)l: t e R ÷} > (t~/b4)Poo(T) l-a] 

---0 as n --.oo. 

Since 11 > 0 is arbitrary, (3.15) and (3.16) lead to 

(3.17) !im Poo[SUp {IF,(t) /Foo(t)  - 11Foo(t)~: t ~ R ÷} > 3/b4] = O. 

Therefore, we conclude from (3.11)-(3.14) and (3.17) that 

!im P0o[inf {n-iS ~,:,(0)l: t c R0, 0 ~ Oo} > 6] _> 1 - r/, 

for arbitrary t />  0. Thus, the proof of this lemma is complete. 

PROOF OF THEOREM 3.1. Since 

P0o[SUp {I T , : , -  0ol: t e Ro} ___ el 

-< P0o[SUp { In -~ , : t (T , : , ) l :  t e R0} > 3] 

+ Poo[inf{n-ll ~',:,(0)1: t ~ Ro, O ~ O0} < 6 ] ,  

(3.1) and (3.3) lead to (3.2). 

4. Weak convergence of the PT estimators to a Gaussian process 

In this section we suppose that the PT estimator {T.:,; t ~ R ÷} satisfies 
the following condition stronger than (3.1): { T,:,; t e R +} belongs to Dk[R ÷] 
and 

(4.1) sup {n-1/21 ~,:,(T,:,)I: t ~ R +} -- 0 ,  

in probability as n --* oo. We shall, first, modify Lemma 3 of Huber  (1967) 
and its proof in Lemmas 4.1, 4.2 and Theorem 4.1 (below) so that the 
uniform asymptotic differentiability holds for the PT estimating function 
~,:/(0) defined in (2.3) at 0 = 0o. Next, we shall prove that the PT estimator 
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satisfying (4.1) converges weakly to a Gaussian process. 
Set 

(4.2) zo:,(r, o) = 

and 

(4.3) Z*:,(r, 0) = 

It follows f rom (3.6) that  

I ~ . : , ( z )  - ~ n : , ( 0 )  - n 2 , ( z )  + n 2 , ( 0 ) l  
n 1/2 + nl2,(r)l 

I ~ * : , ( ~ )  - ~v*: , (0)  - n R ( r )  + n 2 ( 0 ) l  

n 1/2 + n12,(r)l 

~ . : / ( v )  - 7 t . : , (0o)  - n 2 , ( r )  = {Tt*: , (v)  - ~ * : , ( 0 o )  - n 2 ( ' 0 }  

+ n{ff,(t) - f foo(t)}{~(t ,  r) - ~*(t, r )},  

and hence 

(4.4) 

where 

z.:,(r, 0o) _< z.*:,(r, 0o) + Wn:,(r, Oo), 

531 

(4.5) Wn:,(r, 0o) = Iffn(t) - f fOo(t) l]~(t ,  r) - ~* ( t ,  z')l 
n -1/2 + 12,(r)l 

Let us choose do > 0 as in Assumpt ion  (A4) and Uo = {0; 10 - 0ol < do} as in 
Assumpt ions  (A5) and (A6). Let Ro = {t; t > to} for any fixed to > 0. 

LEMMA 4.1. 

(4.6) sup { W,:,(r, 0o): t ~ Ro, z ~ Uo} --" 0 ,  

in p r o b a b i l i t y  as n --* no. 

PROOF. F r o m  Assumpt ion  (A6) we can choose do > 0 in Assumpt ion  
(A4) and a > 0 such that  

(4.7) 12,(01 -> a i r  - 0ol , 

for t ~ Ro and 0 a Uo. It follows f rom Assumpt ion  (A5) (ii) that  

sup {W~:,(r ,  Oo): t ~ Ro, r ¢ Uo} 
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< sup {lffn(t)/ffoo(t) - 11 ffoo(t)~bs/a: t ~ R÷}. 

This and (3.17) complete the proof of this lemma. 

