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Abstract. In this paper, we study the asymptotic distributions of the 
functions of the occurrence/exposure rates of several groups of patients as 
well as Berry-Esseen bound on the distribution function of the occurrence/ 
exposure rate. Asymptotic distributions of functions of the simple risk rates 
are also derived. The results are useful in not only medical research but also 
in the area of reliability. 
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1. Introduction 

In medical studies, it is of interest to study the association between the 
occurrence of certain diseases and the exposure factors. Various measures of 
risk of a disease are considered (e.g., Breslow and Day (1980), Howe (1983)) in 
the literature. One such measure is the ratio of the number of patients died to 
the total number  of individuals observed in a fixed time period. Using this 
measure, various authors have studied some of the statistical problems 
connected with the risk rate. Another measure used in the literature for the 
risk is the ratio of the number  of persons died to the total number  of years 
exposed to risk. For surveys of some developments on the theory of 
occurrence/exposure rates, the reader is referred to Hoem (1976) and Berry 
(1983). The main object of this paper is to study some problems connected 
with the occurrence/exposure measure. Some results are also obtained on risk 
rates. 

Suppose an experiment is conducted for a fixed period of time Tand  n 
patients are observed during this period. Also, let X,. denote the total time i-th 
patient is exposed to risk. Then, the risk measure considered in this paper is 
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(1.1) Rn = V . / U . ,  

where U,= Y1 +" .  + In, V,= Z1 +... + Z,, and 

y~ = { Xi if X~ < T 

T if Xi>  T,  

1 if X i < _ T  
Zi = 0 if Xi > T .  

The denominator in (1.1) is known as person-years. 
In Section 2 of this paper, we establish asymptotic normality of a 

function of R,. In Section 3, we establish the Berry-Esseen bound on the 
distribution of R,. This bound is quite useful since it gives an upper bound on 
the absolute value of the difference between the distribution functions of Rn 
and the normal variable with mean zero and variance one. The bound is of 
order c~ x /~  where c is a constant and n is the sample size. The asymptotic 
distributions of the ratios of the measures in several groups are given in 
Section 4. In Section 5, we consider the measure V,,/n and give results 
analogous to those given in Sections 3 and 4 for the measure R,. The results of 
this paper are useful not only in medical research but also in the area of 
reliability. For example, consider the situation when n items of an equipment 
are under test for performance under stress over a period of time T. A measure 
of reliability of the equipment is the ratio of the number of items which did not 
fail to the total number of items under test during the period of time T. It is 
also of interest to find the ratio of the number of items which did not fail to 
XI +...  +X,  where Xi denotes the duration of the time i-th item is under test. 

2. Asymptotic normality of the occurrence/exposure rate 

Let  p = P[Xi> T ] = 1 - q. I fp  = 1, then R, =0 whereas R,= n / (X~ +...  + X,) 
when p=0.  Both of the above eases are simple and so we only deal with the 
case where p ~ (0,1). 

Using strong law of large numbers for i.i.d, sequence, we have ( V,/n)--q 
almost surely (a.s.) and 

1 
- -  Un ~ u = EYz = E ( X O I [ X ,  < T] + Tp 
?I 

a . s .  

as n--*oo. Hence, R , ~ q / u  a.s. Now, let W~=uZi-q lS ,  r = q / u  and 

(2.1) 
n 

- -  - r )  - -  -fVT  7 ; , - - 1  " 
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Here { ~.} is a sequence of bounded i.i.d, random variables with mean zero. 

So, by central limit theorem, we observe that Z I~/x/n  is asymptotically 

distributed as normal with mean zero and variance a 2, where 

(2.2) a 2 = E(  W 2) = E (uZ ,  - q Y1) 2 . 

Since u U,I n--. u 2 a.s., we obtain that ~, is asymptotically distributed as normal 
with mean zero and variance o ; / u  4. 

Now, let f( . )  denote a function which is continuously differentiable for 
two times around r, say in the interval ( r - 6 ,  r+8), 6>0. By Taylor's 
expansion, if IR~-r[ <8/2 ,  we obtain 

1 
x l -n ( f (R . )  - f ( r ) )  = f ' ( r )~ .  + 2 - ~  ~2 f , ,(~.) , 

where ( .  is a number between r and R,. Becausef" is bounded in the interval 
( r - 6 / 2 ,  r+8/2), ~, tends to a normal variable in distribution and P(I R , - r l  >- 
6/2)--+0, and we have the following theorem. 

