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Abstract. An exact condi t iona l  test is developed for testing a t rend in 

Poisson means  when the historical control  in fo rmat ion  is incorpora ted  into 

the concur ren t  control  d a t a .  An  asymptot ic  condi t iona l  test is also 

developed as an alternative to the Tarone  test. Asymptot ic  gains by the 

incorpora t ion  of the historical in format ion  is evaluated. 
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1. Introduction 

To fix an idea consider the Ames Salmonella/microsome test (Ames et 
al. (1975)) which currently holds a preeminent position among the various 
tests available to genetic toxicologists for investigation of a chemical's 
mutagenicity. Table 1 summarizes the data from an experiment in which 
Poisson distributed random variables, numbers of revertants on the plates, 
are observed under each of several experimental dose level dj such that 
0 = do <dl < ' "  < dr. For each dj, let nj denote the number of observations and let 
xjk denote the observed counts, k= 1,2,..., nj. The problem to be considered is 
to test for increases or decreases in the means, 2:, associated with the 
increasing values, dj. 

Now consider the situation in which N previous experiments, similar to 
the experiment which gave rise to the data in Table I, have been performed. 
Suppose that Mt control plates have been studied in the l-th experiment, and 

Table 1. Summary of data from a microbial mutagenesis assay. 

Dose level do = 0 dt ... d, 
Replicate counts xo~,..., XO,o xH,.. . ,  x~, . . . .  x,~,..., xr,, 

Total xo. Xl . . . .  x,. 
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that Yz revertants have been observed on these MI plates, 1=1, 2,..., N. 
Assuming that Y~ for a given experiment follows a Poisson distribution with 
mean Ml2, but that the spontaneous revertant rate varies from experiment to 
experiment according to a gamma distribution, Tarone (1982) developed an 
asymptotic test for incorporating the historical control data for the analysis of 
the concurrent data. 

When small number of observations per group, nj, is used and /or  the 
mean of Poisson distribution is small, errors resulting from the use of the 
asymptotic test can sometimes be substantial. We develop in this paper the 
exact conditional test for positive dose-response, following the formulation 
by Tarone (1982). We also develop an asymptotic conditional test and assess 
the gain in incorporating historical controls. 

2. Exact conditional test 

We assume for j=0 ,  1,..., r that at experimental dose dj, there are nj 
random variables Xjk, k = l ,  2,..., nj, which are distributed independently 
according to a Poisson distribution with mean 2j. We formulate the problem 
of testing for a trend in the mean by assuming that 

2~ = H ( a  + ~ d j )  , 

where H is a twice differentiable and monotone function over (-o¢, ~¢). The 
statistical test of hypothesis of an increasing trend in the mean is given by 

H 0 : ~ = 0  vs. H ~ : ~ > 0 .  

Following the development of Tarone (1982), we assume that the 
spontaneous rate varies from experiment to experiment according to a 
gamma distribution. This enables us to assume that 20 (denoted by 2) is a 
random variable following a gamma distribution with density 

g(2) = 2"-' e x p ( - p J . / l t ) / { ( I . t / p ) P F ( p ) }  , 0 < / l  < oo , 

with p, p assumed known which are in fact estimated from historical control 
data. We defined 2=H(a)  so that a is distributed as 

f ( a )  = H ( a )  ; - t  e x p ( - p H ( a ) / p ) H ' ( a ) / { ( p / p ) P F ( p ) }  , - o o  < a < o~ . 

Since {Xjk} k= 1, 2,..., nj, j=0 ,  1 ..... r are conditionally independent and Xjk is 
distributed according to Poisson distribution with mean 2~ when a is given, the 
joint distribution of a, X0, and __X=(~ .... , Xr), where _._Xj=(XjI,..., Xj,,), is given 
by 



HISTORICAL INFORMATION IN POISSON MEANS 369 

f~(a, Xo, x)  : [I 1 exp( -n jH(a  + ~dj)) {H(a + ~ 4 ) } ~ ' ~ f ( a )  , 
- -  j : 0  fiXjk! 

k = l  

n: 

where xj .=Z 1 xj, (j=0, 1,..., r). Thus the marginal distribution of (_X0, _X) is 

 (xo, : _Xo,  )da. 

