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Abstract. The environmental density has been defined (Morisita (1971, 
Statistical Ecology, the Pennsylvania State University Press, 379-401)) as 
the value of a habitat expressing its unfavorableness for settling of an 
individual which has a strong mutual-repulsive influence to other indi- 
viduals in an environment. Morisita studied mutual repulsive behavior of 
ant lions (Glenuroides japanicus) and provided a recurrence relation 
without an explicit solution for the probability distribution of individuals 
settling in each of two habitats in terms of the environmental densities 
and the numbers of individuals introduced. In this paper the recurrence 
relation is explicitly solved; certain interesting properties of the distribu- 
tion are discussed including its relation to the generalized Eulerian 
numbers and the estimation of the parameters. 

Key words and phrases: Attraction and repulsion models, environ- 
mental density, Eulerian numbers, mle. 

1. Introduction 

Morisita (1971) was interested in measuring the habitat values related 
to an environment by individual ant lions. Ant lions are the larval forms of 
insects of the family Myremeleontidae. They are strongly mutually repul- 
sive in that they prefer sparsely settled areas to areas populated with other 
ant lions. This might be perhaps due to the reduced chances of catching 
ants in crowded areas. However, an ant lion prefers also to dig pits in fine 
grained sand rather than rough grained sand, perhaps because the ants will 
more likely fall into such pits. 

After a series of experimental studies with ant lions, Morisita present- 
ed the concept of environmental density by which the degree of preference 
for habitats can be quantitatively measured. He found that ant lions have a 
strong tendency to prefer fine to rough sand for digging pits when the 
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population density is low. This tendency gradually decreased with increas- 
ing density until almost same number of ant lions settled in both types of 
sand exhibiting the existence of repulsive interference among individuals. 

Shigesada et  al. (1979) presented a new interpretation to the idea of 
environmental density proposed by Morisita. After developing a general- 
ized differential equation, they showed that the solution of their model also 
gave the same results as that of Morisita. In order to explain his results 
quantitatively, Morisita assumed that the probability of settling in fine 
sand was proportional to the degree of unfavorableness of that habitat. In 
particular, Morisita used an experimental box containing fine sand in one 
half, side A, and coarse sand in the other half, side B. The ant lions were 
placed at the center of the box and allowed to settle where they chose. 
When a total of n ant lions had settled by digging a small pit somewhere in 
the box, the numbers in the fine sand (x) and the coarse sand (n - x) were 
counted. The experiment was repeated several times with n -- 1, 2,..., 7. 

Then letting Px(n)  denote the probability that x of the n ant lions 
settling in fine sand, Morisita presented a recurrence relation (2.6). He did 
not get an explicit solution for it. However, he used it for the parameter 
estimation and for computing the probabilities numerically. In this paper, 
we obtain an explicit solution for Px(n); establish certain interesting 
properties of the distribution, such as its relation to other discrete distri- 
butions, its relation to the generalized Eulerian numbers and moments 
recursion formula. The parameters of the model are estimated by both the 
methods of moments, and the maximum likelihood. 

2. Morisita's model 

Morisita modelled the experiment by supposing that the first ant lion 
in the box chose coarse sand with probability P ( A )  and fine sand with 
probability P ( B )  = 1 - P ( A ) .  These probabilities were defined as 

(2.1) P ( A )  : a / ( a  + b), P ( B )  = b / ( a  + b) , 

where the real numbers a and b are the degrees of unfavorableness or the 
environmental densities of the fine sand and coarse sand, respectively. 
Subsequent ant lions would most likely face a choice between crowded fine 
sand or sparsely settled coarse sand; Morisita postulated that 

(2.2) Pr (n-th ant lion chooses coarse sandlx out of (n - 1) 

are already in fine sand) = (a + x ) / ( a  + b + n - 1). 

Thus, if any ant lions are in fine sand the probability of choosing 
coarse sand is increased. Similarly, 
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(2.3) P r  (n-th ant lion chooses  fine sand ln  - x - 1 are in coarse  sand) 

= (b + n -  x -  l ) / ( a  + b + n -  1) .  

Let  {L, = x} deno te  the  event  tha t  x ant  l ions ou t  o f  n set t led in fine 
sand. Then  

(2.4) Px(n) = Pr  (L,  = x ) .  

A recurrence relat ion can be found  as follows. Define the indica tor  r a n d o m  
variables,  L,  

1 if the n- th  ant  lion chooses  fine sand with probabi l i ty  

L = (b + n -  1 - L , - ~ ) / ( a +  b + n -  1) ,  

0 o the rwise .  