THEOREM 2.1. Under the condit ion men t ioned  above, 

v ~ ( f ( R , )  - f ( r ) )  --" N(O, ( f ' ( r ) ) 2 d l  u ')  . 

In practice, the asymptotic variance of x /n( f ( /~) - f ( r ) )  is unknown. In 
such situations, we use the following approximate confidence interval onf(r): 

I v % ( f ( R . )  - f ( r ) )  I --- d:a(f), 

where a ( f )  can be taken as 

i=1 

which is a consistent estimate of If ' (r)  la/U 2 and de is the upper 100a% point of 
the normal distribution with mean zero and variance one. 

3. Berry-Esseen bound for the distribution of the occurrence/exposure 
rate 

Let 

U 2 

a - U. "-~'- 'ai=l " 
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Then, according to the result proved in previous section, r/~ is 
asymptotically distributed as normal with mean zero and variance one. Let Fn 
denote the distribution function of rh and • that of the standard normal.  In 
this section, we shall prove the following. 

THEOREM 3.1. There exists a constant c such that 

(3.1) liEn - ~11 = suplFn(x) - ~(x)l -< c / x /~ ,  

where ~b is the standard normal distribution function. In the sequel, we need 
the following lemma. 

LEMMA 3.1. Let {Xn, In, Zn} be a sequence o f  random vectors with 
relation Xn = Yn + Zn and let Fn, Gn denote the distribution functions o f  Xn and 
In, respectively. I f  there exist constants c, i= 1, 2, 3, such that 

II a~  - ~11 -< cl/v/n, 

P(IZnl  >- c2/x/~) <- c3/x/~ , 

then there exists a constant c4 such that 

lien - ~11 <- c , /x /~ .  

For a proof  o f  the above lemma, the reader is referred to Chen (1981). 

Now, we turn to prove Theorem 3.1. Let 

(3.2) nUU~ - 1 + n l  ~(1  - (Ydu)) + An . 

Then 

(3.3) 

where 

(3.4) 

r/n = Sn + A,~ + dg + d,~" + d,~'", 

n 

s n = - - ~ - ~ y _ . ~  
i=l 

1 
A ~ -  na/2tr E I <_i~]<_m 

(3.5) I4,~(1- Yi/u), 
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1 . 
(3.6) zl g - n3/2 ff ~ I4~(1 - Y,'/u), 

1 
(3.7) A "  - n3/2 a El l,l~(1 -- Y•/u) , 

(3.8) z l" '  = zl,S,,  

and m=n-v/-n, the summation Z1 runs over all possible values of i and j  such 
that l<_i<n, m+l<_j<n, i~j or l<_j<_n, m+l<i<_n, i#j. 

At first, we see that 

(3.9) P I/t"1 -> ~ --- nE(/l '")  2 

= cr-2n-2y.l [EWj2(1 - y,./u) 2 

+ 2EW~Wj(I- Y~/u)(1- Y;/u)] 

<_ 3a-2n-1/2EW~(1 _ Y2/u) 2 

< c / , 

where and in the sequel e denotes positive constant but may take different 
value at eaeh appearance. Also, for any c>_a-I(IEWI(1 - Y~/u)l +1), we have 

<P(I~ZW/(1-i=I Y i / u ) - E W I ( 1 -  Y1/u) > n )  

<_ n -1 Var (WI(1 - Y1/u)) <- c/x/%. 

We now estimate d,~'". Define the event 

1 
E , =  11 In  ~ ( 1 -  Y,./u)l > ---~}. 

By Hoeffding inequality (see Hoeffding (1963)), we have 

(3.11) P(E,,) ___ 2 exp {-2 n(1/2T) 2} . 

Let E, ~ denote the complement of the event E,. When E, ~ is true, we have 

IA, I=  ] ~ z (  In  ~ ( 1 -  Y ~ / u ) f [ < 2  ( i n  ~ ( I -  Ydu))z. 
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Thus 

(3.12) P(IzV"'[-> 1/x/~) 

= P( la .S . I  -> 1/V'n) 

<_ P(E.) + P(E~, IS.3.1 --- 1/V'-n) 
<_ P(E.) 

