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Abstract. We consider the progressively truncated estimating functions
and estimators as a generalization of the progressively truncated likeli-
hood estimating functions and maximum likelihood estimators. We show
the uniform consistency and weak convergence of the progressively
truncated estimators.
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1. Introduction

In a survival analysis observations are lifetimes of individuals under
study and are often censored either at a predetermined length of time or at
a given proportion of the numbers of failures because of time, cost and the
other consideration (see Lawless (1982) and Sen (1981)). Let observations
X1, Xz,..., Xn be independent and identically distributed (i.i.d.) random
variables with the distribution function Fe(x) and the positive density
function fs(x) on R* = {x>0} where 0 € 6, a subset of R*=(~ 0,00,
Sequentially in time we have at first the smallest observation X1, next the
second smallest X,:2, and so on, and lastly the largest X,.n, where
Xu:t < Xn2 < -+ < Xu:n are the order statistics of Xi,..., X,. However, in
fact, we must perform the statistical inference about parameter 8 either
with observations {X; < ¢} of type I censoring or with {Xn:1 < -+ < X} of
type II censoring.

Sen (1976) proposed the progressively censoring (PC) scheme “which
allows us to monitor the experiment from beginning until a statistically
valid decision with prescribed risks is made” and showed a Wiener process
approximation for the PC likelihood ratio statistic. Sen and Tsong (1981)
extended the result to the multiparameter case. Inagaki and Sen (1985)
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considered the progressively truncated (PT) maximum likelihood estimator
and showed the uniform strong consistency and weak convergence of it to
a Gaussian process.

In this paper, as a generalization of the PT maximum likelihood
estimators, we consider the PT estimators which are defined as estimators
based on the PT estimating functions. We discuss the relationship between
the PT estimating functions and the PT estimators along the lines of Huber
(1967) and Inagaki (1973). In Section 2 we define the PT score functions
and the PT estimating functions. We state the assumptions used through-
out this paper. It is verified that the PT estimating functions at the true
parameter 8 converge to a Gaussian process. In Section 3 we prove the
uniform consistency of the PT estimators. In Section 4 Huber’s lemma
about the asymptotic differentiability of estimating functions is extended to
the PT situation. The weak convergence of the PT estimators to a Gaussian
process is shown by using asymptotic relationships between the PT esti-
mating functions and the PT estimators. An example is discussed in
Section 5.

2. Assumptions and preliminaries

For the distribution function Fs(x) and the empirical one Fy(¢), the
survivor function and the empirical one are denoted by

Fo(x) =1 - Fs(x),
Fu(x)=1- Fu(x),

respectively. Let y(x, 8) be a score function of an observation value x and
a parameter § and let us define the PT score function as

w(x,8) if x<i,

21 1 ,0 =

@D Vi) w(t,0) if x>¢,
where

2.2) 7(6,0) =] w(x,0)Fo(dn)/ Fa(o) .

Then, the PT estimating function is defined by
23) P,i(0) = £ v(x,,6)

When the observation for n subjects is truncated at time z ( > 0), we obtain
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the observable random variables, {X;<t, i=1,...,n} and F,(¢), and then
Brn:i = B(Xn:i < t,i=1,...,nF,(1)) stands for the o-field generated by them,
letting HBno = HB({o}) and Bn.. = %B(X1,..., Xs). Further, for an infinite
sequence {X;, i=1,2,...} of i.i.d. random variables, set %, = FB(X;<t,
i=1,2,..), letting %o = HB({$}) and B = B (X, i=1,2,...).

We shall make the following assumptions throughout this paper.

(A1) The parameter space © is a compact subset of R* and the true
parameter 6 (say) is an inner point of 6.

(A2) w(x,0)is a k-vector valued measurable function for any fixed
0 € O and is separable.

(A3) (i) For every 8 € 6, the mean vector of w (X, 8),

(2.4) M8) = Ey(X,60) = w(x,0)Fa(d) ,

exists and vanishes only at 8y: A(60) = 0. (ii) For every 6 € ©, the covariance
matrix of (X, 0),

(2.5) I'@) = Covs [w(X;,0)]
= [ty (x,0) — A(O)Hy (x,0) — A(B)Y Fa(dx),

exists and I'(6o) is a positive definite.
(A4) (i) Let

u(x,0;d) = sup {ly(x,7) ~ y(x,0)]: |t - 6 = 4} .