LEMMA 4.2. 

(4.8) sup {Z*:,(r, Oo): t ~ Ro, r ~ U0} --" 0 ,  

in p robab i l i t y  as n --. o~. 

PROOF. Without  loss of generality we take 00 = 0 and do = 1. P, E 
and V stand for those under  0 = 00 and F stands for Foo. As in the proof  of 
Huber (1967), we define cubes 

fro--{0; 10l _<(1 _q)m}, m = 0 ,  1 , . . . , m 0 ,  

and further, subcubes Cm-l,¢j of Cm-1 - C,, with center ~j and edges of length 
23j such as 

I~Jl = (1 - q)m-~(1 -- q / 2 ) ,  
(4.9) 

2c~j = (1 - q)m-~q, 

respectively, where q = 1 / M  and M is an integer such that for any ~ > 0 
and L in (3.14), 

(4.10) M >>_ (2Lb l ) /  (ca) , 

then, the cube Co = {0; 101 <- 1} is divided into subcubes CIjI, j = 1,..., N 
(of Co - Cmo) with center and edges according to (4.9) and C with center 0 
and edges of length 

(4 .11)  2c~0 = 2(1 - q)mo. 

Here, defining rn0 = too(n) by 

(4.12) mo(n) - 1 < 7 log n~ Ilog (1 - q)l < t oo (n ) ,  

for any y with 1/2 < ~ < l, we have the total number as follows: 

(4.13) N = O(log n) .  

Since, for z ¢ CIjl and t ~ Ro, 
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12,(01 -> alrl -> a(1 - q)m (recalling (4.7)), 

(4.14) I2(z) - 2(4)1 -< Eu(Xi, 4; JJ) -< blJj <_ bl(1 - q)mq/2, 

V{u(Xi, ~j; Jj)} -< Eu(Xi, 4; jj)2 _< bEJj -< b2(1 - q)mq/2, 

it follows by the similar calculat ion as in (3. l 1) that  

zL(r,  o) _< z.*:,(r, ~j) + zL(~,  o) 

< [  n-1 i=l ~ {u(Xi'4"~gJ)- Eu(Xi,~j;(~j)}[-4- bl(1 _q)mq 

+ {fin(t)~ f f ( t ) }b f f l -  q)mq ] / { a ( l - q ) m } ,  

+ In-1{~*:,(4 .) - 7'*,(0) - n2(~)}l/{a(1 - q)m}, 

and hence, f rom (4.10) 

(4.15) 

letting 

533 

sup {Z*:,(r,O): t ¢ R+,z ¢ Clyl] 

<_ U~( ~j, Jj) / {a(1 - q)m} + blq / a + sup { ff ~( t) / F( t) : t ¢ R +}(e / L) 

+ sup { Vn:,(4): t ~ R+}/{a(1 - q)m}, 

U,(~,g) = I n  -I ~2 {u(Xi,~;g) - Eu(Xi,~;g)} J i=1 
(4.16) 

V,:,(~) = In-l{ ~*:,(~) - ~*:,(0) - n2(~)}l. 

By Chebyshev's  inequali ty and from (4.10), (4.12) and (4.14) we have 

(4.17) P[U,(4, Jj)/{a(1 - q)m} + blq/a >_ e] 

< e{Un(~j, Jj) >- Lb,q(l  - q)m} 

<- V{u(Xi, 4; Jj)}/[n{Lblq(1 - q)m}2] 

<_ [bE/{2LEblq(1 - q)}]{n(1 - q ) m - l } - l  

-< K1{n(1 - q)mo-l}-I _< Klnr-X , 

where KI is a constant .  Since {Vn:,(~j),.-~n:,;t¢ R ÷} is a submart ingale  
closed on the right by 

Vn(~') = In- l~n(~  ) - ~,,(0) - nA(~j)l, 
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we have, by the martingale maximal inequality, 