+ p  2 1 ( 1 - Y , / u )  ~: 
n ~ e-1 

<_ P(E.) + P nl _- ( 1 -  Y~/u) >_ ~ 

+P(I--Q~--a~I1 ~W~ >nil4) .  

By Hoeffding inequality, we get 

(b { (° (3.13) P In  _- ( 1 -  >~7~ < 2 e x p  -2n 

< - c l v ~ ,  

_> 1/v~) 

and 

(3.14) P ~ i = 1  - -  "~ 2 exp a n_l/4 2 

<- o / x / ;  . 

n-3/8 
)2 / 

defined in (3.4) and (3.5). 
Now, write 

f.(t) = E exp {itS.} , 

j~(t) = E exp {itT.} , 

From (3.11)-(3.14), it follows that 

P(Izl '" ' l  -> l /x /~)  - clx/~.  

Applying Lemma 3.1, to prove Theorem 3.1, we only need to prove that 

(3.15) IIa. - q~ll -< c/x/~,  

where G. denotes the distribution function of T.=S.+AL and S., A" were 
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Then, we have 

(3.16) 

1 
a i  : - -  lJ~" , 

t7  

bu = 1 (1 Y,./u) W: 
(7 

m 

s . l =  

. 

S.2 = ~ Y, ai. 
i=m+l 

[f~(t) -J~( t )  l = IEe'tS'(e ira: - 1)1 

t 2 
-< Itl IEAgei'S"l + "~ [E(dn')20,e~tS"l , 

where 0, is a complex function of tAT, with 10. I -< 1. Hence, 0, is independent of 
S,2. Thus 

(3.17) 

Now let 

I E(AT,)20,e"S" I <_ E(AT,)21Ee"S°21 . 

o(t) = Ee "~ . 

Then we have 

{ l t 2  2 , 3  3} (3.18) [o(t)l -<exp - ~-  +-~-  It Ela l l  

(The proof of (3.18) can be found in Chapter 5 of Petrov's book (1975)). 
Therefore there exists a constant 61>0, such that for any [tl _<bl, 

(3.19) Io(t)l <- exp - -~- . 

Hence for Itl<81x/n, we have 

(3.20) [Ee"S"~l <- Io(t/x/~)live1 - < exp {- t2/4x/~} 
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and 

(3.21) 

Note 

Z. D. BAI E T A L .  

IEexp { i t (S .  - (a, + a2)/V%)}l = Io(tl  v%) l  "-2 

-< exp {- t2(n - 2)/4n} 

_< exp {- t2/5} for large n . 

1 
E(Ad)  2 - m ( m  - 1)[Ebb2 + 2Eb12b21] <<- c / n  

n 3 o  -2 
i 

Hence from (3.17), we get for Itl-<&V%, 

(3.22) 

Now write 

-~- E(A') 20.e i's" <_ c ( t2 /n )  exp {- ta/4x/%} . 

g~(t) = Eb12 exp {it(a1 + a2)/ v/-n} . 

Since Ebb2=0, Ebl2a~=Ebl2a2=O, we have 

t 2 
(3.23) Igdt)l - -~n E(Ib~2l)(al  + a2) 2 - c t Z / n .  

By (3.21) and (3.23), we have for Itl<_&V~, 

(3.24) IEAT, e~tSol <_ m ( r n -  1) n3/2a Ig,(t)l [Eexp { i t (S ,  - (al + a2)/v/n)}l 

< ct2n - m  exp {- t z /5}  . 