There exist positive numbers do, b1, b2 and b3 such that for every d with
0<d<d,

(2.6) Ea{u(X,0,d)}<bd, p=12.
(ii) For (2, 8) defined in (2.2) and for d with 0 < d < d,
Q.7 sup {Fo(D|W(t,7) — w(1,0)|: te R, |T— 0| <d} < bd .
(A5) (i) Let
7*(1,0) =] w(x,0) Fa@x)| Fas).
Then, there exist positive numbers bs and a with 0 < a < 1 such that

(2.8) sup {Fa () |7 (1,6) — ¥*(1,0)): te R",0 e O} < b,.
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(i) For any fixed t€ R*, and 8¢ U= {f: |6 — 60| < do} (say), there are
positive numbers bs and a with 0 < a < 1 such that

(2.9) sup {Fa()) 17 (t,0) — w*(1,0)1/10 — 6|: 1€ R*,0 € Us} < bs .
(A6) Set
(2.10) A(6) = Esf{wi(X:, 0)}

= [ w(x,0) Fud®) + Fa(0(1,6)

For any fixed # > 0, let Ro = {t: ¢ = t0}. Then, 1,(8) vanishes only at § = 6,
for t € Ro and A:(0) is differentiable at 8, where the Jacobian

A(0o) = (3/30V AP (6o)), i, j=1,... .k,
is nonsingular and Ao = sup {|4:(6o)|: t € Ro} is finite. Furthermore,
(2.11) sup {|n'?A:(60 + n"*h) — A,(Bo)h|: t € Ro, |h| < M}
-0 as n-—oo.
(A7) Set
I,(6) = Cova [w:(X;, 0)] .
For every t € Ry, I(6o) is a positive definite matrix.

Remarks. (a) Assumption (A3) implies that the mean vector and
covariance matrix of w.(X;8), 4:«(6) and I,(0), exist for every 0 € 6.
Furthermore, it follows from the definitions and Assumption (A4) that
4:(6) and I',(8) are continuous in (z,8) € R* x 6. (b) For any f € O,

A0(0)=0, I=(8)=A0),

I@)=0, TI-(0)=TI().
For any 1 >0

A:(60) =0,

(2.12) w*(1,60) = y(t,60) ,
TI(80) = I'(60) — I(60) ,
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where
@2.13) Ti(60) =J {w(x,60) — #(x, 60}y (x, 60) — F(x, Bo)} Fa(d)
Thus, I(6o) is nondecreasing in ¢ € R™.

For 0 < ¢ < oo, set

2.14) wi(x,0) =

( v, if x>t,
and

2.15) PL(0) = 3, wH(X.,0),

letting y&(x, 8) = X6), wi(x,8) = w(x,6), ¥re(6) = nA(6) and
2.16) P (0)= Zy(x,0)= ¥(0) (say).

LEMMA 2.1. {¥X«(0), Br:;t€ R} is a martingale closed on the

PROOF. It is easy to see that
wi(x, 0) = Ealy(X1,0)| %]
and
Ea{y(X,,0)} = Eafy (X, 0)} = A(0) .

Immediately from the definitions, it follows that 98,..: is nondecreasing in
te R+, g’:w(e) = q]n(e) and

EOo[Wn(H)lﬁn:t] = W:t(o) .
The proof is complete.
LEMMA 2.2. Sample function W3 = {¥3.(6v); t € R*} with

(2.17) P3.:(00) = n” " Wnii(6o)
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has the following moment structures:

Eo{¥5.4(60)} =0,
Es{¥W%:(00) ¥2::(00)} = Tni(6o), s,t€R",

where s A t = min (s, f).
PROOF. From (1.3), (2.3) and (2.5), we have
Eo{¥3.4(60)} =0 .
The martingale property of Lemma 2.1 implies that for 0 <s < ¢,

EOQ{WS:S(BO) qlg:t(go)l} = E0n{¥lg:s(00) ?’S:s(eo)'}
= Ea{ys(Xi, Go)ys(Xi, 6o)'}
= I's(6o) .

The proof is complete.

Let us consider a k-variate Gaussian process ¥° = {¥P(f);t € R"}
defined by

(2.18) W2 (6) = f: wi(x, 0) W (Fi(dx)), teR",
with %5 (6o) = 0 with probability one and
2(00) = P°(60) =, w(x,0) W°(Fa(dx)) ,
where W° = {W°(#),0 <t < 1} is the Brownian bridge on [0, 1] so that W°
is Gaussian with E{W°()} = 0 and E{W°(s)W°()} =s At — st fors,1 € [0, 1].

