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Abstract. This paper deals with some problems of eigenvalues and
eigenvectors of a sample correlation matrix and derives the limiting
distributions of their jackknife statistics with some numerical examples.
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1. Introduction

An important part in multivariate analysis is to reduce the dimension
of multivariate data as small as possible without decreasing loss of infor-
mation. Principal component analysis is a useful method for this problem
and is fundamentally concerned with the eigenvalues and eigenvectors of a
covariance matrix. Especially, eigenvalues of a covariance matrix play an
important role in considering how much information is condensed into a
small number of new variables. For this problem, we sometimes use a
sample covariance matrix. Nagao (1985) obtained asymptotic distributions
of jackknife statistics for the eigenvalues of a sample covariance matrix.
Recently, the author finds that the jackknife estimator for eigenvector of a
covariance matrix is not a robust one for a small sample size. Furthermore,
a sample covariance matrix is not invariant under a change of scale. In
practice, there are many situations in which variables are measured on
different units. To avoid them, we shall consider a sample correlation
matrix.

For the eigenvalue and eigenvector problems of a sample correlation
matrix, a few authors (for example, Lawley (1963) and Konishi (1979))
have only dealt with them under a multivariate normal distribution. This
may mainly be due to the fact that an exact expression for the distribution
of a sample correlation matrix under the normal distribution has not been
obtained yet. For a bivariate case, the sample correlation coefficient is well-
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known not to be a robust estimator as in Hinkley (1978). By applying a
jackknife method to a correlation coefficient, he showed the validity of this
method through the example though a little modification is needed. This
paper treats some problems of eigenvalues and eigenvectors of a sample
correlation matrix and gives the limiting distributions of their jackknife
statistics with some numerical examples under normal and nonnormal
situations. For the references on the jackknife statistics, see Miller (1974),
Goto and Tazaki (1978), Parr and Schucany (1980) and Beran (1984). Also
Beran and Srivastava (1985) have recently treated some problems of
eigenvalues and eigenvectors of a covariance matrix without normality by
using bootstrap method.

2. The limiting distribution of the eigenvalue

Let p x 1 vectors Xi,..., Xy be a random sample from a p-variate
distribution with mean y, covariance matrix X = (gy) and the finite fourth

N _ _ — N
moments. Let §=(s) = X (Xa— X (X — X )" with X = N Z X Then

a sample correlation matrix is defined by R = D2 $D™"2 where D = diag
(511,-.., 5pp). Letting $ — Z3"28Z5"2, where X, = diag (011,..., Gpp), since R is
invariant, we can assume that the sample Xi,..., Xy has a covariance
matrix P and the finite fourth moments. Here, P denotes a correlation
matrix. Let /; denote the j-th largest eigenvalue of R. Then the pseudo-
values /% and jackknife statistic I; are, respectively, given by

2.1) 7‘}=1j+(N—l)(lj—l}“) (a=1,...,N),
and

-1 N,
(2.2) I,-:—A—,agl 15,

where /;° is the j-th largest eigenvalue of the sample correlation matrix R-.
obtained by deleting X« = (Xiq,..., Xpo)’ from a sample Xi,..., Xn. Then the
sample correlation matrix R-« = (rj.-o) is given by D="* 8- D2, where

N v Y v
(2.3) S-e = (S4,-0) = S — ol Xe— X)X — XY,

and D-.= diag (s11.-a,..., Spp,-a). At first, we shall derive the limiting
distribution of 7;. Let A; be the j-th largest eigenvalue of P and let
h; = (hy,..., hy) be the corresponding eigenvectors of P with hjhj =1 and
h;; > 0. Since we have
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- n(N-1) ¥ -
QO aG-1)=val-2)+ VN0 & oy,

we shall show that the last term in (2.4) converges to zero in probability,
where n= N — 1. To prove it, we shall use an implicit function theorem,
Consider the following equation on /,

(2.5) F(S-/(n—1),0)= |Rea— 1| =

where I is a p X p identity matrix. We note that we regard the equation
(2.5) as function on the S-+/(n — 1). We shall show that / can be expanded
around S/n. The partially derivative of F on/at (S/n,1]) is given by

-1 0

0 :
(2.6) Fi(S/n, )= : R-LI|+--+|R-II 0 |-
0 -1

where the i-th determinant in (2.6) is of the matrix which is obtained by
replacing the i-th column of R — /I with the column vector (0,...,0, — 1,
0,...,0) having — 1 at the i-th element. Then as N — <o, the equation (2.6)
converges in probability to

-1 0

0 :
2.7 ; P-AI|++ | P-AI 0
0 -1

The applications of an implicit function theorem need the following
formulas; Then if 4; is a simple root by them, the value (2.7) is shown not
to be zero.