From (3.16), (3.22) and (3.24), we get 

) i It [ 3 e-,~/5 e-,'/,~ 
(3.25) [f,(t) - g ( t ) l  -< c ~ n  + --n " 

By Lemma 1 in Chapter 5 of Petrov (1975), we have for [tl<_bzw/-n, &>0, 

[tl 3 e-,:/8 
(3.26) If,(t) - e-'2/21 <- c ~ n  " 

Thus (3.25) and (3.26) yield for It[ _<bv/'n 
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(3.27) 
t2 ) [ Itl 3 e-&S [.A(t) - e-:/21 < c [ ~ -  + --n e-:/4v~ 

where J=min(J~, J2)>0. From (3.27), it follows that 

1 C oo t2 C oo 
[ ~ ( t ) -  e-:/21dt < ~7~f'_o ~ e-t'/Sd, + -~  f® [tie -:''v~ dt 

¢ 

Here the estimate of the last integral can be obtained by making variable 
transformation u=tn -~/4. Then using Berry-Esseen's basic inequality, we 
prove (3.15). This completes the proof of Theorem 3.1. 

4. Asymptotic joint distribution of functions of occurrence/exposure 
rates 

Let xIJ),..., ,exnjTV'(J), j=  1, 2,..., s be a sample drawn from thej-th population 
where X, q) denotes the observation on i-th individual inj-th population. Also, 
let 

f X l  g) if X~ j) <_ T yl/) = 
T otherwise, 

f 1 if X~ j)< _ T 
{ 0 otherwise, 

for j =  1, 2,..., s and i= 1, 2,..., nj. Now, let 

(4.1) /~)  v(J) rr(J) 
• /'lj / w,J/' l j  , 

for j =  1, 2,..., s, where 

(4.2) rru) ~yl/) r:(J) ~ J )  l,..,'rlj ~ ~ t v r / j  - ~ -  " . 

i=1 

We know that 

(4.3) o{J) ,,,: --'rj a.s. j =  1 ,2 , . . . , s .  

Letf(x~, x2 ..... xs) be a function which is continuously differentiable for two 
times in a neighborhood of (r~,..., rs). Suppose that 

(4.4) n / n : - - * 2 j < ~ ,  as n- - -oo ,  
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where n=n~ +. . .  +nj. Then 

(4.5) 

Z.  D .  B A I  E T A L .  

( f (R~l) ,  ol2) r,l*l . . . . .  • .., *,,s ) - f ( r l ,  r2,..., rs)) 

= j~ay  ~n~ +j=l k=l njnk ujkt, nj~n~ , 

,-,{1) R{~) when ~,,  , RJ,~I,..., falls in the neighborhood of (rl,..., rs) in which f is 
differentiable. Here 

8 f ( x l , . . . ,  Xs) ( ....... 
aj = Oxj x,>( ......... ) '  j = I, 2 , . . . ,  s ,  

02 f (x l , . . . ,  xs) ( ....... j, k = 1, 2,. s 
ajk = (JXjaXk x,)=(t ...... t,) ' " "  ' 

and (tl,..., t,) is some point on the linear section joining R,~P,..., R~*, ) and (r~,..., 
r,). Let B be a non-trivial closed ball with center (rl, .... r,) which is contained 
in that neighborhood of (r~,..., r,). Then, 

p((R~l l , . . . ,  ol*l~ __, ,,.~j~ B) O. 

Since 

lajkl -< M ,  

for all j ,  k= 1, 2,..., s and some M when (R~tP,..., RJ, s)) e B, we obtain 

P ( y = ~ = a , k ~ J n y : k  c,,,~'"~(k'~,k _>e) 

< P ( ( R ~ , , . . . ,  ,~j~ B ) +  -- '0 

Hence 

(4.6) v ~ ( f ( R t ,  P,. . . ,  Rt,?) - f ( r l , . . . ,  rs)) --" N(O, a2f) , 

where 

2 2 4 a} Z a j  2j- -~ O ' j /  ldj  
j= l  

u1 = E Y[J~, 
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(b = P ( X t  j)<_ T ) ,  
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a j=2 E(w~J))2  = E(ujZt  j) - c b YI(J))  2 . 

Also, using the same approach to prove Theorem 3.1, we can establish 
the Berry-Esseen bound for the distribution of  x /~/o /  (f(R(,~),...,  R(~ )) 
- f ( r l ,  .... rs)). The details are omitted here. 