Then, the following lemma holds.

LEMMA 2.3. {¥°(6o), %+t € R'} is a martingale closed on the right
by ¥°(6o) and ¥° has the same moment structure as ¥y defined in (2.17):

E{¥?(00)} =0,
E{¥°(60)¥°(60)} = [eni(Bo), s,1€R".

PROOF. From the definitions, we have, %, is nondecreasing in € R"
and ¥P2(6) = ¥°(6o). Since
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P00 =, wix, 0 W (Fadn) = y(x,0)W(Fa(dx),

where W(f), 0 <t <1 is a Wiener process, it follows that
Ea[#°(60)| B = wi(x, 60) W(Fa(dx)
= [7 wilx, B W (Fudx)) = P2 (60),

and hence, {¥°(6o), &;t € R'} is a martingale. Thus the first part of the
lemma is proved. The latter part is easy to understand.

Furthermore, we have the following theorem which could be proved
similarly as in the proof of Theorem 1 of Sen and Tsong (1981).

THEOREM 2.1. The process ¥> = {¥5.(60); t € R'} converges weakly
to the Gaussian process ¥° = {W?(0o);t € R’} in the extended Skorokhod’s
topology on D'[R*].

3. Uniform consistency of the PT estimators

We define the PT estimator 7. by the value of # which the PT
estimating function ¥..(f) vanishes. However, in order to prove the
uniform consistency (3.2) below, it is only required that Ty is DBn.-
measurable and {T».; 7 € R'} belongs to D'[R*] and satisfies the following
condition:

3.1 sup {n"!|Wni(Tns)l: 1€ R'} =0,
in probability as n — oo,

THEOREM 3.1. Under the condition (3.1), it holds that for any fixed
>0

3.2) sup {| Tn::— Bo]: t € Ro} = 0,

in probability as n — o, where Ro = {t;t = to}.
For the proof of this theorem we provide the following lemma.
LEMMA 3.1. For every ¢ > 0 there exists 6 > 0 such that

(3.3) lim Pa[inf {n!|¥ui(0)|: t € Ro,0 € O} >5]=1,
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where @y = {0 € 6; |0 — G| = &}.

PROOF. From Assumptions (A3) and (A6) and Remarks (a) and (b),
we have

(3.4) do=inf {|1,(8)|: te Ro,0 € o}  (say)
is positive and
3.5 To=sup{|I'(6): 06} (say)
is finite. It follows from (2.3), (2.10) and (2.15) that
(3.6) 1 ¥ui(8) - A(0) = {n PEAB) — A(8)}
+{F(1) — Fa(}9(1,0) - 0*(2,6)}
and hence, from (2.8) and (3.4)
3.7 inf {n”'| ¥a:(6)|: 1 € Ro, 6 € 6}

> Ao — sup {|n'Wk(0) — A(B)|: te R*,0 € O}
~ by sup {| Fu(t)] Fa(t) — 1| Faft)*: t e R'} .
Let us consider an open covering of the compact set 8o, {Us(8); 6 € 65},

with Us(8) = {t; |t — 6| < d} where d is determined latter. Then, there is its
finite open covering {Us(6); j=1,...,m} such that 8¢ 6, j=1,...,m and

L:Jl U4(8;) D Oo. Thus, we see from (2.6) that

(3.8) sup {|n" ' PX.(0) — A(B)|: 1€ R*,0 € B}
<sup {|n'¥X(@) - A@)|: te R, j=1,...,m}

+sup {|n ' PX(O) — n W)
te R,0eUiB),j=1,..,m}+ bid.

Since

(3.9) n (0 - nPE@)
=n' 2 {y(X,0) - y(X,6)}

+E) Fa®} [ (v (x,0) - w(x,6)} Faldx),
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we have from (2.6)

(3.10) sup {|n ' WX(0) — n ' Wk(6)|: te R",0 € Us(8),j=1,...,m}

< sup { n' i‘_gn“.l u(Xi, 6;d) — Eau(X:,0;d) ’:j= l,....m }
+ bid[sup {Fo(t)] Fa(t): t € R} + 1].