LEMMA 2.1. Let R= D™2SD™"? be a sample correlation matrix and
hi = (hy,..., hy)’ be a normalized eigenvector corresponding to the j-th
largest eigenvalue J; of a correlation matrix P = (py). Then we have

a in 1‘0
(2.8) c—ﬁlR— Prob. H (Li—4),
29 a R AI in Prob 2h h 1_[ /1 ﬂ,
@9) d(sui/ n) |R= A1, 1, mn TR ( s
in Prob. —1AL2. 4 1
(2.10) el 7) [R =, (1= Aphi; IL (A= 4) .
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PROOF. Since the formula (2.8) is obvious, we shall show the formula
(2.9). It can be verified that

a .
211 R-— Al mProb._2 P— A~ E
@2.10) I(su/n) | s | 1 Bl
hn
==2|Di—| : {(her,..., hip) |,
iy

where D; = diag (41,...,4,) — A;1 and Ex: denotes a p X p matrix having 1 at
(k, I)-element and zero otherwise. Then the right-hand side of (2.11) is

1 hia- By
hn j+2 j+l A

212) -2 : D, ==-2-D""(-1 hklhlj,l;lj(/li_ i) .
Py

By the similar calculation as in (2.9), we have the formula (2.10), though
the calculation is more complicated.

Then by an implicit function theorem, we can get
-a j a 1 a i s4Q
(2.13) 1=+ Z gl (S/n)thi+ = i) Ci ey,

where gi/(S/n) = — Fom(S/n, )| F(S/n, 1), (tk) = S-o/ (n — 1) = S/n, Ktk =
(t11,-.-, tpp, ti2,..-, tp-1,p) and the element of C} is derivative of g{,(S/n) at
the value of element of some matrix between S/n and S-./(n — 1). By the
similar calculation as in Nagao (1985), we can show that the last term in
(2.4) converges to zero in probability. Thus, the limiting distribution of
Vn(;— 1)) is the same as that of \/n(/; — A;), whose distribution was
derived by Fang and Krishnaiah (1982). Since its derivation is based on the
perturbation method (for example, Bellman (1960)), we have

(2.14) = Ag) = tr (i — A L)V + Op(n™)

where ¥ = (vy) = \/n(S/n — P) and L; = diag (4%,..., ). Then we have the
following theorem:;

THEOREM 2.1. If the j-th largest eigenvalue J; of P is a simple root,
the limiting distribution of \/;1(1 i — A;j) is a normal with mean zero and
variance 5= a% yZa aspayse cov (Xer — ua)(Xp1 — tg), (X0 — w)(Xo1 — us)),
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where (alg) = hihj— A L; .

When the population eigenvalues have multiplicities, Fang and
Krishnaiah (1982) have obtained the asymptotic distributions of eigenvalues.
But it seems to be difficult to obtain the similar results in the case of the

N
jackknife statistics for eigenvalues. Next we shall show that El d5-

T,)*/(N — 1) converges to 7> in probability. For some matrix & between
S-o/(n — 1) and S/n, we have

@15) £ @-TRW-D=0-1) Z{ 2 gl

LN,
N E'l k% gii(&a) thi

2

By Lemma 2.1, we have, after some tedious calculation, the following;

THEOREM 2.2. If the j-th largest eigenvalue A; of a correlation

N o~ -
matrix P is a simple root, a2=21 (7%= T,)*/ (N — 1) converges to T’ in probability.
Hence from the above two theorems, we have

THEOREM 2.3. If the j-th largest eigenvalue A; of a correlation matrix
P is a simple root, we have

n(l; = 4j)

Neva 712
\/El(l';—lj)

(2.16) 2B N, 1),

wheren=N—1.

