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Abstract. A class of estimable contrasts is defined for cohort effects in 
an age-period-cohort model. It is useful for detecting a systematic change 
in cohort effects without suffering from a short term deviation. This 
together with the follow-up analysis of residuals will give a good insight 
into the data. Numerical examples are given to illustrate how the method 
applies. 
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1. Introduction 

The age-period-cohort analysis has been a popular epidemiological 
tool since Frost (1939) employed it in his study of mortality rate from 
tuberculosis. The procedure he developed was mainly descriptive. While a 
plot provides generally a useful first step in analyzing data, it does not 
provide a simple summary of the results and what is worse it can be 
sometimes misleading when only estimable are the second order differences 
of ordered parameters as it is the case in the age-period-cohort model. 
Identifiability problems in the simultaneous estimation of all of the three 
factors have been discussed by many authors (see Fienberg and Mason 
(1979), for example). Holford (1983) proposes to concentrate discussions 
only on the estimate functions which are invariant as to the particular 
constraint applied. Fienberg and Mason (1985) and Heckman and Robb 
(1985) discuss new types of model specification beyond the usual three 
effects cohort model. 

In Section 2 of the present paper we characterize some popular classes 
of contrasts in the context of the one-way analysis of variance model. In 
particular we propose a class of contrasts which works for detecting a more 
systematic change than Holford's curvature component aims at when only 
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estimable are the second order differences of the ordered parameters.  In 
Section 3 it is extended to cohort  effects in the age-period-cohort model 
still under  the classical linear model. In Section 4 a comparison of the 
standardized contrasts is given a likelihood interpretation. An extention to 
a generalized linear model  is discussed in Section 5. In Section 6 the 
analysis of  residuals after fitting the age-period-cohort model is described. 
The examples are given in Section 7 to illustrate some of the ideas. 

2. A characterization of classes of contrasts in the one-way analysis 
of variance model 

Suppose that we are given a one-way layout model 

yi = Jli q- 8i (i = 1,..., a ) ,  

for a treatments, where the e; are the uncorrelated experimental errors with 
the same variance. Then some popular classes of contrasts are 

(a) j l i -Jl i+l  ( i=  1 , . . . , a -  1), 

(b) / t i -  ~ ( i=  1, . . . ,a) ,  

(c) Plit-PI~) ( i=  l , . . . , a -  1), 

where ~ denotes the overall average of the/ti 's and/~(i) and PIll the averages 
from j = 1 to i and from j - -  i + 1 to a, respectively. We shall call (a), (b) 
and (c) as differential, outlier and slippage type contrasts, respectively. The 
differential and the slippage type contrasts are directional, namely the 
former cuts off a systematic trend (low cut) and the other cuts off a short 
term deviation (low pass), whereas the outlier type is omnibus. 

If the interests are concentrated in the second order differences which 
are or thogonal  to the linear trend in/l,.'s, the differential and the outlier 
type contrasts may be easily extended to (a') p i -  2~ti+1 + ~/-1i+2 (i = 1,..., a - 2) 
and (b ' ){ l - / / (Ba)}#,  where p = (pl,...,p=)', I an identity matrix and lI(Ba) = 
Ba(B[,Ba)-IBg an or thogonal  projector  onto the column space of B~= 

[ 'o] 1 1 ... The subscript a of B, will be omitted when there is no anxiety 
1 2  . 

of confusion. The vector { I - / / ( B ) } #  has been called a curvature component 
by Holford (1983) in the context of the age-period-cohort analysis. 

To extend the slippage type contrasts we interpret the sample versions 
of the three types of the first order contrasts as estimating the differences 
J; =/l~ - p~+ 1 (i = 1 ,..., a - 1) under the respective restrictions. First, without 
any restriction imposed on p, the least squares estimator should be ~d, = 
yi -- y~+~ (i = 1,..., a -- 1). Assuming that the/~j's are homogeneous excepting 
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the lug, namely assuming 

(2.1) /--/1 . . . . .  ~,/g- 1 = lui+l . . . . .  / . l a ~ l u i  , 

we obtain the least squares es t imator  c~o~ = {a/(a  - 1)}(y~ - y). Note that  the 
assumpt ion  (2.1) is equivalent  to the assumpt ion  that  p can be expressed as 
P{0 = (/e~)~/with some regression coefficient I /=  (r/0, r/~)', where ] is the unit  
vector and e~ the vector with the i-th e lement  uni ty and all the other  
elements zero. 