Letting d = Ao/6 and L = d/(b:1d) — 1 for 0 < d < 8/ b1, we obtain the follow-
ing inequality from (3.7), (3.8) and (3.10):

(3.11)  Pa[inf {n”'| ¥ns(8)|: t € Ro, 0 € 60} > 5]
>1— Pa[sup {|n'¥r(6) — A@)|:j=1,....m,t € R'} > 6]

- Poo[ sup { n' i);l u(X, 0; d) — Esu(X, 6; d) l:
Jj= 1,...,m1>5]

~ Pa[sup {Fa(2)] Fa(t): t e R} = L]
— Pa[sup {| Fu(t)] Fa(t) — 1| Falt)*: t € R} > 6/ ba] .

Lemma 2.1 and the martingale maximal inequality (see Karlin and Taylor
(1981), p. 280) imply that

(3.12) Pa[sup {|n"¥X(8) — A(6)):j=1,...,m,t € R'} > 5]
< . Pal|n ¥(8) - ()] > 3]
<mly/(nd)~0 as n—oo,

recalling the definition of I in (3.5). By the Chebyshev’s inequality and
(2.6), it follows that

(3.13) Py [ sup [ n' é‘.l u(Xi, 0;d) — Eou(Xi,0;d) ,:j: 1,....m }> 5]
<mb:d/(n6) =0 as n-oo.

Chernoff and Rubin (1956) showed that sup {F.(f)/ Fa(t): t € R} is bound-

ed in probability. That is, suitably choosing d> 0 and equivalently L >0

for any 5 > 0, it holds that

(3.14) Pafsup {Fu(t)] Fa(): t€e R} > Ll<n forall n.
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Similarly, for 7> 0 such that Fs(T)" < 6/{ba(L + 1)}, it holds that

(3.15)  Pa[sup {| Fu(t)] Fa(t) — 1| Fo()*: t = T} > 6/ bd)
< Pa[sup {Fa(t)/ Fa(t): 1€ R} > L]1<n forall n.

Furthermore, it follows by Kolmogorov’s theorem that

(3.16)  Pa[sup {| Fa(t)] Fa(t) — 1| Fa(8)*: 0 <t < T} > 6/ ba]
< Pa[sup {| Fu(t) — Fa(t)|: t € R} > (8 ba)Fol T) ]

-0 as n—oo.
Since # > 0 is arbitrary, (3.15) and (3.16) lead to
3.17) il_rg Pa[sup {| Fu(f)] Fa(t) — 1| Fa(t)*: t€ R’} > 6/bs]=0.
Therefore, we conclude from (3.11)—(3.14) and (3.17) that
lim Pa[inf {n”'| ¥ni(8)|: t € Ro,0 € 80} >3] = 1~17,
for arbitrary # > 0. Thus, the proof of this lemma is complete.
PROOF OF THEOREM 3.1. Since

Po[sup {| Tn:: — Oo}: t € Ro} = €]
< Pa[sup {|n' W Tur)|: t € Ro} > 3]
+ Pa[inf {n"'| ¥ (0)|: t € Ro,0 € B} < 4],

(3.1) and (3.3) lead to (3.2).

4. Weak convergence of the PT estimators to a Gaussian process

In this section we suppose that the PT estimator {T..; € R'} satisfies
the following condition stronger than (3.1): {Tn.; t € R*} belongs to D'[R']
and

4.1 sup {n A\ Wni(Tu)|: te R} =~ 0,

in probability as n — co. We shall, first, modify Lemma 3 of Huber (1967)
and its proof in Lemmas 4.1, 4.2 and Theorem 4.1 (below) so that the
uniform asymptotic differentiability holds for the PT estimating function
¥...(0) defined in (2.3) at 8 = 6y. Next, we shall prove that the PT estimator
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satisfying (4.1) converges weakly to a Gaussian process.

Set
_ | Y’n:t(f) - Y’n;z(()) — n/l,(‘[) + n)q(ﬁ)l
4.2) Zni(z,0) = ey Y
and
4.3) Z¥(1,0) = | PRi(7) — WRi(0) — nA(7) + nA(6)|

n'? + n| (7))
It follows from (3.6) that

Prit(T) — Pni(Bo) — nAL(T) = {PRi() — Pri(6o) — nA(T)}
+ n{Fu(t) - Fa(}{@(1,0) - 9*(¢, 0},

and hence
4.4 Zn:t(z,00) < ZXi(1,00) + Wa(z,60) ,
where
Fu(t) — Fi i ok
4.5) (. 00) = 1220 = Fa 01190 ~ 79|

n 4 (@)

Let us choose do > 0 as in Assumption (Ad) and Uy = {f; |6 — o] < db} as in
Assumptions (A5) and (A6). Let Ro = {#;¢ = 1o} for any fixed # > 0.

