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1. Introduction 

An important part in multivariate analysis is to reduce the dimension 
of multivariate data as small as possible without decreasing loss of infor- 
mation. Principal component analysis is a useful method for this problem 
and is fundamentally concerned with the eigenvalues and eigenvectors of a 
covariance matrix. Especially, eigenvalues of a covariance matrix play an 
important role in considering how much information is condensed into a 
small number of new variables. For this problem, we sometimes use a 
sample covariance matrix. Nagao (1985) obtained asymptotic distributions 
of jackknife statistics for the eigenvalues of a sample covariance matrix. 
Recently, the author finds that the jackknife estimator for eigenvector of a 
covariance matrix is not a robust one for a small sample size. Furthermore, 
a sample covariance matrix is not invariant under a change of scale. In 
practice, there are many situations in which variables are measured on 
different units. To avoid them, we shall consider a sample correlation 
matrix. 

For the eigenvalue and eigenvector problems of a sample correlation 
matrix, a few authors (for example, Lawley (1963) and Konishi (1979)) 
have only dealt with them under a multivariate normal distribution. This 
may mainly be due to the fact that an exact expression for the distribution 
of a sample correlation matrix under the normal distribution has not been 
obtained yet. For a bivariate case, the sample correlation coefficient is well- 
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known not to be a robust estimator as in Hinkley (1978). By applying a 
jackknife method to a correlation coefficient, he showed the validity of this 
method through the example though a little modification is needed. This 
paper treats some problems of eigenvalues and eigenvectors of a sample 
correlation matrix and gives the limiting distributions of their jackknife 
statistics with some numerical examples under normal and nonnormal  
situations. For the references on the jackknife statistics, see Miller (1974), 
Goto and Tazaki (1978), Parr  and Schucany (1980) and Beran (1984). Also 
Beran and Srivastava (1985) have recently treated some problems of 
eigenvalues and eigenvectors of a covariance matrix without normality by 
using bootstrap method. 

2. The limiting distribution of the eigenvalue 

Let p × 1 vectors X~,..., XN be a random sample f rom a p-variate 
distr ibut ion wi th mean p, covariance matr ix Z" = (a0) and the finite fourth 

N N 

moments. Let S = (s,j) = ~__E t= (X, - X)(X~ - X ) '  with X = N -I ~--1 ~ X~. Then 

a sample correlation matrix is defined by R = D -~/2 S D  -m,  where D = diag 
(S~l,..., spp). Letting S --" ,Sol/2S.So m, where So = diag (cr~,..., app), since R is 
invariant, we can assume that the sample Xt, . . . ,  XN has a covariance 
matrix P and the finite fourth moments.  Here, P denotes a correlation 
matrix. Let lj denote the j- th largest eigenvalue of R. Then the pseudo- ~, 
values l j and jackknife statistic 7-j are, respectively, given by 

( 2 . 1 )  1 j =/2 + (N - 1)(/2 - l~ a) (a = 1,..., N ) ,  

and 

1 N ~ a  
(2.2) ?-./=-~ a__El l j ,  

where IS .a is the j- th largest eigenvalue of the sample correlation matrix R-a 
obtained by deleting X~ = (xl~,..., xp,,)' from a sample Xt,. . . ,  XN. Then the 
sample correlation matrix R-a = fig,-a) is given by DS~/2 S-a D?-~/2, where 

(2.3) S-a = (so,-.) = S 
N 

N - 1  
- -  ( x o  - x ) ( x o  - x ) ' ,  

and D-a=  diag(slL-a,. . . ,spp,-a). At first, we shall derive the l imiting 
distribution of l-j. Let 2j be the j-th largest eigenvalue of P and let 
hj = (h~j,...,hpj)' be the corresponding eigenvectors of P with h~hj = 1 and 
hjj > 0. Since we have 
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N 
X / ~ ( N -  1) Z, ( l j - l ~  ~) (2.4) x / n ( l j -  Aj) = x/~(lj- Ay) + N .--, ' 

we shall show that the last term in (2.4) converges to zero in probability, 
where n = N -  1. To prove it, we shall use an implicit function theorem. 
Consider the following equation on l; 