If the assumption 

(2.2) lul  . . . . .  l u i ~ l u i + l  . . . . .  lua 

is made,  then we obtain the least squares es t imator  6,; = Ylgl- Y{z). The 
assumpt ion  can be expressed again in the fo rm Pl0 = (J bg)t /with  bg the 
vector with zeros as its first i elements and unities for the rest. 

Now we proceed to the second order differences ~,~ = l~p = lu; - 2lug+ ~ + 
lug+2 ( i =  l , . . . , a -  2). Consider  a model  /Jli)= (B e~/)(r/0,r/1,r/2)' with Cai = 

(0,.. . ,  0, 1, 2,..., a -  i -  1)', which implies a slope change at the (i + 1)-th 
point ,  and obtain the least squares es t imator  of the i-th second order  
difference ~,i = l~/il; ) = l~ (B C~g){(B e,~g)'(B c,e)}-l(B Ca~)'y. If this is done for 
i = 1,..., a - 2, then the vector ~ = (~)s~,..., ~)sa-2)' can be written as 

(2.3) 
a-2 

fs = L" Z (S  e,){(S e;)'(B -1 (S c,)'y 
i=1 

by virtue of the relation l~(B ei) = (0, 0, &k), where La = (/1,...,/a-2), c~i.k the 
Kronecker  delta and the subscript a of ea~ omitted.  As shown in Appendix  
1 the f ,  can be t ransformed into a very simple form 

(2.4) f~ = r s (L"  La) -1 Lg y ,  

with Fs a diagonal  matr ix  given in (A.I)  of Append ix  1. This should be a 
natural extension of the slippage type first order contrasts ~s = (3sl,..., ~a-  1)' 
since the latter can be expressed as ]~= d i a g [ a / { i ( a - i ) } ] ( D ' D a ) - I D ~ ,  
where Da = (d~ "'" da-1) with di = (0,..., 0, 1 , -  1, 0,... ,  0)' being the vector 
yielding the i-th first order  difference fi; (see Appendix  2). The vector ~ has 
been in t roduced in Hirotsu (1986) to fo rm a statistic testing for linearity 
against convexity and an explicit fo rm of the matr ix  (L~L, , ) - IL" is given 
there. 

These interpretat ions lead to quite different forms of contrasts  f rom 
those obtained above if a general covariance matr ix  f2 is assumed for the 
exper imental  error. The general case is required in the applicat ion of these 
contrasts to the three effects cohort  model.  
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Assuming £2 is known,  the least squares es t imator  of J~ = d ' p  for the 
model  (2.1) is obtained as 

(2.5) Jo, = d~( j  e~){(j e~)'f2-~(j ei)}-~(/ e,) ' f2-~y. 

After some calculations similar to those for obtaining the cross validation 
statistic in a multiple regression analysis we get an expression ~o; = {e~f2-1ei - 
( j ,  ~- i  ei)2 / ( j ,  i2-1j) }-l e~2-1[y _ j { j ,  t2-1y / ( j ,  ~- l  j) } ]. This shows that  ~o = 
(3ol,..., 3oa-1)' is simply given by 

(2.6) = 3 o ( O ) ( t  0)a- l{y  - & ( y ) } ,  

where 3o(f2) is a diagonal  matr ix  with {e~g2-1ei- (j'I2-~e~)2/(j'~2-1j)} -1 as 
its i-th diagonal  element and P-,o(y)=j{j'f2-~y/(j'12-~j)} the least squares 
es t imator  of the mean  vector under  the null model  Eo(y)= jr/0. Unless 
£2 = L this generally differs f rom 3 = {a/(a - 1)}(y - j y ) ,  which is estimating 
the parametr ic  functions p ; -  ~ - / ( i  = 1,..., a), ~-~ being the average of the 
/~s's excepting/z~. The func t ion /L~-  ~ - i  itself should not be so interesting 
without  such an assumption as (2.1). 