3. The jackknife statistic for a function of eigenvalues

In this section, we shall generalize the above results for the function of
eigenvalues of R. For example, in principal component analysis, the
fraction of the total variance accounted for by the first ¢ principal

g P
components is measured by d = a2=11 Aa/p (q < p), since .=21 Ai=p, which was
proposed by Rao (1964). Thus, applying the jackknife method to an
- q
estimator d = a?;‘l l./ p and so on, we can obtain the confidence interval of d,

etc. Let f(-) be a real-valued function with the second continuous derivatives
on some neighbourhood of (44,...,4,-1). By the same notations as sections



482 HISAO NAGAO

mentioned before, the pseudo-values and the jackknife statistic of f(l,..., [-1)
are, respectively, given by

G = ) (N= D{f(,e, b)) =~ fTE,. L )Y
and

N —
T

(3.2) 7= % z

Since the method of the argument is similar as before, we only mention the
result.

THEOREM 3.1. If the eigenvalues A,,...,A, of P are all simple, then
for any function f(+) with continuous second derivatives about (Ai,..., A,-1),
we have

n(f '"f) in law
3.3 N, 1),
VEU-TY

where f=f(A1,-..,Ap-1) and n= N —1.

4. The jackknife statistic of eigenvector

Let ¢; = (cij,..., ¢pj)’ be an eigenvector with c¢jc; =1 and ¢;; > 0 corre-
sponding to the j-th largest eigenvalue /. Then the pseudo-values and the
jackknife statistic of the i-th component ¢;; are given by

4.1 ci=ci+(N=Dcij—ci) (a=1,...,N),
and

. _ 1 X,
4.2) &= & Cis

where ¢;;” is the i-th component of an eigenvector ¢, corresponding to /5"
To obtain the limiting distribution of ¢;;, first of all, we shall consider the
matrix H' RH, where H =[hi,..., hy] = [A1,..., ). Since H is an orthogonal
matrix such that ' PH = A = diag (44,..., 4p), its eigenvalues of H' RH are
the same as ones of R. Denoting d; = (dyj,...,dp;)’ as an eigenvector
corresponding to the eigenvalue /; of H’ RH, we have c;; = Aid;. Thus after
giving the limiting distribution of the jackknife statistic for d;, we shall
derive the limiting distribution of ¢;. We shall define the pseudo-values and
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the jackknife statistic of d; corresponding to (4.1) and (4.2), that is,

4.3) di=di+(N-1)d;-d}") (a=1,.,N),
and

_ 1 ¥
(44 di=— x dj,

where d° is an eigenvector corresponding to an eigenvalue /;° of H'R-oH.
To obtain the limiting distribution of d;, we need the following lemma.

LEMMA 4.1. Let A = (a;) be a p X p real symmetric matrix and we
assume |(A);j — AI| = 0 for some j, where (A);; denotes a (p — 1) x(p—1)
matrix deleting the j-th row and the j-th column of A. The necessary and
sufficient condition for x = (xi, xj, x3)’ to be an eigenvector corresponding
to an eigenvalue A is

(4.5) (A),; — AT) ( ;“ ) +ax;=0 and x#0,
2
where x\ and x; are (j — 1) x 1 and (p — j) X 1 vector, respectively, and x; is

some fixed constant. Also a; denotes the j-th (p — 1) X 1 column vector of
A omitted an element aj;.

Since 4; is a simple root, a matrix ((H'RH);; — A;I) is nonsingular for
N
large N. We shall show that (\/;(N - 1)/N) ‘Z_‘.l (d; — d°) converges to zero

in probability. By Lemma 4.1, we consider the equation
e | X -
4.6) G(S-o/(n—1), (x1,x2))=((H R-H)j; = 1I;]) ( x; ) + Fi-axj=0,

where F;-o is given by a (p — 1) X 1 column vector (A{ R-oh;,..., hy R-oh;)’
omitted A} R-«h; and x; # 0. Since we can choose that the j-th component
of df is the same as that of d; by Lemma 4.1, we shall show that the vector
d(j) deleted the j-th component of d can be expanded around (S/ n, d;(j)),
where d;(j) is the subvector of d; corresponding to dj(j). Then the
partially derivative of G with respect to (x{, x3) at (S/n,d;(j)) is given by
((H’'RH);; — I;I). Since this matrix is nonsingular, by an implicit function
theorem for a multivariate case, we have
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iy C iy