(2.5) F(S-~/(n - 1) , l )=  JR-G- l I I  = O, 

where I is a p × p identity matrix. We note that we regard the equation 
(2.5) as function on the S-~/(n - 1). We shall show that l can be expanded 
around S/n.  The partially derivative of F on l at (S/n,  lj) is given by 

(2.6) Flj(S/n, lj) = 

- 1  
0 

0 

R -  ld + ... + R -  ljI 

0 

0 
- 1  

where the i-th determinant  in (2.6) is of the matrix which is obtained by 
replacing the i-th column of R - / i I  with the column vector (0,..., 0 , -  I, 
0,...,  0)' having - I at the i-th element. Then as N--- ~ ,  the equation (2.6) 
converges in probability to 

(2.7) 

- 1  
0 

0 

P -  AjI ... + P -  2/1 

0 

0 
- 1  

The applications of an implicit function theorem need the following 
formulas; Then if A/is a simple root by them, the value (2.7) is shown not 
to be zero. 

LEMMA 2.1. Let R = D-1/ASD-]/2 be a sample correlation matrix and 
hj = (hlj .... ,hpj)' be a normalized eigenvector corresponding to the j-th 
largest eigenvalue A~ o f  a correlation matrix P = (Po). Then we have 

0 I R - AII in Prob. _ r l  (Ai  - Aj) 
(2.8) 0--~ is/ ' 

a ;t=Aj P - -  = -  m , (2.9) O(Skl/n) [R - 21[ in(k~l)Prob. 2hkjhq ;*JH (Ai 2j) 

a 
( 2 . 1 0 )  O(Skk/n---------) I R -  AI[ ~=~, 

p 
in Prob. (1 --  Aj)h2j II (A i -  A j) .  
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PROOF. Since the formula  (2.8) is obvious, we shall show the formula  
(2.9). It can be verified that  

a 
2=2j in Prob. (2.11) O(Skl/n) I R - 211 21 P -  2 j I -  Ekl[ 

hl l  

- - - 2  D j -  ' .  (hkl,...,hkp) , 
h,p 

where Dj = diag (21,..., 2p) - 2 j I  and Eat denotes a p  x p matr ix  having 1 at 
(k, /)-element and zero otherwise. Then the r ight-hand side of (2.11) is 

(2.12) - 2  

1 hkl" '"  hkp 
ha 

Dj 
h~p 

P 
= - 2( - 1 ) J + 2 (  - 1) j÷l hkthtj H ( 2 i  --  •j) • 

i~j  

By the similar calculation as in (2.9), we have the formula  (2. I0), though 
the calculation is more complicated. 

Then by an implicit function theorem, we can get 

(2.13) 
-5 a 1 

l j = lj + k~lgJkl (S/n) tk ,  + - ~  (t~,) C~ (t~t)' , 

where g~t(S/n) = - Fsk,/n(S/n, b)/ Flj(S/n, b), (t~t) = S-a/(n - 1) - S /n ,  (t~t) = 
tl  el 

( t l l , . . . ,  a a tpp, t12,..., tp-l,p) and the element of C~ is derivative of gJkl(S/n) at 
the value of element of some matr ix  between S i n  and S-~/(n - 1). By the 
similar calculation as in Nagao (1985), we can show that the last term in 
(2.4) converges to zero in probability. Thus,  the limiting distr ibution of 
x/n(l-y- 2y) is the same as that  of x / ~ ( l j -  2j), whose distr ibut ion was 
derived by Fang and Krishnaiah (1982). Since its derivation is based on the 
per turbat ion method (for example,  Bellman (1960)), we have 

(2.14) x/-n(lj - 2:) = tr (hjh~ - 2i Lj) V + Op(n-1/2) , 

where V (00) X /~ (S /n  P) and Lj = diag 2 2 -- = - (hlj,..., hpj). Then we have the 
following theorem; 

THEOREM 2.1. I f  the j- th largest eigenvalue 2j o f  P is a simple root, 
the l imiting distribution o f  x /n( -[ j -  Aj) is a normal  with mean zero and 

2 j j = aa.#ay.o, coy . . . .  variance r j  ~Z,y.~ ((X~I /t~)(X~l ~ ) ,  (X~I /~r)(X01 /.t~)), 
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where (a~,p) = hj h} - 2j Lj . 