An important  special ease for f is f ( x l ,  x2)=xl/x2.  In this ease, f(R,~ ), 
o(1)/o(2) is ,,,,°(2)~-°(])/j-,,,, /l,,:°(z) is called the ratio of occurrence/exposure rates. ,,,, / , , , ,  

denoted by R R , ,  and we have 

(4.7) + n2 (RR"~ - rl/r:) --* N(O, a 2) , 

where 

0.2 2~ 2. 4 2~ 0.2. 4 
= aIAl~I/Igl "1- a2A2 2/U2 

and 

al = 1/r2 , a2 = -  rl/r~ . 

~(2) (2) ~-  _m_~ N Remark .  Note that K,2 may be zero. However, P(P42 =0)=/.,2 ,,, as 
n--oo. Any way, the definition of R R ,  for n(2) ^ .. . .  =u  does not affect the limiting 
result for the distribution of RR,. However, for small sample problem, we 

° (2 ) -0  Define R R , =  1 have to make an explicit distribution of RR,, = o¢ when .,,2 - . 
when R,(~)= R,(~)=0 and RR,=oo.  Now let the common density of x~Jl,..., X(,,] ) 
be given by 

a i e x p { - a j x }  if x > 0  

g/(x) = 0 otherwise,  

and let pj=P[X~J)> T / f o r  j =  1, 2. We have 

(4.8) 

P(R-"R, = 0) =pT'(1 -p~ ' )  

P(R"R, = 1) =pT'p~ 2 

" 1  . = = P E t  --pT') 

It is known that R~ ) has an a tom at the origin with a mass PT' and a density 
(see Beyer et al. (1976)) 
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(4.9) £ ( x )  = ~:~ t ns ~ .,-k k...k-~ k ] pj Old I k x  -2 exp {-ay(k - (n - k) Tx )* /x}  

• uk[(k - ( n j -  k )Tx )+/x]  Ito,k/I,,~-klrl(X), 

for j=  1, 2, where It,,.bl(X) is I or 0 according as x is in [a,b] or not, and 
x+=max(x, 0). Hence, the distribution of RR, , ,  besides the three atoms given 
in (4.8), has a density which can be computed from the following 

(4.10) 
oo 

f ( x )  = fo f i ( x y ) f 2 ( y ) d y  . 

Now, let 

L i  = -y(r, , . . . ,  

for i= 1, 2,..., k,f(P,~ll,..., R~ I) is a continuously twice-differentiable function 
of ,,n,Olll,..., --,=Ol'l around r~,..., rs. We have proved earlier the asymptotic 
normality of L-. Following the same lines, it is easily seen that the asymptotic 
joint distribution of Zl,..., Lk is multivariate normal. But the asymptotic 
covariance matrix of Lx,..., Lk is usually unknown. We will now construct 
approximate confidence intervals onf(r~,..., rs) when the covariance matrix 
C=(cit) of Li,..., Lk is non-singular, where 

~ 2 ,  4 
C i t  -~" .~.ai.jat.jAiG j[ u j , 

j= l  - -  

and 

Ofi(xi,. . . ,  Xs) 2 ( ....... 
ai.j = OXj x~):(r ...... rA " 

In these situations, let t~ be a consistent estimate of C. Then L ' ( ; -~L  is 
approximately distributed as chi-square with s degrees of freedom for large 
samples where L '=(L~ , . . . ,  LD. Using this, we obtain the following approximate 
confidence intervals on linear combinations of f l (r~, . . . ,  r~), i= 1, 2,..., k: 

[ ~ a'(f(R(n~l,. R Is)'~ - f ( r l , . . ,  r~))l < (gaa' ~a) v2 • . ,  ?Is ] , - -  

for all nonnull vectors a:k× 1 where 

f ( r l , . . . ,  rs) = (fl(rl,..., rs) . . . . .  f k ( r l , . . . ,  r,))' 

and ga is the upper lOOa% point of the chi-square distribution with s degrees of 
freedom. The above confidence intervals are useful in constructing simultane- 
ous confidence intervals on various ratios like 
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ri/rs (i = 1,. . . ,  k - l ) ,  ri/rj (i < j = 2, . . . ,  k )  , 

ri/ri+l (i = 1, 2 , . . . ,  k - 1) . 

We can also construct simultaneous confidence intervals onf(r~,..., r,) using 
Bonferroni's inequality. 