(4.18) P[sup {V,:,(~.)/(a(1 - q)m): t e R ÷} > t] 

<_ V(Vn(~j))/{ea(l -- q)m}2 

Eu(Xi ,  0; I~jl)2 /[n{2Lb~q(1 - q)m}2] 

<_ [b2/ {2Lblq(1 - q)}2]{n(1 - q)m-l}-I 

< K:{n(1 - q),,o-l}-i < K2nY-1 , 

where/(2 is a constant. Therefore, (4.15), (4.17) and (4.18) lead to 

(4.19) e[sup {Z*:,(L 0): t ~ R +, r e CIjl, j = 1,..., N} ___ 3e] 

<- N(K1 + K2)n r-1 + P[sup {f f , ( t) /  ff(t): t ~ R +} > L].  

Similarly, we see from (4.11) and (4.12) that for r ¢ Cmo 

and 

Z*:t(z, 0) < n -1/2 ~ {u(Xi, 0; C~o) - Eu(Xi ,  0; C~o)} 
i=l 

+ 2nl/2Eu(Xi,  0; C~o) 

+ {fin(t)~ f f ( t )}n 1/2 Eu(Xi ,  0; C~o) 

<- n 1/2 Un(O, c~o) + 2n1/Ebl + {ffn(t)/ ff(t)}n-V+l/Eb, , 

P{nl/2Un(O, c~o) > e} < b2(1 - q)m°/e2 <- g 3 n  -r , 

where K3 is a constant, and hence, that for n with 2n-y+l/2blL <_ e 

(4.20) e[sup {Z*:t(t, 0): t ~ R +, t ¢ Cmo} >- 3e] 

<_ K3n -y + P[sup {ffn(t)/ ff(t): t c R +} ___ L] .  

Consequently, (4.19) and (4.20) imply that 

P[sup {Z*:t(r, 0)" t ~ R +, t e Co} > 3e] 

< P[sup {Z*:,(z,0): t ~ R+,z ~ CIjl, j = 1,...,N} > 3e] 

+ e[sup {Z*:t(t,0): t e R+,t  ¢Cmo} >- 3el 

<<- N(K1 + KE)n r-1 + K3n -y + 2P[sup {ffn(t)/ F(t): t ~ R +} > L] 

<_ O(n ~-1 log n) + O(n -r) + o(1) + 2r/, 
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for arbitrary 1/> 0, according to (3.14) and (4.13). The proof  of this lemma 
is complete. 

Immediately from (4.4), (4.6) and (4.8) we have the uniform asymp- 
totic differentiability of the PT estimating function 7~n:,(8) at 8 = 80: 

THEOREM 4.1. 

(4.21) sup {Z~:,(z', 8o): t ~ Ro, r ~ Uo} --" 0 ,  

in probabil i ty  as n ---, oo. 

LEMMA 4.3. For every M >  0 and A,(8o) in Assumpt ion  (A6), 

(4.22) sup {In-l/2~n:,(Oo + n-l/2h) - n-1/2~:,(8o) -A , (8o)hl :  

t c R o ,  lhl _< M}--- 0 ,  

in probabil i ty  as n - -  oo. 

PROOF. Since I n-1/2h[ <- do for 
(4.21) holds: 

Ih l -  M and sufficiently large n, 

(4.23) sup {Zn:,(0o + n-1/2h, Oo): t ~ Ro, Ihl -< M} -- 0 ,  

in probability as n ~ oo. It follows from (4.2), (4.16) and (4.24) that for 
e > 0 and all sufficiently large n 