When the populat ion eigenvalues have multiplicities, Fang and 
Krishnaiah (1982) have obtained the asymptotic distributions of eigenvalues. 
But it seems to be difficult to obtain the similar results in the case of the 

N 
jackknife statistics for eigenvalues. Next we shall show that Y. (T~- 

~=1 
2 7-j)2/(N - 1) converges to rj in probability. For some matrix ~ between 

S-,/(n - 1) and S/n ,  we have 

(2.15) 
N N ] j a 

/ 

a~=l (T j - - f j )2 / (g  - 1 ) -  ( g -  1) a=~] t k~_<_lgkl(~a)tkl 
1 N j a / 2 

- j .  

By Lemma 2.1, we have, after some tedious calculation, the following; 

THEOREM 2.2. I f  the j - th  largest eigenvalue 2j o f  a correlation 

2 in probability. matrix P is a simple root, aE1 ('[7 - -[J)2/( N - 1) converges to zj 

Hence from the above two theorems, we have 

THEOREM 2.3. I f  the j-th largest eigenvalue 2j o f  a correlation matrix 
P is a simple root, we have 

(2.16) n(lj  - -  ) ~ j )  in law N(0,  1),  

where n = N -  1. 

3. The jackknife statistic for a function of eigenvalues 

In this section, we shall generalize the above results for the function of 
eigenvalues of R. For example, in principal component analysis, the 
fraction of the total variance accounted for by the first q principal 

q P 
components is measured by d = E 2a/p (q <p) ,  since E 2i = p ,  which was 

a=l i=l 

proposed by Rao (1964). Thus, applying the jackknife method to an 
q 

estimator tt = Y. l , /p and so on, we can obtain the confidence interval of d, 
a=l 

etc. Let f ( . )  be a real-valued function with the second continuous derivatives 
on some neighbourhood of (2t,..., 2p-1). By the same notations as sections 
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mentioned before, the pseudo-values and the jackknife statistic of f ( l l , . . . ,  lp-t) 
are, respectively, given by 

(3.1) f-~ =f(lt , . . . ,  lp-,) + ( N -  1){f(ll , . . . ,  lp-1) - f( l -~, . . . , /pal)} ,  

and 

1 N 
(3.2) f = ~ _- 

Since the method  of the a rgument  is similar as before, we only ment ion  the 
result. 

THEOREM 3.1. I f  the eigenvalues 2t,..., 2p o f  P are all simple, then 
for  any function f (.) with continuous second derivatives about (21,..., 3.p_ t), 
we have 

(3.3) n ( f  - f )  in  la.~ N(0, 1), 
-a -- )2 

where f = f(Rt,... ,  2p-t) and n = N -  1. 

4. The jackknife statistic of eigenvector 

Let cj = (c 1 j , . . . ,  cpj)'  be an eigenvector with c;cj = 1 and cz > 0 corre- 
sponding to the j - th  largest eigenvalue/j .  Then  the pseudo-values and the 
jackknife statistic of the i-th componen t  cq are given by 

(4.1) c~'j = cij + (N - 1)(cij - c/j a) (a = 1,..., N ) ,  

and 

1 N 
(4.2) -~/: = -~ a__E1 c~, 

where c;7 is the i-th componen t  of an eigenvector c~ .~ corresponding to 17. 
To obtain the limiting dis tr ibut ion of ?~j, first of all, we shall consider the 
matr ix  H'RH, where H = [h~,..., hp] = [lit .... , tlp]'. Since H is an or thogonal  
matr ix  such that  H'PH = A = diag (At,..., 2p), its eigenvalues of H ' R H  are 
the same as ones of R. Denot ing  dj = (dlj,... ,dpy)' as an eigenvector 
corresponding to the eigenvalue/ j  of H'RH, we have ci~ = li'dj. Thus  after 
giving the limiting dis t r ibut ion of the jackknife  statistic for dj, we shall 
derive the limiting distr ibution of?0. We shall define the pseudo-values and 
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the jackknife statistic of dj corresponding to (4.1) and (4.2), that is, 

(4.3) = dj + ( U -  1)(dj - dT )  (a = 1,..., N ) ,  

and 

1 N 
(4.4) dj = ~ Z__~: d~, 

where d~ ~ is an eigenvector corresponding to an eigenvalue 1~ ~ of t t 'R-,H. 
To obtain the limiting distribution of dj, we need the following lemma. 