Then clearly, 

(2.5) 

Now,  

Thus,  

L.=II+I2+. . .+L=L. -~+L.  

{ L  = x} = {L,-I  = x , L  = 0 1 U  {L,-~ = x -  1,I .  = 1}, 

Pr  {L, = x} = Pr  {L,-t  = x , / ,  = 0} + Pr {L,-1 = x - 1 ,L  = 1} 

= Pr  {I, = 01L.-~ = x} Pr  {L.-~ = x} 

+ Pr  {/, = IIL,-1 = x -  1} Pr  {L.-I = x -  1}. 

(2.7) P0(1) = a / ( a + b ) ,  P1(1) = b / ( a + b ) .  

We shall show in the next  sect ion that  the solu t ion  of  (2.6) with the initial 
condi t ions  as given in (2 .7) is  

(2.8) Px(n) = E , , x ( a , b ) / ( a  + b) t"], x =  0 , 1 , . . . , n ,  

with initial values 

a + x  b + n - x  
(2.6) ~ ( n ) -  ~ ( n -  1 ) +  ~ - a ( n -  1) 

a + b + n - 1  a + b + n - 1  ' 
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where E.,x(a, b) are the generalized Eulerian numbers defined in the next 
section. 

3. Generalized Eulerian numbers 

DEFINITION. For  given positive real numbers a and b, we define 
E,,~(a, b) for all x _> 0 and n > 0 by the formula 

(3.1) En, x(a, b) =i~o (-1)Jc(x,j)(a + b)tX-Jl(a + b + n)lJl(a + x - j ) " / x !  . 

If a = 0 and b = 1, then E.,~(a, b) becomes A.,x where A.,x are the well- 
known Eulerian numbers introduced in 1736 by Euler (see Takacs (1979) 
for historical notes and the references contained therein): 

(3.2) 
X 

A.,. = j__Z0 ( -1) 'c(n  + 1 , j ) ( x - j ) " .  

Therefore, we shall call E,,x(a, b) as the generalized Eulerian numbers. 

In formula (3.1) the extended factorials are defined as follows: 

(3.3) 

m trl= m(m + 1)(m + 2)...(m + r - 1), 

m It) = m(m - 1 ) ( m  - 2 ) . . . ( m  - r + 1) ,  

c(x , j )  = x ! / j ! ( x - j ) !  . 

m t°l= 1 , 

m (°)= 1 , 

THEOREM 3.1. The generalized Eulerian numbers E,,x(a, b) as de- 
f ined in (3.1) are obtained as the unique solution o f  the recurrence formula: 

(3.4) E.,x(a, b) = (a + x)E.-  l.x(a, b) + (b + n - x)E.-  1,x- ,(a, b) ,  

with the boundary conditions El,o(a,b)= a, EL~(a,b)= b, E..o(a,b)= a" 
and E...(a, b) = b". 

PROOF. First, we shall show that the numbers E,,~(a, b), as defined 
in (3.1), satisfy the recurrence relation (3.4). On the right hand side of (3.1) 
substitute (a + x)(a + x - j )"-1  _ j(a + x - j )"-~ for (a + x - j ) " ,  we get 

(3.5) E.,x(a, b) = (a + x)j~=o (- l )Jc(x ' j ) (a  + b)tx-jl 

• (a + b + n)lJ)(a + x - j ) " - l / x !  

- j~=o (-1)Je(x'j)(a + b)[X-Jl 



MORISITA'S MODEL AND GENERALIZED EULER NUMBERS 443 

• (a + b + n)lJ~j(a + x --j)n-1/X[. 

If we substitute (a + b + n )  (j) = (a + b + n - 1) U) + j ( a  + b + n - 1) tj-l~ in 
the first term of (3.5) and (a + b + n) cjl = (a + b + n)(a + b + n - 1) Ij-l) in 
the second term of (3.5), we obtain 

(3.6) E,,,x(a, b) = (a + x)jE=o ( - l ) J c ( x ' j ) ( a  + b)tx-jl 

• ( a  + b + n - l ) lJ ) (a  + x - j ) " - l / x !  

X 

+ (a + x)jX=o(-1)Jc(x,j)(a + b) tx-jl 

• j ( a  + b + n - 1)u-11(a + x - j ) " - l / x !  

- (a + b + n ) j~o( -1 )Jc (x , j ) (a  + b) t~-jl 

• j ( a  + b + n - l)lJ-l)(a + x - j ) n - 1 / x ! .  