Zn:t(Oo + n-V2h, Oo) > nl/2V~:,(8o + n-l/2h)/(1 + e + A o M ) ,  

recalling Ao = sup {At(00): t e R0}, and thus, from (4.23) that 

sup {n'/2V~:,(8o + n-l/2h): t ~ Ro, [hi < M} --- 0 ,  

in probability as n --- ~ .  Therefore, we conclude from (2.11) 

sup {]n-1/2~IIn:t(Oo + n-t/2h) - n-l/2~n:t(Oo) -A , (Oo)h l :  t ~ Ro, Ihl -< M} 

_< sup {nl/2V~:t(Oo + n-l/2h): t c Ro, Ihl < M }  

+ sup {1nl/22(0o + n-1/2h) -A,(Oo)hl:  t ~ Ro, [hi -< M} 

-- '0 

in probability as n --, ~ .  
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THEOREM 4.2. Under the condition (4.1), for  any t o > 0 ,  the P T  
estimator {nl/2(T,:,- 0o); to -< t < ~o} converges weakly in Dk([t0,~)) to a 
Gaussian vector process 

(4.24) [-At(Oo)] -1 ~t° (0o) = [-At(Oo)]-~f? ~ut(x, 0o) W°(Fso(dx)), 

to < t < oo (recalling (2.8)). 

PROOF. The condi t ion (4.1) means the condi t ion (3.1) and hence, by 
Theorem 3.1, it holds that  for any fixed to > 0 and do > 0 

(4.25) !im P0o[SUp {I T , : , -  0ol: t • Ro} >- do] = 0 ,  

where Ro = {t; t _> to}. Therefore,  it follows f rom Theorem 4.1 and (4.25) 
that  

sup {Z,:t(T,:,,Oo): t e R0} ~ 0 ,  

in probabili ty as n --. ~ .  Since, f rom (4.2) and (4.7), 

(1 - e)-l{e + n-VZl ~,:,(T,:,)I + n-1/21 ~,:,(0o)l } 

> nl/212t(T,:,)l >_ anl/2[ T,:, - 0o1 , 

if Z,:,( T,:,, Oo) < e, we have f rom Theorem 2.1 and (4.1) that  sup{n  I/: 
• I Z . . - 0 o t :  t eRo} is stochastically bounded.  Thus,  we conclude f rom 
Lemma  4.3 that  

- -  - -  0 - 1 / 2  sup {[n-l/2~[Yn:t(Tn:t) n-1/2~'ln:t(O0) At( o)n (Tn:t- 0o)1: t e R0} --" 0 ,  

in probabili ty as n --- 0% and hence, f rom (4.1) and Assumpt ion  (A6) 

sup {[nl/E( T , : , -  0o) - [-At(Oo)]-ln-1/2~',:,(Oo)[" t • Ro} ~ 0 ,  

in probabil i ty as n --- oo. This and Theorem 2. I complete  the p roof  of this 
theorem. 

5. An example 

Let F(x) be a distr ibut ion funct ion with the density funct ion f ( x )  > 0 
on R ÷. Let us consider a Lehmann  alternative defined by 

(5.1) Fo(x) = 1 - (1 - F(x)) y~°) , 
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and equivalently, 

(5.19 F~(x) = F ( x y  ~ , 

where the parameter 0 is the median of Fe(x) and belongs to a finite closed 
interval O = [0, K] for any fixed K >  0. Then, the hazard function is 
proportional: 

(5.2) hg(x) = fo(x)/ ~9(x) 

= 7(O)f(x)/i f(x) = y(O)h(x). 

The fact that Fo(O) = 1/2 leads to 

(5.3) ,(O) = ( log l ) /  log ff(O) . 

Let the score function be 

(5.4) ~u(x,/9) = sgn (x - 0) ,  the signature function. 

Then, 

2 ( 0 )  = E0o[~u(Xi, 0 ) ]  = 1 - 2Foo(O), 

F ( 0 )  = Cov0o[g / (Xi ,  0 ) ]  = 4Foo(O)(1 - Foo(O)). 

= /  s g n ( x - 0 )  if x_<t ,  
(5.5) ~u,(x, /9) 

t ~(t,/9) if x > t ,  

where 

(5.6) ~(t, O) = ft ~ g/(x, O)Fo(dx)/fro(t) 

={ 1 if t>_O, 

Fe(t)/fie(t) if t < 0.  