Assuming (2.2), the least squares es t imator  t~g of the Ji is formally 
given by (2.5) with eg replaced by b/. In this case 3s = ($s~,...,3~-~) can be 
written as 

(2.7) 
a-1 

~s : D" Y, (J bi){(j  bi) 'O-l ( j  b~)}-~(j bi) ' t2-~y,  
i=1 

by virtue of dl,(j bi) = (0, - Ji.k). Again we have a simple expression 

(2.8) ~s = ds( ~'2 )( O,~ Da) -10a[-2-1(y - J~o(y)}, 

with As(s'2) a diagonal  matr ix  given in (A.2), the derivation of which is 
deferred to Appendix  3. The i-th componen t  of the 3s of course reduces to 
YIil - Y(~I when £2 = a2L 

For  the sample version of the second order outlier type contrasts in a 
general covariance matrix case we get, after some calculations, an expression 
similar to (2.6) as ~o = -  2Fo(f2)(I 0)12-1{y-/~a(y)}, where Fo(f2) is the 
diagonal  matr ix of {e~+lf2-1e/+l- e'+ l f2-1B( B" f2-1B)-l B' I2-1ei+ l } -1 ( i = 1,..., 
a - 2) and /~s(y) = B(B' f2 -1 B) -l B'I2-1y the least squares est imator of the 
mean  vector under  the null model  En(y) = B(t/o, t/l)'. The ~o coincides with 
Holford's  curvature componen t  when £2 = tr2L 

Finally we can extend the result (2.4) of the slope change model  to the 
general covariance matr ix case as 
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(2.9) ~,~ = F~(I2)(L" ta)- '  t a ~  -1 {y - / ~ n ( y ) } ,  

with Fs(I2) a diagonal  matr ix  of {c;I2-1ci - c;I-2-1B(B'I2-1B)-IB'I2-1c~}-I 
(i = 1,..., a - 2). The derivat ion of (2.9) is very similar to that  of (2.8) and 
so is omitted.  

Now the characteristics of the three types of the second order contrasts 
are obvious.  The naive es t imator  ~d is low cut and should be too noisy to 
interpret.  The outlier type contrasts ~o will be more  stable but  are detecting 
only a project ing change. The slippage type contrasts ~s are low pass and 
trace a very systematic change in # without  suffering f rom a short  term 
derivation. This follows because each element of the ~s is the least squares 
es t imator  of the corresponding element of 1, with a low dimensional  model  
assumed in #. The high correlat ion between the subsequent  elements of ~ 
suggests that  only one or two separate peaks should be given a practical 
interpretat ion and large terms shortly before or after the peak need not  
necessarily be given another  interpretat ion than  that  given to the peak. 
This idea is part ly suppor ted  by the result that  the degrees of f reedom of 
the approx imated  chi-squared distr ibut ion remains around two when a 
goes to infinity for the sum of squares of the slippage type contrasts 
whereas that  for the outlier type goes to infinity with a (Hirotsu (1986)). 

3. Three types of contrasts in cohort effects 

Suppose that  we have a three effects cohort  model  

(3.1) y# = ai + flj +/t,.+j- 1 + t0 (i = 1,..., a; j = 1,..., b ) ,  

where ai denotes the i-th age effect in antichronological  order, flj the j - th  
period effect and/ tk  the k-th cohor t  effect. Since the cohort  effects belong 
to the interact ion space of age and period,  only the contrasts/~k - 2/tk+ ~ + 
/~k+2 (k = 1,..., a + b -  3) are estimable as are all linear combinat ions  of 
them. Note that  for a usual  two-way interact ion model  only estimable 
interactions are the (aft)J1- (otfl)i+lj- (afl)ij+l + (otfl)i+lj+l (i = 1 , . . . , a -  1; 
j = 1,..., b - 1) and all the linear combinat ions  of them. Wi thout  loss of 
generality we can put a~-1 = a~ = fib = 0 in (3.1) and express the model  in 
matr ix form as 

(3.2) y = [x0 xd(o' # ' ) '  + E, 

where 0 =  (al, . . . ,aa-2,fl l  .... ,fib-0', # = (a~,..-,ga+b-0' and the coefficient 
matrices X0 and XI are of full ranks. 

The naive es t imator  of the second order  contrast  y =  L ' . b - ~ p  is 
obtained as Ld+b- ~ #, where / i  = {Xfg2 -l XI - XLQ -1Xo(X6~2 -1Xo) -~ X&Q -~ X1}-I 
• {X[ - X[~2-1Xo(X6~ -1Xo) -1X6}~Q-Iy is the least squares est imator of p. 