LEMMA 4.1. Let A = (aij) be a p × p real symmetric matrix and we 
assume I(A)jy - 211 = O for  some j, where (A)jj denotes a (p - 1) × (p - 1) 
matrix deleting the j-th row and the j-th column o f  A. The necessary and 
sufficient condition for  x = (M, xj, xg'  to be an eigenvector corresponding 
to an eigenvalue 2 is 

(4.5) ((A)jj - 21)(  x2X1 ) + a j x j  = 0 and xj ~ O, 

where x~ and x2 are ( j -  1)x 1 and (p - j )  × 1 vector, respectively, and xj is 
some f ixed constant. Also aj denotes the j-th (p - 1) x 1 column vector o f  
A omitted an element ajj. 

Since 2j is a simple root, a matrix ((H'RH)jj - 2fl) is nonsingular for 
N 

large N. We shall show that ( v ~ ( N -  1)/N) a~ (dj - dj  ~) converges to zero 

in probability. By Lemma 4.1, we consider the equation 

(4.6) G(S-~/(n - 1), (x,,xz)) = ((H'R-~H)jj - l~I)  ( xzX' ) + "fj,-~xj= O, 

where ~j.-~ is given by a ( p -  1)× 1 column vector (hfR-~hj .... ,h[,R-ahj)' 
omitted h;R-ahj and xj ~ O. Since we can choose that the j - th  component 
of d~ is the same as that of dj by Lemma 4.1, we shall show that the vector 
d~(j) deleted thej-th component of d~ can be expanded around (S/n, dj(j)), 
where dj(j) is the subvector of dj corresponding to d~(j). Then the 
partially derivative of G with respect to (M, x2") at (S/n, dj(j)) is given by 
( ( H ' R H ) j j -  ljl). Since this matrix is nonsingular, by an implicit function 
theorem for a multivariate ease, we have 
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(4.7) 
1 ( (t~,l> C? (t~,t)) 

d~(j) = dj(j) + Aj(tll) + --~ (t~,t> C; (tlt) 

where A j = -  [GaM)(S/n, dj(j))]-1(G~,/.(S/n, dj(j)) and C~ (k = ] )  is the 
derivative of the k-th row vector of Aj at some matrix between S-,~/(n - 1) 
and S/n. Then by a tedious calculation, we find that the limiting distribution 
of x/ndj is the same as one of x/~dj. Let U =  (uq)= (n/2)((1/n)A -in 
• H'SHA -~/2 - I), then if 2j is a simple root, by a perturbation method, 

(4.8) 1 
d a j = - ( 2 a -  2j)-l{~nn [ (22.2j)l/2ua j 

x/~ (2. + 2j) Z k Zt (2k2t)lnbkt.jUkt + O,(n-1). 

and 

(4.9) djj = 1 + Op(n-1), 

P 

where bkl.j = ~1 h~kh.h~,h~j. Hence the limiting distribution of c~j is given by 

(4.1o) vCn(c j - h , j )  '° , 

P 
where o~ 2 Z J . = ri,,oh,,,,hj.o, 

u~o=j 

(4.11) v~,o = (2u - 2j)-1(2o - 2j) -1 { ZZZZh,,uhbjhc~dyX,,babcd ,cd 

1 
- T ( 2 o  + 2j) ZEEh,.uhbjh~oh~jX,,bC~b ~ 

1 

1 

• Kaa, bb } , 

and X.b.cd = c o v  ((X.~ - [ . la)(Xba --  ]-lb), (Xcct  - -  / 2 c ) ( X d ,  - -  ]-~d)). 

Next we shall give 
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1 N a 
(4.12) N -  1 a=E~ (ely-~ij)  2 i,, Pr@. COS. 

To p rove  the  above,  we use the  f o r m u l a  (4.7) up  to the  second  term.  Also 
the fo l lowing  l e m m a  is helpful  in a mul t ivar ia te  implic i t  func t ion  theo rem.  