LEMMA 4.1.
(4.6) Sup {Wa(t,60): t € Ro,7€ Up} =0,
in probability as n — oo,

PROOF. From Assumption (A6) we can choose do > 0 in Assumption
(A4) and a > 0 such that

4.7) [A(7)| = alz — b0l ,
for t € Ro and 6 € Ub. It follows from Assumption (A5) (ii) that

sup {Wa:(t,60): 1 € Ro, 7 € Up}
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< sup {| Fn(2) Fa(f) — 1| Fa(t)"bs/a: t € R'} .
This and (3.17) complete the proof of this lemma.
LEMMA 4.2.
(4.8) sup {Zx%.:(t,00): t € Ro,7€ Uo} —~ 0,
in probability as n — .

PROOF. Without loss of generality we take 8o=0 and do=1. P, E
and V stand for those under 8 = 6, and F stands for Fa,. As in the proof of
Huber (1967), we define cubes

Cn=10,10<(1—-q@"}, m=0,1,...mo,

and further, subcubes Cn-1¢ of Cn-1 — Cn with center ¢; and edges of length
20; such as

Gl =(1-9™ (1-q/2),

(4.9) ]
20,=(1-q)"'q,

respectively, where ¢ = 1/ M and M is an integer such that for any ¢>0
and L in (3.14),

(4.10) M = (2Lb))/(ea) ,

then, the cube Co={#;|6| <1} is divided into subcubes C;, j=1,...,N
(of Co — Cmy) with center and edges according to (4.9) and C with center 0
and edges of length

4.11) 200=2(1-q)™.

Here, defining mo = mo(n) by

4.12) mo(n) — 1 <y logn/|log (1 — g)| <moe(n),

for any y with 1/2 <y < 1, we have the total number as follows:

(4.13) N=O(logn).

Since, for 7 € C;;, and ¢ € Ry,
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|A:(D)] = alt] = a(l — g)" (recalling (4.7)),
(4.14) |A(T) — A& < Eu(Xi, &3 0) < bidi < bi(1 — @)"q/2,
Viu(Xi, &; 6)} < Eu(X, &;6) < bady < bo(1 - )"q/2,

it follows by the similar calculation as in (3.11) that

Zx(z,0) < Z¥i(x, &) + Z24(&;,0)

{

w E (X &) — BuX &)} | + b1 - 9

+ (E0/FOW( - ora || e - ),
+ [ (PR — PRA0) — nAE) /{a(1 ~ @)™},
and hence, from (4.10)
(4.15) sup {Z¥«(7,0):t€ R",71€ Cj}
< Un(&,8)/{a(1 — @)™} + big/a + sup {F.()/ F(t): t € R'}(e/ L)
+sup {Vau(&): 1€ R}/ {a(1 - )"},
letting
Un(e,8) = | n & {u(X:,60) - Eu(X, &)} |,
(4.16)
Var(&) = [n {¥RA(E) — PRi(0) — nA(O)} .
By Chebyshev’s inequality and from (4.10), (4.12) and (4.14) we have
4.17) PLU(&, 0)/{a(l — @)} + brg/a = €]
< P{U.(&,0)) = Lbig(1 — q)™}
< V{u(X;, & 0)}/ [n{Lbrg(1 — g)"}]

< [62/{2L7b1g(1 — @)}lin(1 — @)™ '}
<Kifn(1-g™ ' V'<Kin",

where K is a constant. Since {Vn.(&), %Bnit € R’} is a submartingale
closed on the right by

Va(&) = |17 Pa(&) — Pu(0) — nA(E)|
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we have, by the martingale maximal inequality,
(4.18) Plsup {Va:i(E)/(a(1 — g)™): t € R'} = g]
< V(Va(&))/fea(l - @}
< Bu(X,,0; 1§1)’/[n{2Lb1g(1 - 9)"}]

<[b2/{2Lb1g(1 — @} Hn(1 — ¢/ '}
< Kofn(1 - @™ 'V'<s K,

where K is a constant. Therefore, (4.15), (4.17) and (4.18) lead to

(4.19)  P[sup {Z¥.(z,0):te R",1€ Cj,j=1,...,N} > 3¢]
< N(Ki + K2)n'™" + Plsup {F(1)] F(t): te R} = L].