456 C. HIROTSU 

The outlier type contrasts are obtained assuming a regression model  
# = #li) = (Ba+b-i el+ 1)(r11, rl2, rl3) in (3.2) and forming ~oi = l;#lil = l;(B ei+ l)fi 
(i = 1,..., a + b - 3), where t] is the least squares est imator of 11 = (r/l, rh, rh)'. 
More  convenient ly it is equivalent to applying the formula  of Section 2 for 
an assumed one-way layout m o d e l / i  --/~ + z* with the covarianee matrix 

var (e,*) = 0 *  = {X( 0 -1Xl - X(  0 -1Xo(X6 0 -1Xo) -l X6 0 -1 X1 }-1 . 

Thus we get ~o = - 21"o(0")(1 0)£2"-1{# - En(#)}, where/~s(/i) : B(B'Q*-IB)  -1 
• B'f2*-I/L In this case the ~o differs f rom Holford's  curvature componen t  
even when (2 = a2I since then O* is not  a multiple of an identity matrix. 

Similarly we obtain the slippage type contrasts  f rom (2.9) as ~s = 
Fs(O*)(Ld+t,-1La+b-1) -1Ld+o- 10  *-1 {# - L'n(#)/. 

4. Comparing the standardized contrasts 

In a cohor t  analysis it is often desired to compare  two models  
E(#) = (B ei+ l)tl and E(#)  = (B ci)tl. The former  implies an outlier at the 
(i + 1)-th cohort  and the other  a slope change at the (i + 1)-th cohort .  For  
the purpose the standardized contrasts are more  appropriate  than the raw 
estimators ~o~ and ~si. 

Suppose  that  /~ is distr ibuted as a mult ivariate normal  with mean 
(B e,-. 1)II and known covariance matrix 0* .  Then the minus two times log 
likelihood evaluated at the m a x i m u m  likelihood est imator ~ is, after some 
calculations, obtained as 

- 2 log (Lo) = c + {e~+10*-llla-(B, Q*)fl}2/ var {e~+IQ*-IlTL(B, O*)/]} , 

where 

c = log 12zcf2*l + O'Q*- IB(B 'Q*- IB) - IB 'O*- lO  

and 

H±(B,  £2") = I - B(B'I2 *-1 B) -1Bt~~ * - 1  . 

Similarly assuming E(/i) = (B c~)t/, we obtain - 2 log (Ls) = c + {c;g2 *-~. 
H I ( B ,  0*)#}2/ var {c ' iO*-l l l±(B,  12")#}. Now it is simple algebra to show 
that F = (c~,..., Ca+b-3)t~"~*-l l'I±(B, ~Q*) is equal to (L,~+b- t Q *-1 La+b-1) -1 L'+b- l, 
which gives in turn a simpler form (2.9) of the ~s. Thus  compar ing  
likelihoods f rom the outlier and the slope change models reduces to 
compar ing  the standardized components  of ~s and ~'o. It should be noted 
that  the nonest imable componen t  cancels out  in both models. 
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5. Generalized linear models 

We can extend the previous results easily to the generalized linear 
models. Suppose, for example, that the Yu in Section 3 are distributed as 
independent Poisson variables with the mean m/j. If the person year T/j are 
known, a log linear model 

(5.1) log (m,j/T,j)= o~i+~j+/Lgi+j-1 ( i=  1 , . . . , a ; j=  l , . . . ,b ) ,  

is often assumed (see for example, Holford (1983)). We again employ the 
identifiability conditions aa-~ = aa =fib = 0 and express (5.1) in a matrix 
form as 

(5.2) log (m) = log (T) + (X0 X0(0' /, ') ' , 

where log (m) and log (T) denote the vector of log (mij) and log (T0.), 
respectively. Then the naive estimator of the second order difference 
7 = L'÷b-~p is obtained as ~ = L'÷b-l~, where # is the maximum likelihood 
estimator of p under the model (5.2). 