5. Inference on simple risk rates 

In this section, we compare the simple risk rates of different groups of 
patients who are observed for a fixed period of T years and each group may be 
subject to a different exposure factor. Here a simple risk rate of j-th 
population is defined as the proportion of individuals in that population who 
died during the period of observation. In this section, we use the same 
notation as in the preceding sections. 

The sample estimate of simple risk rate forj-th population is Vp= V,t/~. 
Now, let fi(V~*,..., V*), i= 1, 2,..., k, be a continuously twice differentiable 
function of V~*,..., V* around ql,..., qs. 

Using Taylor's expansion, we obtain 

(5.1) L *  = v rn  { f (V~* , . . . ,  V*)  - f ( q , , . . . ,  q,)} 

s 

k=l j = l  

where B:= x/~j [(V~:) /nj ) -@],  V:*= t:tJl • . , ,  and 

(5.2) a f i  a i . j k  - 

a~.j - O Vj* r.=q ' O Vj* 0 Vk* v.=4 ' 

V*=(1:1", . . . ,  Vq*)' and q=(ql,... ,  qs)' and t~ is some point on the linear section 
between q and V*. As n-~oo, Bj is distributed as normal with mean 0 and 
variance qjpj. So, when n, n~,..., n : - -~ ,  the joint distribution of L*,..., L~' is 
multivariate normal with mean vector 0 and covariance matrix C*=(c;*) 
where 

n 

(5.3) c~ = jE a o a o A i ~ p j .  

Let C* be a consistent estimate of C*. When C* is non-singular and n--,~, we 
can use the following approximate simultaneous confidence intervals for the 
linear combinations of q~,..., qs by using the fact that V*'~V* is approximate- 
ly distributed as chi-square with s degrees of freedom 

(5.4) 13~fn at(f(V;,..., Vs $) - f(ql,..., qs))[ ~ (h,~a'~*a) ~/2 , 
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wheref (q l , . . . ,  qs)=Oq(ql, . . . ,  qs),...,fk(ql,... ,  qs))' and h= is the upper  100a% 
point of the chi-square distribution with k degrees of freedom. 

Some special cases off(V~*,. . . ,  V*) are, V * / V * ,  Fi*/E~,  etc. F r o m  the 

results given above, it is easily seen that  ~ ( / ~ 1 2 - ( q l / q 2 ) )  is distr ibuted 

normally with mean zero and variance a02 where 

(7.2 = 2 2 4 (21q2qlp l  + )~2qlq2p2)/ q2 , /~12 = VI*/ V2* , 

when nl and n2 tend to infinity. Fol lowing similar lines as in Section 3, we can 
show that  

liE.,+.=- 
vr , + n2 

where F.,+,,~ is the distr ibution funct ion of ~ -1 /~ go [ 12-(ql/q2)] and ~ i s  
the distr ibution function of the standard normal  distribution. 

We know that  V,(, jl follows the binomial  distr ibution B(nj, qj), j= 1, 2,... 
whatever the underlying distributions are. Hence, we have 

P(Rl2 = x) = 

(1  - q l ) " ' [ 1  - ( 1  - q 2 )  "~1 

(1  - (1  - q l ) " ) ( 1  - q 2 )  ~ 

n i l ( k : ) ( 1 -  ql)n'-k'q{'(1 - q2)",-J'2qk2 , 
Z l ( k  I 

if x = 0 , 

if x = ~ ,  

o therwise .  

Here, the summat ion  Yq runs over all possible values of kl and k2 such that  
l<k<_nl, l<_k2<_m and (kl/nl)=x(k2/n2) and the term for k l=k2=0  appears 
only when x=  1. 

If  qj is small related to ny, j =  1, 2, by the well-known Poisson limit 
theorem, we know that  V,, is asymptotically distributed as Poisson distribu- 
tion P(Aj), where ;ti=njq j. Hence 

P(1~12 = x) = 

e-~'(1 - e -~') if x = 0 ,  

( 1 - e - a ' ) e  -a' if x = ~ ,  

Z2 ~k'A2k-------~ e-;"e -~2 otherwise . 
kl!k2! 

Here the summat ion  •2 runs over all possible values Ofkl and k2 such that  
kl >- 1, k2 >_ 1, k l /n l  =k2x/n2 and the term for kl =k2=0 appears only when x =  1. 
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