Similarly, we see from (4.11) and (4.12) that for 7 € Cn,

ZE5,0) = 0™ F {u(X;, 0;60) — Eu(X, 0;60)}

+2n'"* Eu(X;, 0; 60)
+ {Fu(0)] F()}n'"* Eu(X:, 0; 60)
< n"? Un(0, 80) + 2n"2by + {Fu() | F()}n by,
and
Pin'?Un(0,00) = e} < by(1 — g)™ /" < Kan™”,
where K; is a constant, and hence, that for n with 2n"*"?pL<¢

(4.20) P[sup {Z%:«(7,0): t € R", 7 € Cmo} = 3¢]
< Ksn” + P[sup {Fu(f)/ F(t): te R’} = L] .

Consequently, (4.19) and (4.20) imply that

Plsup {Z¥.(7,0): t € R",7 € Co} = 3e]
< P[sup {Z*:«(1,0): te R", 1€ Cy,j=1,..., N} = 3¢]
+ P[sup {Z*.:(1,0): t € R", 7 € Cm} = 3¢]
< N(Ki + K)n'™" + Ksn7 + 2P[sup {Fu(?)/ F(t): t € R*} = L]
<O 'logn)+ O(n" +o(1) + 21,
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for arbitrary n > 0, according to (3.14) and (4.13). The proof of this lemma
is complete.

Immediately from (4.4), (4.6) and (4.8) we have the uniform asymp-
totic differentiability of the PT estimating function ¥,..(8) at 8 = 6:

THEOREM 4.1.
4.21) sup {Zn.«(t,05): t € Ro,7€ Up} —~ 0,
in probability as n — o,
LEMMA 4.3. For every M > 0 and A:(0o) in Assumption (A6),

(4.22)  sup {|n"* W00 + 1 h) — 0V Whi(60) — A(Bo)h|:
tGRO,Ihl SM}_’Os

in probability as n — o,

PROOF. Since |n"*h| <d, for |h| <M and sufficiently large n,
(4.21) holds:

(4.23) sup {Zn.:(8o + 1n""’h,80): t€ Ry, |h| < M} —0,

in probability as n — oo, It follows from (4.2), (4.16) and (4.24) that for
¢ > 0 and all sufficiently large n

Z:i(6o + 1R, 00) = 0" V(@ + n*h) /(1 + & + AcM)
recalling Ao = sup {4:(6): t € Ro}, and thus, from (4.23) that
sup {n'"*Vn.(6o + n"*h): t € Ro, |lA| < M} =0,
in probability as #n — o, Therefore, we conclude from (2.11)

sup {|n" 2 W,..(00 + n"*h) — nV W,.(60) — A:(Bo)h|: t € Ro, |h| < M}
< sup {n*Vui(@o + n?h): t € Ro, |h] < M}
+ sup {|n"*A(66 + n"'*h) — A,(Bo)h|: t € Ro, |h| < M}
-0

in probability as n — oo .
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THEOREM 4.2. Under the condition (4.1), for any ty, >0, the PT
estimator {n"(Tn: — 6o); to < 1 <} converges weakly in D'([to,%)) 1o a
Gaussian vector process

424)  [~AB] P2 60) = [~ABo)T" [, wilx, 6) W (Fa(dx) ,
to < t < oo (recalling (2.8)).

PROOF. The condition (4.1) means the condition (3.1) and hence, by
Theorem 3.1, it holds that for any fixed # > 0 and do >0

(4.25) lim Pafsup {| Ti — Bol: t € Ro} = do] =0,

where R = {t;1 = t0}. Therefore, it follows from Theorem 4.1 and (4.25)
that

sup {Zn:t(Tn:t, 00): te RO} -0 y
in probability as #n — . Since, from (4.2) and (4.7),
(1 - &) e+ n | W Tu)| + 17| Pt (B0) |}

>\ 3(Twr)| = an'?| T — 60| ,

1/2

if Zn:(Tnr,0p) < &, we have from Theorem 2.1 and (4.1) that sup {n
| Tn:t — Bo|: t € Ro} is stochastically bounded. Thus, we conclude from
Lemma 4.3 that

sup {|n i Trr) — 0> Wt (60) — A:(@o)n™*(Tre — 6): t € Ro} — 0,
in probability as n — o0, and hence, from (4.1) and Assumption (A6)
sup {|n"A(Tn.. — 6o) — [ A(60)] 'n”* Wne(Bo)|: t € Ro} — 0,

in probability as n — o, This and Theorem 2.1 complete the proof of this
theorem.