The outlier type contrasts can be obtained assuming p = (B ei+ ~)rl in 
(5.2). It is, however, easier to get the asymptotically equivalent solution by 
assuming a linear model/i  = (B ei+l)! 1 + ~:*, with var (t*) = f2* = {X[I2-1X1 - 
X{I2-~Xo(X612-1Xo)-Ix~I2-~Xx}-~, where f2 = diag (m~l). The rno in t'2 may 
be replaced by th0B, the maximum likelihood estimator of rn U under the null 
model log (m) = log (T) + (X0 X1B)(O' I1')'. The rhijB can be obtained 
by an alternate scaling of the initial two-way table of T,j by the marginal 
totals yi. and y.j. Thus we obtain 

(5.3) 

In (5.3) we dropped the diagonal coefficient matrix which should be 
cancelled out by the standardization. 

Similarly we obtain the slippage type contrasts 

(5.4) ~S GC (La+b-1 ga+b-I )-l Lg+b-I £2 *-I {0 - En0i)} • 

As stated in Hirotsu (1982) we can replace ~c~*-l{p __ J~B(]a)} in (5.3) and 
(5.4) by an asymptotically equivalent statistic Xf f y  - ths), where ~B is the 
vector of rhOB. This version will be convenient for applications. For the 
standardization we exploit the asymptotic variance X(zq, IsX~ - X{ ~ls(Xo )[1 B) 
• {(Xo XIB)'J~B(Xo X~B)}-~(Xo XIB) 'A t sXI ,  where _a~B= diag (rhljS). 



458 C. HIROTSU 

6. Analysis of residuals 

The cohort effects are in some sense very special interactions between 
age and period which remain constant throughout the ages and periods 
observed. They must therefore be formed before entering the cohort table. 
On the other hand we cannot deny a possibility of the age and period 
interaction in the usual sense. In this line various interaction models 
including a polynomial type and also Johnson and Graybill's (1972) type 
are discussed in Fienberg and Mason (1985) and Heckman and Robb 
(1985). An informal but useful procedure for detecting such an interaction 
is the analysis of residuals after fitting the age-period-cohort model. The 
procedure is explained only for the Poisson model of Section 5 since the 
extensions to the other models are straightforward. 

Let ~ be the maximum likelihood estimator under the age-period- 
cohort model and define the residual by r = y -  ~ .  Then by the general 
theory for the multinomial distribution the asymptotic variance of r is 
consistently estimated by 

{okt} =  -2ff(Xo x,){(Xo x,)}-'(Xo 

where jilt = diag (th;j). The standardized residual is then defined by r * =  
diag (Ok~/2)r. 

7. Examples 

To illustrate some of the ideas we consider the data from Tango (1985) 
on liver cirrhosis mortality and suicides, both of males in Japan from 1955 
to 1975. 

Example 7.1. Liver cirrhosis mortality: The data presented in Table 
1 give the number of liver cirrhosis deaths. The estimated person years are 
given in Table 2. 

The standardized versions of three types of contrasts from a Poisson 
model are shown in Table 3. In the slippage type contrasts there is 
observed a large and systematic pattern, namely a long term convexity 
followed by a short term concavity, whereas no systematic pattern is 
detected by the naive or the outlier type contrasts. In particular the naive 
estimator is seen to be too noisy to interpret. The large outlier type 
contrasts occurred at the upper extreme cohorts are somewhat unreliable 
for the small population sizes and should not be overly interpreted. A large 
component observed at the 1 lth cohort, which corresponds to the birth at 
the early Showa era (1925-1935), might well be interpreted as a turning 
point from the long term convexity to the short term concavity. In inter- 
pretation it should be noted that the convexity may mean deceleration of 
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Table 1. 

ESTIMABLE CONTRASTS IN COHORT MODEL 

Number of liver cirrhosis deaths of males in Japan. 

Period 
Age 

1955-59 1960-64 1965-69 1970-74 1975-79 

75-79 2520 2848 3119 3648 4391 
70-74 3280 3843 3966 5129 5493 
65-69 3615 3995 4776 5728 6400 
60-64 3364 4101 4824 6214 6378 
55-59 3195 3805 4763 5619 6056 
50-54 2720 3225 3773 4728 7160 
454-49 1977 2349 2800 5012 8218 
40--44 1230 1463 2522 5002 5832 
35-39 646 1011 2077 2962 2426 
30-34 478 670 890 986 826 
25-29 258 279 266 260 218 
20-24 159 131 116 98 62 

459 

Table 2. Estimated person years ( x 5000). 