Combining the last two terms of (3.6), we get 

(3.7) 
x 

E.,x(a, b) = (a + x) j~:o ( -1 )Jc (x ' j ) (a  + b)v'-jJ 

. (a + b + n - 1)(J)(a + x - j ) n - 1 / x !  

x - I  

+ (b + n - x) j__E ° (-1)Jc(x - 1,j)(a + b) tx-l-jl 

• ( a  + b + n - 1) c j -  11 

• (a + x -  1 - j ) " - ' / ( x -  1)! .  

The first sum on the right hand side of (3.7) is E,-1,x(a, b) and the 
second sum is E, - l , x - l (a ,b ) .  Thus, if E.,~(a,b) is as defined in (3.1), the 
recurrence (3.4) is satisfied for 0 <- x _< n. 

It is easy to verify directly that the right hand side of (3.1) yields the 
values a and b for El,o(a,b) and El, ffa, b), respectively. Since these initial 
boundary  values are satisfied, it is easy to prove that (3.1) is the unique 
solution of (3.4) by showing that it satisfies (3.4) for x = 0, I, 2,..., n, and 
n = 2 ,3 ,4 , . . . .  

THEOREM 3.2. For given pos i t ive  real numbers  a and  b, def ine 
En, x(a, b ) f o r  x >_ 0 and  n >_ 0 by  the recurrence f o r m u l a  (3.4) with  the 
boundary  condi t ions  F_,,,o(a, b) = a n and  F_~,n(a, b) = b ~. Then 
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( 3 . 8 )  ~2 E.,x(a,  b) = (a + b) t"l . 
x=O 

PROOF. Fo r  the sake of  simplicity let us write E,,,,,(a, b)=-E, , , ,  in 
(3.4). Then,  we can rewrite (3.4) as 

(3.9) En+Lx = (a + x)En, r + (b + n + 1 - x)E..~-~ . 

Summing  both  sides of  (3.9) f rom 1 to n, w.r.t, x, we get 

(3.10) 

(3.11) 

n + l  

LHS = ~ E~+I,x = E E .+I .~ -  E . + l , o -  E.+I,~+I 
x= 1 x=0  

n + l  
= ~-, E . + l . x  - a "+1 - b n + l  , 

x = 0  

el 

R H S  = Z (a + x ) E ~  + ~2 (b + n + 1 - x)E.,x-~ 
X=I x = l  

n 

= a  ~2 E ~ , x - a E , , o +  E x E ~ , x + ( b + n +  1) 52 E,,y 
x=O x=O y : 0  

n - 1  n - I  

- (b + n + l )E . , .  -y~:oYE..y -yE_oE.,y 

n 

= (a + b + n) xZO E.,x - aE.,o - bE . . .  

= (a + b + n) 
n n + l  b n + l  

- . 

Equat ing (3.10) and (3.1 1) we get 

(3.12) ~u.+~ = (a + b + n)~u.,  

n 

where  ~u. = ~__EoEn, x. Solving (3.12) recursively,  we can show that  ~u. = 

(a + b)(a + b + 1).. .(a + b + n - 1)~Uo. Thus ,  since ~'o = 1, ~u, = x~o= E,,x = 

(a + b) tnl as required.  

Now dividing (3.4) by (a + b) t"~ and noting that (a + b) t'l = (a + b + n - 1) 
• (a + b) E"-q, we have 

(3.13) 
E,,x(a, b) (a + x)  En- 1,x(a, b) 
( a + b )  t"l a + b + n -  1 ( a + b )  t"-q 

(b + n - x)  En- 1,x- l(a, b) + 
a + b + n -  1 ( a + b )  E"-q 

Compar ing  (2.6) and (3.13) we get (2.8). 
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4. Relation with other discrete distributions 

4.1 A soc ia l  a t t rac t i on  m o d e l  

Instead of the (socially) mutually repulsive assumption built into the 
model through (2.2), we could develop a mutual attraction model as has 
been done by Morisita (1971), with the following postulate: 

(4.1) Pr (n-th ant lion chooses fine sand lx out of n - 1 

are already in fine sand) = (a + x ) / ( a  + b + n - 1), 

where the positive real numbers a and b are indices of attractiveness of the 
habitats A and B. Then, corresponding to (2.6), we obtain the recurrence 
relation: 

a + x  
(4.2) e x ( n )  - ex -~(n  - I) + 

a + b + n - 1  

b + n - x - 1  
a + b + n - 1  P x ( n - 1 )  . 

The solution of (4.2) is 

(4.3) Px(n)  = e (n ,  x)(-a)CX)(-b)~"-x) / ( - a  - b)  I") . 

This probability distribution is known as the negative hypergeometrie 
distribution, which is quite different from (2.8). This has a closed form 
single expression where as Px(n)  in (2.8) involves the sum of a finite 
number of terms. 