4.7) 1) = di(j) + At + 5

>

() C <ty

where A, =~ [Ga;(S/n, di())] (Gsun(S/n,di(j)) and Ck (k=j) is the
derivative of the k-th row vector of A4; at some matrix between S-./(n — 1)
and S/n. Then by a tedious calculation, we find that the limiting distribution
of \/nd; is the same as one of \/nd;. Let U= (uy)=(n/2)(1/n)4™""
-H'SHA™ — I, then if A, is a simple root, by a perturbation method,

(48) daj = - (}.a e Aj)—l{ 71—;1' [ (zzalj)l/zu:xj
1 )
=75 Ga+ 4) 3 R ed) P b ]] +Op(n™),

and

(4.9) djj=1+0pn’"),
P
where by = El hihithichi;. Hence the limiting distribution of c¢;; is given by

(4.10) V(e — hy) 22 N0, 00)

where o/ = uéj thohiuho,

@11 who= (= 4)" (b= )" | EEEE hahyihohakab.ca
- % (ho + 45) EZE hashjhesheyian
- % (Au+ A7) ZZE Aauhajhtoshcjaa.be

+ —i— (bt 1)k + 43) B hashashsohs,

* Kaa,bb ‘ 5

and Kap,ca = €OV ((Xaa — fta)( Xoa — 1ts), (Xea — N Xae — pa)).
Next we shall give
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1 N a - in Prob.
4.12) Vo1 (E.l (8 —Ty)* nPd 2

To prove the above, we use the formula (4.7) up to the second term. Also
the following lemma is helpful in a multivariate implicit function theorem.

LEMMA 4.2. Let R be a sample correlation matrix and hj = (hyj,..., hp))’
be an eigenvector corresponding to an eigenvalue 4; of P (j=1,...,p).
Then we have

dha Rh] in Prob.
(4.13) _—J(Skz/n) 2hiahia (K#1),
ah‘; Rh in Prob. 1
4.14) m in Prob _ > {(Aa + 2;) — 2} Brjhia .

PROOF. The formula (4.13) is obvious. For (4.14), using the relationship
between an eigenvalue and an eigenvector, we can show it.

Then by the similar calculation as (2.15), we can prove (4.12). Thus we
have

THEOREM 4.1. Let ¢; = (cij,..., Cpj) (cij > 0) be the eigenvector with
the length corresponding to an eigenvalue |y of R. If an eigenvalue A; of P is
a simple root,

n(Cy — hy)

N e = N2
Z(cij—Ty)

where h;; is the (i, j) element of an orthogonal matrix H = (hi;) with h;; >0
(j=1,...,p) such that H' PH = diag (Ai,..., 4,).

(4.15) nEr N, 1),

Also the similar calculation yields the following theorem;
THEOREM 4.2. If the J; is a simple root of P, we have
(4.16) n(@— kY Q7 (@&~ h) ™= xip-n,

where ¢;, iij and &5(j) denote (p — 1) x 1 vector deleting the j-th component

of €; = (Cij,..., Cnj)» hjand ¢ = (ct),..., cp;), respectively, and Q@ = (1/(N — 1))
N

. a§1 &) =@ - &) )(2[,,-1] stands for a chi-square distribution with

(p — 1) degrees of freedom.
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5. The jackknife statistic in Brillinger case

In this section, we shall deal with the case of the sample size N = gh,
where the group g is fixed and s — °°. The problem mentioned before is the
case of group g=N— and h=1. Let the px 1 vectors Xi,..., Xs,...,
Xig-1)h+15..., Xgn be a random sample from a p-variate continuous distri-
bution with mean u, correlation matrix P and the finite fourth moments.
By using the same notations before, we define the pseudo-values and
jackknife statistic for an eigenvalues /; and the k-th component ¢; of an
eigenvector c¢;, respectively, as follows;

; -, N
(5.1 li=gli—(@g—-Dl; (i=1,.,g), lj:;i‘:i-llj,
and

i - . 1 E i
(5.2) aj=gcai—(g—Dey (i=1,...,8), CTkx= ?El Cij

where ¢} is the k-th component of the eigenvector corresponding to an
eigenvalue /7 of D7/*S..D7"?, which represents a sample correlation matrix
of a sub-sample obtained by deleting X(-1a+1,..., Xin from a sample
Xi,..., Xgn. Then S-; is given by

2

(53)  Si= 2 = X)(Xam XY - 75 (X' - X)X - XY,

where X' =h"' ,Z, X.and . denotes the set {(i — 1) + 1,...., ih}. Applying

(2.14) and (4.8) to (5.1) and (5.2), respectively, we have the following two
theorems after some tedious calculation;

_ THEOREM 5.1.  If the 4; is a simple root, then for the statistics I} and
l; defined in (5.1), we have, as h — oo,

\/g(ij B '1!) in law
VEG-T)1E -1

(5.4)

where tig-11 is a t-distribution with (g — 1) degrees of freedom.