Period 
Age 

1955-59 1960--64 1965-69 1970-74 1975-79 

80-84 148 176 209 268 352 
75-79 356 407 484 594 752 
70-74 634 732 858 1036 1216 
65-69 962 1104 1291 1468 1640 
60-64 1311 1513 1677 1828 1940 
55-59 1685 1853 1975 2054 2248 
50-54 1974 2094 2167 2341 2989 
4549  2184 2244 2406 3070 3807 
40~14 2305 2456 3104 3850 4139 
35-39 2497 3157 3897 4158 4365 
30-34 3177 3907 4161 4359 4943 
25-29 3903 4120 4301 4881 5074 
20-24 4168 4274 4823 5013 4322 
15-19 4476 4998 5116 4359 4114 

the downward trend or the acceleration of the upward trend and that those 
two patterns are undistinguishable since a linear trend is nonestimable. 

The standardized residuals after fitting the age-period-cohort model 
are given in Table 4. Zero entries at the cells (1, 1) and (12, 5) are due to the 
fact that those cells are estimated by the respective observed cell frequencies 
only. As compared with the normal theory cases there are observed 
somewhat  large elements probably due to the over-dispersion often 
experienced in those epidemiological researches. There appears, however, 
no systematic pattern. The Pearson's chi-squared value 91.43 for residuals 
is somewhat large at 30 degrees of freedom but small enough as compared 
with the overall chi-squared value 4226 due to the cohort effects with the 
degrees of freedom 14, or in other words the latter is highly significant as 
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Table 3. Standardized contrasts for cohort effects. 

Change point Differential Outlier Slippage 

2 - 0 . 2 3  - 2 1 . 6 2  16 .42  

3 - 1 .74 - 19 .20  2 8 . 8 4  

4 6 . 3 7  - 0 .91  4 0 . 4 I  

5 - 0 . 0 3  9 . 2 4  4 6 . 1 8  

6 5 .85  14 .82  4 9 , 9 1  

7 - 1.33 9 , 4 6  4 9 . 6 6  

8 0 , 1 2  12.43 4 8 . 5 9  

9 9 , 9 3  17.51 4 3 , 9 1  

10 6 , 0 4  - 0 . 1 2  2 8 . 2 4  

11 - 8 .53  - 2 9 . 4 5  3 , 2 6  

12 - 10 .28 - 2 6 . 8 0  - 14,71 

13 - 2 ,23  - 2 . 8 4  - 17 .45 

14 0 . 0 5  8.71 - 12 .83 

15 - 0 . 6 5  8 . 9 4  - 7 .60  

Table 4. Standardized residuals. 

Period 
Age 

1 9 5 5 - 5 9  1 9 6 0 - 6 4  1 9 6 5 - 6 9  1 9 7 0 - 7 4  1 9 7 5 - 7 9  

7 5 - 7 9  0 1 .20 - 2 , 3 2  - 1.51 2 .18  

7 0 - 7 4  - 1 .24 3 . 6 2  - 0 . 1 2  - 0 . 6 9  - 0 . 6 7  

6 5 - 6 9  - 1 ,06 2 . 8 6  1 .09 - 1.01 - 1 .32 

6 0 - 6 4  - 0 . 8 9  - 0 . 6 7  0 . 9 2  0 . 9 9  - 0 . 5 6  

5 5 - 5 9  - 2 . 3 9  - 0 . 2 9  2 .03  0 . 1 2  0 . 4 5  

5 0 - 5 4  1.38 - 0 . 8 2  - 0 . 2 7  - 0 .28  - 0 . 0 4  

4 5 - 4 9  - 0 , 5 6  0 .61  0 , 0 2  0 .53  - 0 . 8 0  

4 0 - 4 4  0 . 1 0  - 0 . 4 8  - 0 . 2 7  1,27 - 0 . 4 3  

3 5 - 3 9  0 , 3 8  - 2 .80  0 . 3 2  3 . 1 0  0 . 2 4  

3 0 - 3 4  4 . 6 7  - 3 . 0 0  - 4 . 2 0  0 . 3 0  1 .22 

2 5 - 2 9  3 . 2 2  - 1.18 - 1 .30 - 1.19 1 .03 

2 0 - 2 4  3 . 0 9  0 . 3 9  - 0 . 4 7  - 1.17 0 

compared with the former. It should be also noted that the largest 
component 49.91 in Table 3 explains nearly 59% of the overall cohort 
effects by only a single element. 