The social repulsion and social attraction models can be related to the 
following urn sampling scheme. 

4.2 Urn m o d e l s  

An urn contains "b" white and "a" black bails. A ball is drawn at 
random and then replaced together with an additional ball of the o p p o s i t e  

color. The procedure is repeated n times. Let L, denote the number of 
white balls observed in n draws, with Px(n)  = Pr {L, = x}. 

The event {L, = x} can occur in exactly one of two mutually exclusive 
ways. Either {L~-x -- x} has already occurred and a black ball is drawn at 
the n-th draw or {L~-1 -- x - 1 } has occurred and a white ball is drawn at 
the n-th draw. Thus, using standard rules of probability, we obtain a 
recurrence relation which is identical to the relation (2.6) obtained earlier 
for Morisita's social repulsion model. 

The social attraction model can be derived starting with "a" white and 
"b" black balls initially in the above urn. This time n balls are selected at 
random such that at each draw the ball drawn is replaced together with an 
additional ball of the s a m e  color. Then, L~, the number of white balls 
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observed in n trials, obeys the recurrence relation (4.2) and the probabili ty 
distribution (4.3). 

5. Moments of P.(n) 

Let/ t(n,  r) denote the r-th factorial m o m e n t  of the distribution. That  is 

/1 

(5.1) /t(n, r) = Z x l ' l P x ( n ) .  
x=O 

From (2.6) we can find a recursion formula  for the factorial moments  (5.1), 

a + b + n - r - 1  
(5.2) /~(n, r) = /.t(n - 1, r) 

a + b + n - 1  

(b + n - r) 
+ - , - 1 )  a + b + n - 1  kt(n 1 r . 

Specializing it for r = 1 and r = 2 we can derive 

(5.3) p(n, 1) = ( n b  + c2 ) / (a  + b + n - 1), 

which is the same as the one obtained by Morisi ta  for the expected value of 
settled number  of individuals, and 

(5.4) /a(n, 2) = [2b2c2 + (6b + 2)c3 + 6c4] / (a  + b + n - 1)(a + b + n - 2) .  

The variance, o "2, is obta ined f rom (5.3) and (5.4), using the fact that  
a 2 = p ( n ,  2) + p(n, 1) - [p(n, 1)] 2, and is given by 

(5.5) 
a2 = n a b ( a  + b - 1) + c2(a + b) 2 + 2c3(a + b) + (n - 1)c3/2 

(a + b + n -  1)2(a+ b + n -  2) 

where cj = c ( n , j )  f o r j - -  2, 3,4 as defined in (3.3). 

6. Estimation of parameters a and b 

For  est imating the envi ronmenta l  densities a and b,  Morisi ta  (1971) 
utilized the ratio of the mean  number  of individuals in each of the two 
sands to the total number  of individuals introduced.  Here, we first utilize 
the method  of moments  for estimating the parameters  a and b. Then we 
consider the m a x i m u m  likelihood method.  
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6.1 M e t h o d  o f  m o m e n t s  
Let m and s 2 denote  the mean  and variance of the sample. 

equating these to the corresponding popula t ion  moments ,  we obtain 

(6.1) a = [nb + c2]/m - b -  n + 1 , 

where b is the positive root  of the cubic equation,  

aob 3 + a~b 2 + a2b + a3 = 0 .  (6.2) 

Here, 

(6.3) 

6.2 

ao = ( n 2 / m ) ( n / m  - I) - n3s , 

al = 3n2c2/m 2 - n(3n 2 + c2) /m  + 2n2(1 - 2c2s 2 + s2), 

a2 = [3nc~ + 2nm(l  - nc2)] /m 2 - n(3nc2 - 2c3) /m 

+ n2(2n - 1) - nc2s2(3c2 - 2) ,  

a3 = c2({22 - n m  + m ) 2 / m  2 + 2c3(c2 - n m  + m ) / m  

+ (n - 1)c3/2 - (c2 - 1)s2c 2 . 