Assumptions (A1)-(A4) are easily seen to hold. The PT estimating function 
is 

n 

(5.7) ~.: ,(0) = ,__x ~,,(x,, o). 

The PT score function is 
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If the sample median XmCa (say) < t, 

~Vn:t( Xmed) ~- O . 

Therefore, we can take, for the PT estimator T,:,, 

7,:, = Xm~d if Xm~d < t .  

for r < n / 2 ,  we can take T~:,=the 

(5.8) 

If X,:, < t < X~:,+~ 
following equation: 

(5.9) 

that is, 

tlJ,(O) = - r + (n - r)Fo(t)/  ffo(t) = O, 

solution of the 

(5.9') log 1 / l o g  fr(O)= log f f , ( t ) / log  i f ( t ) .  

It is apparent that the PT estimator I,: ,  has the uniform consistency for 
t e Ro and satisfies the condition (4.1). 

Now, we have 

and hence 

4 ,0 )  = EOo[ ,,(Xi, 0)] 

=f~ sgn (x  - O)Foo(dx) + ffOo(t)ff(t, O) 

[ 1 - 2Foo(O) if t >_ 0, 
frOo( t) / fro( t) - 1 if t < 0 ,  

/ -2Jbo(0) if t >_ 0 ,  
At(O) 

I -{7(O)2/7(t)}h(O){frOo(t)/fro(t)} if t <  0 .  

2,(0) is continuous in (0, t) ~ O × Ro and 2t(0o) = 0. Immediately, 

/ -2Jbo(0O) if t >_ 0o, 
(5.10) At(Oo) 

-2{?(Oo)/y(t)}fOo(OO) if t < 0o. 

Further, we have 

1",(o) = Voo[ ,,(xi, o)] 
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and hence 

I 4Foo(O)ffoo(O) i f  t _> 0 ,  

Foo(t)ffOo(t)/ffo(t) 2 if t < 0 ,  

1 if t>_Oo, 

(5.11) Ft(Oo)= Foo(t)/ffOo(t) if t<Oo. 

Thus,  it is easy to see that  Assumpt ions  (A6) and (A7) hold. 
On the other hand,  we have 

and so, 

~*(t, O) = ft ~ ~u(x, O)Foo(dx)/ ffOo(t) __{l 
{1 - 2Fo,(0) + Foo(t)}/ffoo(t) 

if t _> 0 ,  

if t <  0 ,  

and if t < 0o, 

(5.13) 

Therefore,  we can see Assumpt ion  (A5) holds. F r o m  the definit ion (2.18) 
and (5.5), we obtain that,  if t _> 00, 

(5.12) ~,0<Oo) : - f'o ° w<~o.<ax)) +you w ~ , o < a X ) )  

~,0(Oo) =- f~ W(Foofdx)) + {Foo(t)/ POo(t)} f" W(Foo(dx)) 

= - W(Foo(t)) + {FOo(t)/ffOo(t)}{ W(1) - W(FOo(t))} 

N(O, {Foo(t)/ ffOo(t)}) . 

F r o m  (5.6) ,  

0 if t > O ,  

O/ O0~(t, O) = _ d/ dO~(O){log if(O/fro(t)} if t < O. 

0 if t > O ,  
a/ao ~*(t, o) = 

- 2foo(O)/ffoo(t) if t < O. 
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. l/2g T Thus, the asymptotic distribution of the PT estimator, ,, t-n:t - 0o), comes 
from (4.24) as follows: 

(5.14) [ -  A,(Oo)]-l~(Oo) 

[ [2fi°(0°)]-~N(0' 1) 

/ [2foo(Oo)?(Oo)/ y(t)]-~ N(O, {Foo(t)/ Pe.(t)}) 

if t > 0o, 

if t < 0o. 
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