LEMMA 4.2. Let R be a sample correlation matrix and hj = (h~s,..., hpj)' 
be an eigenvector corresponding to an eigenvalue l j  o f  P ( j  = 1 , . . . , p ) .  
Then we have 

(4.13) Oh" Rhj  i, Prob. 2hk~ta (k ~ l ) ,  
O(Skl/n) 

Oh" Rhs in Prob. 1 
(4.14) O(S~k/n) : -- -~- {(2,, + 2j) -- 2} hkjhka. 

PROOF. The  fo rmula  (4.13) is obvious.  Fo r  (4.14), using the relat ionship 
be tween  an eigenvalue and  an e igenvector ,  we can  show it. 

T h e n  by the  s imilar  ca lcu la t ion  as (2.15), we can  prove  (4.12). Thus  we 
have 

THEOREM 4.1. Let cj = (c~j,..., Cpj)' (cjj > O) be the eigenvector with 
the length corresponding to an eigenvalue lj o f  R. I f  an eigenvalue As o f  P is 
a simple root, 

(4.15) n(-~ij - his) in law N ( 0 ,  1 ) ,  

~a~1(Cij - -Cij) 2 

where hij is the (i,j) element o f  an orthogonal  matr ix  H = (hij) with his > 0 
( j  = l , . . . ,p )  such that H ' P H  = diag ( 2 1 , . ,  2p). 

Also the s imilar  ca lcula t ion  yields the fo l lowing theorem;  

THEOREM 4.2. l f  the 2j is a simple root o f  P, we have 

(4.16) n( i- -0 - X t p - q ,  

where ~j, ~j and ~ ( j )  denote (p  - 1) × 1 vector deleting the j - th  component  
( c x j,. . . , c pj ) , respectively, and C2 = ( I / ( N -  1)) o f  -6y = (~zj,..., ~pj)', hj and cy = ~ ~ ' 

N 
• x - - Xtp-1] stands f o r  a chi-square distribution with 

a=l 

( p -  1) degrees o f f reedom.  
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5. The jackknife statistic in Brillinger case 

In this section, we shall deal with the case of the sample size N = gh, 
where the group g is fixed and h --" ~ .  The problem mentioned before is the 
case of group g =  N- -oo  and h =  1. Let the p ×  1 vectors X~, . . . ,Xh, . . . ,  
Xig-~)h+l .... ,Xgh be a random sample from a p-variate continuous distri- 
bution with mean/~, correlation matrix P and the finite fourth moments. 
By using the same notations before, we define the pseudo-values and 
jackknife statistic for an eigenvalues lj and the k-th component Ckj of an 
eigenvector c:, respectively, as follows; 

(5.1) lj = glj - (g - 1)l-/ (i : 1,...,g), L : 1 ~ l~ 
g i=l ' 

and 

• 1 g 
(5.2) c~j = gCkj -- (g -- 1)Ck~" (i = 1,...,g), -(kj = - -  y~ C~j 

g i=1 

where c~: is the k-th component of the eigenvector corresponding to an 
eigenvalue l~ i of D~/2S-~D]I/2, which represents a sample correlation matrix 
of a sub-sample obtained by deleting g(i-1)h+l,...,Xih from a sample 
X1,..., X~h. Then S-i is given by 

(5.3) s - ,  = x ( x o  - x ) ( x ,  - x ) '  
h 2 

N - h  
- -  ( x ' -  x ) ( x ' -  x ) ' ,  

where ~ i  = h-1 • Xa and ,_-~i denotes the set {(i - l)h + 1,..., ih}. Applying 
a~d~i 

(2.14) and (4.8) to (5.1) and (5.2), respectively, we have the following two 
theorems after some tedious calculation; 

I f  the 2j is a s imple  root,  then f o r  the statistics I~ a n d  THEOREM 5.1. 
-[j de f ined  in (5.1), we have, as h - .  ~ ,  

V ~ ( I ' J  - ,~J) in la~ t[g-]] , (5.4) 
~//_~l(,j - -[j)2/(g__ I )  

where tt~-i] is a t -distr ibution with  (g - 1) degrees o f  f r eedom.  

THEOREM 5.2. I f  the 2j is a s imple  root,  then f o r  the statistics c~j and  
-dkj de f ined  in (5.2), we have, as h --. o~, 
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(5.5) x / g ( r k j  - hkj )  i. 