M a x i m u m  l i ke l i hood  m e t h o d  
Assuming that  each ant lion responds independently,  the l ikelihood 

(6.4) k ( M"  ) p / , " ( 1 -  p,,)Mo-~" 
L ( a , b , x ) =  R=, x .  

where M~ is the total number  of individuals int roduced into the experi- 
mental  box with n individuals (n = 1, 2, .... k, k = 7) in each experiment;  x~ 
is the total number  of individuals (out of M,) entering the fine sand, and P,  
is the probabili ty of success. Success is defined as observing at least one ant 
lion in fine sand. Thus,  

(6.5) P,  = Pr  (at least one in fine sand ln individuals are introduced) 

n 

= I1 P~(n) = 1 - Po(n) = 1 - a" / (a  + b) t~l . 
X = I  

Substi tut ing (6.5) in (6.4), the likelihood funct ion becomes 

( ) [  a n ]x.[ a n ]M.-x. 
k M,  1 b)t, ] b)t, ] . (6.6) L(a, b, x) = ,~1 x, (a + (a + 
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Then  

funct ion of the observed outcome (as in Table 2) is given by 
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Maximization of equation (6.6) is not possible in a closed form since it 
is a non-linear function of a and b. Therefore, the parameters a and b can 
be obtained iteratively, using numerical optimization techniques. 

6.3 Numerical example 
The observed data in Tables 1 and 2 are from Tables 1 and 2 of 

Morisita (1971). For the observed data in Table 1, first, moment estimate 
of b is obtained (for each different type of experiment) as a root of the 
cubic (6.2) using Newton-Raphson iteration. The value of a is then 
obtained after substituting the value of b in (6.1). Final moment estimates 
of a and b are taken as the averages of the seven separate estimates of a 
and b to obtain: 

(6.7) ~ = 0.2355,  ~ = 0.7647 . 

The over all fit of the model to the data (in Table 1) is encouraging as 
determined by the low chi-square values. Moreover, our method gives 

Table 1. 
moments and maximum likelihood. 

Number 
introduced 

n 

Observed and expected distributions of ant lions by methods of 

Number of ant lions in fine sand 

x - -  0 1 2 3 4 5 6 7 

I O 3 29 
MM 7.53 24.47 
MLE 7.55 24.45 

2 O 0 19 13 
MM 0.89 21.76 9.35 
MLE 0.91 21.58 9.51 

3 O 0 7 24 1 
MM 0.07 9.78 19.77 2.38 
MLE 0.07 9.68 19.77 2.48 

4 O 0 3 17 10 0 
MM 0 2.89 16.69 9.98 0.44 
MLE 0 2.86 16.57 10.10 0.46 

5 O 0 0 10 15 4 
MM 0 0.69 9.32 15.17 3.76 
MLE 0 0.68 9.22 15.17 3.85 

6 O 0 2 4 5 9 
MM 0 0.11 3.05 10.64 7.31 
MLE 0 0.11 3.02 10.58 7.38 

7 O 0 0 1 2 4 
MM 0 0.01 0.48 3.18 4.61 
MLE 0 0.01 0.48 3.15 4.15 

0 
0.06 
0.06 

2 
0.88 
0.91 

3 
1.61 
1.64 

0 
0.00 
0.001 

0 0 
0.10 0 
0.11 0 

O stands for observed frequency, MM denotes expected frequency by 
moments and MLE denotes expected frequency by maximum likelihood. 
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Table 2. Total number of ant lions in fine sand for a total of 187 experiments. 
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Ant lions Number of Number in fine sand 
in each Number of ant lions 

Observed Estimated 
experiment experiments introduced 

n m. x. Morisita's MM MML 

1 32 32 29 28.3 24.5 24.5 
2 32 64 45 42.6 40.5 40.6 
3 32 96 58 58.1 56.5 56.7 
4 30 120 67 69.3 68.0 68.1 
5 29 145 81 81.3 80.2 80.3 
6 22 132 71 72.6 71.8 72.0 
7 10 70 39 38.0 37.6 35.9 

more or less the same over all results as that of Morisita. 
Next, we considered the maximum likelihood method. As stated 

earlier, the likelihood equation does not provide closed form solutions for 
a and b. We therefore, utilized Fletcher-Reeve (1964) optimization algo- 
rithm to obtain a global fit: 

(6.8) tl = 0.2449 + (0.315), b = 0.7928 + (0.422) , 

with an estimated asymptotic correlation of 0.943. The values in the 
parenthesis are asymptotic standard errors (obtained using formulas in 
Kendall and Stuart ((1977), pp. 246-248) of the estimates of a and b, 
respectively. We can see the advantages of this approach over the method 
of moments.  The fitted values obtained by using estimates of a and b in 
(6.8) are given in Table I. 

In conclusion, it may be noted that the maximum likelihood estimates 
are very close to our moment  estimates. However, although our estimate of 
b (by both methods) is of the same order as that of Morisita's (his estimate 
of b is 0.644), our estimate of a is about three times larger than that of his 
estimate (a = 0.086). As a consequence, our estimate of the degree of 
unfavorableness to fine sand is much higher than that of Morisita and 
hence our estimates of the number  of ant lions (Table 2) in fine sand are a 
bit lower than those of Morisita. 
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