Example 7.2. Suicides: The data presented in Table 5 give the 
number of suicides. Standardized contrasts are shown in Table 6. Again a 
long term convexity is observed in the slippage type contrasts, in particular 
a strong acceleration of the upward trend, or deceleration of the downward 
trend, around the 13th cohort. The cohort might look outlying by the 
outlier type contrasts. Both interpretations, however, turn out to be 
misleading by the inspection of the residuals given in Table 7. There are 
observed some large deviations. In particular along with the 13th cohort 
there are one particularly large positive element and three moderately large 
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Table 5. Number of suicides of males in Japan. 

Period 
Age 

1955-59 1960-64 1965-69 1970-74 1975-79 

80-84 940 3962 2393 2372 2511 

75-79 1916 8732 4822 5978 5539 

70-74 2591 7136 4962 4299 7028 

65-69 3280 4026 3753 4487 5726 

60-64 3541 2692 3138 4387 5632 

55-59 4033 1979 2422 3964 6083 

50-54 3415 2308 2105 3260 5807 

45-49 3176 2765 2444 2636 4369 

40-44 2552 3089 3003 3018 3103 

35-39 2800 3349 3134 3270 3250 

30-34 4443 3004 3115 3278 3256 

25-29 10029 2388 2429 2992 3083 

20-24 16033 1670 1731 2168 2642 

15-19 7054 890 937 1222 1495 
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Table 6. Standardized contrasts for cohort effects. 

Change point Differential Outlier Slippage 

2 - 1.21 4.77 - 5.58 

3 0.17 3.24 - 7.92 

4 - 2.10 - 1.41 - 9.34 

5 2.08 - 1.72 - 8.94 

6 - 5.37 - 7.21 - 8.29 

7 3.19 3.64 - 5.38 

8 - 0.30 8.86 - 4.67 

9 1.69 17.62 - 7.20 

10 8.41 23.86 - 15.24 

11 2.87 8.22 - 30.45 

12 - 3.39 - 20.40 - 48.96 

13 - 19.60 - 52.74 - 63.33 

14 - 13.63 - 31.07 - 61.12 

15 20.32 25.82 - 43.08 

16 - 7.93 19.61 - 29.49 

17 3.55 27.31 - 11.36 

negative elements. This suggests that the cohort effect should have been 
highly overestimated by the unduly large entry at the (13, 1) cell of Table 5 
and that such an outlying value should not have been observed in Table 6 
if a parameter was assigned to the (13, 1) cell. This sort of modeling is also 
suggested in Fienberg and Mason (1985). Further there is observed a clear 
age by period interaction pattern in Table 7, that is, relatively high 
observations in younger generations in periods 1955-1959 and 1975-1979, 
and in older generations in the period 1960-1974. Pearson's chi-squared 
statistic for residuals amounts to 2881 and makes the overall chi-squared 
statistic 6925 due to the cohort effects variations less significant. Tango 
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T a b l e  7. S t a n d a r d i z e d  res idua ls .  