~/~,(c~j" - Ek,)2/(g - 1) 

6. Numerical examples 

Finally, we shall give some numerical  examples under  normal  and 
nonnorma l  distributions. We consider a correlation matrix 

(6.1) P = 
1 0.80 - 0.40 
0.80 1 - 0.56 

- 0.40 - 0.56 1 

Then the eigenvalues are given by 21 = 2.1895, 22 = 0.6342 and 23 = 0.1763 
and the eigenvectors corresponding to them are t~ = (0.59307, 0.63308, 
-0.49748)', t2 = (0.50245, 0.19179, 0.84306)' and t3 = ( -  0.62914, 0.74995, 
0.20434)', respectively. In this section, we shall treat the following cases: 
Let X = (X~, X2, Xs)' = p1/2(]:1, Y2, Y3),' where p 1 / 2 p l / 2  = P. (i) YI, ]:2 and 
Y3 are independent  and normal ly  distr ibuted with mean 0 and variance 1. 
For  another  cases (ii) and (iii), let I:1 = a(Z1 + Z2Z3), ]:2 = a(Z2 + Z3ZO and 
I:3 = a(Z3 + Z1Z2), where Zl, Z2 and Z3 are independent  and identically 
distr ibuted r andom variables. (ii) Zi (i = 1, 2, 3) are uniformly distributed 
on ( - 1, 1) with a = 3 /2  and (iii) Z~ (i = 1, 2, 3) are normal ly  distr ibuted 
with mean  0 and variance 1 with a = I /v /2 .  Then all correlation matrices of 
X are P. Under  these assumptions,  we shall give the accuracy of coverage 
when we shall use 95% point  under  the s tandard normal  distribution. The 
repeated number  is 1,000 times. The computa t ions  were carried out on the 
F A C O M ,  M-380 of the University of Tsukuba.  

E x a m p l e  6.1. Applying (2.16) and (3.3), we shall give the coverage 
ratio of  confidence interval for each eigenvalue and (21 + 22)/3 for some 
sample sizes. 

F r o m  Table I, we give some comments  for the three distr ibutions (i), 
(ii) and (iii). For  a normal  distr ibution (i), the coverage values are very nice 
especially when a sample size is large. In case of a short distr ibution (ii), 
these values do not  depend  on a sample size so much.  For  a long tail 
distr ibution (iii), these values improve when a sample size increaces, but  the 
speed of convergence is slow. 

Finally, we shall consider the problem of the eigenvectors. In the 
principal componen t  analysis, we are interested in the components  of each 
eigenvector. 
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Table 1. 

I~1 t~2 23 (21 + 22)/3 

N = 50 (i) 0.930 0.919 0.919 0.920 
(ii) 0.932 0.928 0.938 0.938 

(iii) 0.918 0.905 0.901 0.901 

N =  100 

N =  150 

(i) 0.946 0.943 0.937 0.938 
(ii) 0.950 0.938 0.952 0.953 

(iii) 0.932 0.923 0.918 0.919 

(i) 0.953 0.956 0.946 0.946 
(ii) 0.937 0.930 0.939 0.939 

(iii) 0.936 0.941 0.936 0.936 

Example 6.2. We shall give the coverage ratio for the simultaneous 
confidence bounds of components of t,. (i = 1, 2, 3), applying the formula 
(4.10). Then by Bonferroni inequality, we approximately determine the 
percentage point as 2.37 for 95% simultaneous confidence interval. 

Table 2. 

II t2 I3 

N = 50 (i) 0.909 0.948 0.897 
(ii) 0.911 0.856 0.796 

(iii) 0.875 0.834 0.775 

N = I 0 0  

N =  150 

(i) 0.962 0.944 0.930 
(ii) 0.917 0.917 0.878 

(iii) 0.909 0.902 0.851 

(i) 0.962 0.948 0.951 
(ii) 0.937 0.938 0.911 

(iii) 0.936 0.917 0.886 

Comparing the above values with the case of eigenvectors in a 
covariance matrix, for (i), the values improve in proportion as a sample 
size is large. For (ii) and (iii), the values for the eigenvectors corresponding 
to smaller eigenvalues are poor, but terms corresponding to larger 
eigenvalues are good, which are useful in a principal component analysis. 
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