5. An example

Let F(x) be a distribution function with the density function f(x) >0
on R”. Let us consider a Lehmann alternative defined by

(5.1 Fo(x)=1-(1 - Fx))"?,
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and equivalently,
(5.1 Fox) = F(xy"?,
where the parameter & is the median of Fs(x) and belongs to a finite closed

interval @ =[0, K] for any fixed K> 0. Then, the hazard function is
proportional:

(5.2) ho(x) = fo(x)] Fa(x)
=7(0) f(x)] F(x) = (O)h(x) .

The fact that Fs(f) = 1/2 leads to

(5.3 y(0) = ( log % ) / log F(6) .

Let the score function be
5.4 w(x,0)=sgn(x—60), the signature function.
Then,

A0) = Ealy (X, 0)] = 1 - 2Fa(0)
I'(8) = Cova[y(X;, 8)] = 4Fs(9)(1 — Fa(9)) .

The PT score function is

ss 9_[sgn(x—0) if x<t,
-3 v )= w(1,0) if  x>1,
where
(5.6) F(t,0) =, w(x,0) Fadx)) Fo(t)
_l 1 if >0,
| By By it 1<,

Assumptions (A1)-(A4) are easily seen to hold. The PT estimating function
is

(5.7) ¥ni(6) = X vi(X,0) .
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If the sample median Xmeq (say) < ¢,

Phn:t(Xmea) = 0 .
Therefore, we can take, for the PT estimator T,
(5.8) T = Xmeda  If  Xmea<t.

If Xnr<t<Xnrm for r<n/2, we can take T,.=the solution of the
following equation:

(5.9) Y (0)=—r+ (n—rFst) Fo() =0,
that is,
(5.9) log % / log F(8) = log F.(1)/log F(1) .

It is apparent that the PT estimator 7.: has the uniform consistency for
t € Ro and satisfies the condition (4.1).
Now, we have

A(8) = Ealy:(Xi, 0)]

=] sgn (x — 6) Fa(dx) + Fa(0)(1,)

_I 1 - 2F(6) if =286,
| B F-1 if <8,
and hence
~2fa(0 if 1>6,
A,(f))z{ f0(2) o 1 1
—{y(0) /YOO Fa() Fs(t)} if t<6.

2:(0) is continuous in (8, ¢) € © x Ro and A4,(6o) = 0. Immediately,

—2f3.(65) if 1=6,,

(5.10) Ai(6o) = { _
~2{y(00)/7(t)}f00(80) if 1< by .

Further, we have

T(8) = Vafw.(X:, 0)]
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{ 4 F5,(0)Fa(6) if 120,
| BFa) Fo)}  if 1<,
and hence

1 if =6,
(5.11) T(6) = B .

Fo(t)/Fa(t) if t<6.

Thus, it is easy to see that Assumptions (A6) and (A7) hold.
On the other hand, we have
7*(1,6) =] y(x,8)Fa(dx)/ Fa()
{ 1 if =86,
{1 -2Fa(0) + Fa(t)}/ Fa(t) if <8,

and so,

31305* 0“0 if >80,
0Y™(1,9) = —2n(@) Ea(t) i 1<9.

From (5.6),

3/367(..0) {0 if >80,
t,0)= _
o0y —d|dfy(B){log F(t)] Fe(t)} if t¢<0.

Therefore, we can see Assumption (AS) holds. From the definition (2.18)
and (5.5), we obtain that, if 1 > 6,

12 PeO)=—[ W(En@dx)+ [, W(Fa(dx)

—_ (%)+[ w(1) - W(%)}~N(O,l),

and if ¢ < 6,

(5.13) P00 =~ [ W(Fa(dn) + [Fa())] Fa()} [ W(Fa(dx))

= — W(Fa(1)) + {Fa(t)| Fa()}{ W (1) — W(Fa(1))}
~ N(O, {Fa(0)] Fa(2)}) .
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Thus, the asymptotic distribution of the PT estimator, n/*(Tn: — ), comes
from (4.24) as follows:

(5.14) [ — 4:(80)] " ¥2(60)
[ [2/a(80)] 'N(O, 1) it =6,
[2/5.(60)y(B0) | Y(O)T ' N(O, {Fa(t) Fau()}) if t<6,.
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