P e r i o d  
Age  

1955-59  1960-64  1965-69  1970-74  1975-79  

8 0 - 8 4  0 2.83 6.44 2.70 - 8.90 

7 5 - 7 9  - 2.55 3.40 7.26 5.29 - 10.99 

7 0 - 7 4  - 6 .76 3.39 11.26 6.07 - 10.31 

6 5 - 6 9  - 9 .39 6.12 13.61 7.70 - 13.00 

6 0 - 6 4  - 11.26 3.20 14.49 6.79 - 9 .07 

5 5 - 5 9  - 8.87 1.67 13.79 7.26 - 10.39 

5 0 - 5 4  - 9.17 2.15 9.02 3.35 - 3.07 

4 5 - 4 9  - 4 .53 0.73 4.93 1.53 - 1.79 

4 0 - 4 4  - 3.77 0.29 2.80 0.37 2.41 

3 5 - 3 9  1.63 - 1.86 - 4 .78 - 5.95 10.57 

3 0 - 3 4  0.49 - 11.89 - 16.90 - 2.59 25.55 

2 5 - 2 9  15.81 - 10.51 - 11.09 - 11.82 17.26 

2 0 - 2 4  27.77 - 0 .27 - 12.12 - 6.34 - 0.41 

15-19  6.28 7.18 - 12.38 0.47 0 

also noted that the residual chi-squared can be drastically lessened by 
introducing 3 by 5 age-period interaction into the model, where three 
generations, younger, middle and older, are chosen somewhat arbitrarily. 
The residual analysis here suggests a 2 by 3 interaction model. The relation 
between this sort of block interaction models and the Johnson and 
Graybilrs type model is discussed in Hirotsu (1983). 

8. Discussion 

The second order differences of data are taken usually for the purpose 
of low cut as to be seen in the nearest neighbour analysis, for example. On 
the contrary it is intended in the cohort analysis to detect a systematic 
change in the cohort effect when only estimable are the second order 
differences. For the purpose the slippage type and the outlier type contrasts 
may be preferred to the naive and noisy second order differences. The 
outlier type contrasts here differ from Holford's curvature component in 
assuming three dimensional models/~il = (B ei+ ~)~1 rather than forming linear 
combinations { I - / / (B)}la .  

The model basis approach for the slippage type contrasts can be 
modified to assuming linear trends for some given numbers of cohorts 
before and after the change point, including the naive and the slippage 
types here as its two extremes. The applicability of this approach is now 
under investigation. 

Although we focussed our attention on the cohort effects here, all the 
discussions can be applied to the age or the period effects almost as it is. 
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Appendix 1 

Let H'  be the coefficient matr ix y in the equation (2.3). Then it is easy 
to verify the following two equations, 

(A.1) H'La = / ' ,  = diag [{c'c, - c'B(B'B) -~ B'cl}-t], 

and H'B = (a - 2)L'B = 0. Then we get 

] 
B' = 0 0 B'B (B'B) -1B' ' 

and therefore, 

H' = Fs(L" La) -1La . 

Appendix 2 

It is easy to verify the equation 

(j Da)-l = [ (j, j)-lj, ] 
(Da Da) -1D" ' 

and also 

1 
a - 1  

a - - i  

1 

1 
- 1  

a - i  

1 

O I l  

1 
- 1  

- i  

1 

1 
- 1  

- i  

- ( a -  l) 

(J Da) = aI. 

Then we get 

i (a -  i) } 
(Dg Da) -1 D" = diag a 

1 

i - I  

( a -  1) -l 

- ( a  - 1) -I  

i-1 

( a  - 1)- '  

... - ( a - l )  -1 

. . . .  (a --  i ) -1  

° ' '  - -  I 
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Appendix 3 

Derivation of the equation (2.8) 

Let POP' = diag ((,Oi) be an orthogonal transformation of O, ~r~l/2 be 
defined by P'  diag (to1/2) and 0 -1/2 by (O1/2) -1. Then ~s of  (2.7) can be 
written as is = C'0-1/2y with 

a-I 
C'= Da ~ (1 bi){(i b i ) ' o - l ( j  hi)}-1(/bi) '(o-l:2) ' • 

It is easy to verify the following two equations 

(A.2) C'(01/2)'Da = As(O) = diag [{b ~.~-lbi - (j ' f2 -~ bi)2/(j'Q-' j )}- l ] ,  

and 

a-1 
C'Q-1/2j = D,~O 1/2 Y, l'liQ-1/21 = (a - 1)D'Q1/2~Q-1/2j = 0 , 

i=1 

where Hi is an orthogonal  projector onto the column space of  O-m( j  hi) in 
each of which O-mj  is contained. Thus we have 

C'{Q-I/2 i (O1/2)'Da}=(O As(Q)). 

Noting the equality 

{O_1/2j (01/2),Da},{0_1/2i (01/:),Da}=[j'Oo-lJ 0 ] 
D~OD~ ' 

we get C ' =  As(QXD'QDa) -1D'Q 1/2 and therefore C'Q-I/2y = As(O)(D'QDa) -1 
• D , ~ . V .  More convenient expression (2.8) follows by virtue of Lemma (2.1) 
of Hirotsu (1982). 
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