THEOREM 5.2. If the A; is a simple root, then for the statistics ci; and
Tk defined in (5.2), we have, as h — o,
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\/é(-c_kj — hkj) in law

(5.5) —
VE@h-20)iE -1

le-11,

6. Numerical examples

Finally, we shall give some numerical examples under normal and
nonnormal distributions. We consider a correlation matrix

1 080 —0.40
6.1) P=] 0.80 1 —0.56
—-040 056 1

Then the eigenvalues are given by A; = 2.1895, 4> = 0.6342 and 4; = 0.1763
and the eigenvectors corresponding to them are # = (0.59307, 0.63308,
—0.49748)’, 1, = (0.50245, 0.19179, 0.84306)" and #; = (— 0.62914, 0.74995,
0.20434)", respectively. In this section, we shall treat the following cases:
Let X = (Xy, X2, Xa)' = PYX(Y1, Y», Ys), where P”*P? =P, (i) Y1, ¥> and
Y; are independent and normally distributed with mean 0 and variance 1.
For another cases (ii) and (iii), let Y1 = a(Z: + Z,Z3), Y. = a(Z, + Z;Z)) and
Ys=a(Zs + Z:Z,), where Z,, Z, and Z; are independent and identically
distributed random variables. (ii) Z; (i =1, 2, 3) are uniformly distributed
on (—1,1) with a=3/2 and (iii)) Z; (i=1, 2, 3) are normally distributed
with mean 0 and variance 1 with a = 1/+/2. Then all correlation matrices of
X are P. Under these assumptions, we shall give the accuracy of coverage
when we shall use 95% point under the standard normal distribution. The
repeated number is 1,000 times. The computations were carried out on the
FACOM, M-380 of the University of Tsukuba.

Example 6.1. Applying (2.16) and (3.3), we shall give the coverage
ratio of confidence interval for each eigenvalue and (4; + 42)/3 for some
sample sizes.

From Table 1, we give some comments for the three distributions (i),
(i) and (iii). For a normal distribution (i), the coverage values are very nice
especially when a sample size is large. In case of a short distribution (ii),
these values do not depend on a sample size so much. For a long tail
distribution (iii), these values improve when a sample size increaces, but the
speed of convergence is slow.

Finally, we shall consider the problem of the eigenvectors. In the
principal component analysis, we are interested in the components of each
eigenvector.
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Table 1.

Al A2 As i+ A2)/3

N=350 @ 0930 0.919 0.919 0.920
(i) 0932 0.928 0.938 0.938
@) 0918 0.905 0.901 0.901

N=100 () 0946 0943 0937 0938
(i) 0950 0938 0952 0953
Gi)) 0932 0923 0918 0919

N=150 i 0953 0.956 0.946 0.946
@ 0937 0.930 0.939 0.939
(i)  0.936 0.941 0.936 0.936

Example 6.2. We shall give the coverage ratio for the simultaneous
confidence bounds of components of #; (i =1, 2, 3), applying the formula
(4.10). Then by Bonferroni inequality, we approximately determine the
percentage point as 2.37 for 95% simultaneous confidence interval.

Table 2.

N=50 @ 0909 0.948 0.897
@) 0911 0.856 0.796
(i)  0.875 0.834 0.775

N=100 () 0962 0944 0930
() 0917 0917 0878
(i) 0909 0902  0.85]

N=150 (i 0.962 0.948 0.951
() 0937 0.938 0.911
(i)  0.936 0.917 0.886

Comparing the above values with the case of eigenvectors in a
covariance matrix, for (i), the values improve in proportion as a sample
size is large. For (ii) and (iii), the values for the eigenvectors corresponding
to smaller eigenvalues are poor, but terms corresponding to larger
eigenvalues are good, which are useful in a principal component analysis.
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