In particular, the marginal distribution of Xo is 

f o ( x o )  - - -  

1 r(xo. + p) (p//~y 
no YI Xok! F(p) (no + p/p)xo.+p , 

k = l  

which is independent of ~ Thus Xo is an ancillary statistic. Fisher (1956) 
suggests that for purpose of inference one should consider the family of 
conditional distributions given the observed value of the ancillary statistic in 
the sample. Denote byf¢(xl_xo) the conditional probability function of =Xgiven 
_Xo--_Xo. The conditional locally most powerful test (see for example, Rao 
(1973)) for H0:~=0 vs. Hi: ~>0 is given by 

T = (d logJ~(__x[ x0)/dOle:0. 

After some simple calculation we find that 

T=  (n. + p/lt) x+p [f-~{~l xj.dj- Z njdjH(a) }H(a) x''+p-2 
F(X.. q- p) j : l  

× exp{-(n. + p//OH(a)} {H'(a)}2da], 
J 

• r 

where x..=Z ° xj. and n. =~o nj. The statistic Tdepends on the response function 

H. Biological knowledge is needed to decide the functional form of H. We 
assume here the one-hit model in mutagenicity. The model leads to the 
exponential response function, i.e., H(a)=exp(a). Then we have 

r 

TE = xj 4 - n j 4  
j = I  

where 2=(x..+ p)t,q and ~=n.+p/,u. 
Denoting by to the observed value of Te, the exact p-value of the 

conditional test is given by 
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p-value = Z '  
1 e ( x . .  + p) (no + p/p)x,,.+p 

A {I X ik! F(xo.  + p) (n. + p//u) x+" ' 
j= l  

where the summation Z '  extends over all (xl,.. . ,  Xr) which satisfy Te>_to for 
given _Xo=xo. 

3. Asymptotic conditional test 

Under  H0: ~=0, the conditional expectation and variance of Te given 
_X0=_Xo are obtained as 

Eo(T~IX_o = x o )  = o ,  

Xo-+p 
Vo(TE[ Xo : xo) - 

no + p / l t  . j= l  j = l  

We consider the statistic S defined by 

. .  -t) 1/2 S= TE/{ Vo(TeI~_o. 

/[ / = Te xo. + p Z n j 4  z - n idj ~q . 
no + p / p  j=l 

Note that S is equivalent to Tarone's test statistic if Xo. and no in the 
denominator  are replaced by x.. and n.. We call the test based on S the 
asymptotic conditional test. 

We derive the asymptotic distribution of S given _)to =_Xo under H0 directly 
using the cumulants.  The k-th cumulant  of  S, denoted by ill,, is obtained as 
follows for k=  1,2,..., 6. The calculation is given in Appendix 1. Clearly fl[ =0, 

fl~ = 1, and 

1 Zr/jd9 - O2(y-rbdj) 3 

fl~ - (n.v)l/2 {Y'.rljdj: - O,(Y.rlydj)2} 3/2 ' 

1 Zv/./dj 4 - O,,3(Yq./dj) 4 1 

~ - n.v {Zqydy 2 O,,(Zqidj)2} 2 + 3 - xo-  + p  

1 z ~ j 4 '  - o . ' (zqj4)  5 
f l ~ -  (n.v)3/2 {~?/jdj2 - On(~Zqjdj)2}5/2 + 1 0 -  Xo. + p  

l '~7~rljdj 6 - -  05( '~-"~jdj )  6 

~ - (n.v)2 { z q j 4  2 - o . ( z q j a j ) 2 )  3 

1 1 
+ 15 - -  fl~ + 10 

xo. + p xo. + p 
- - / ~ -  15 

(xo. + p)2 , 
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where v= (x0. +p) / (no+p/p), O,=n./(n. +p/p) ,  and r/j= nj/n.. Therefore, when 
vb=nj/n, is kept constant (0<qj< 1) for j =  1, 2,..., r, we obtain the following 
results. 

/ ~  --" 0 a s  n .  --- ~ ,  

fl,~ -" 3/ (xo .  + p) as n. -~ oo , 
f l ~ 0  as n . - - , ~ ,  
fl~ --" 30/(x0. + p)2 as n. --, 

and 

The limits offl~ and fl~ depend on Xo., because the conditional asymptoticity is 
considered conditioned on _X0=_o. However it would be reasonably well to 
expect that xo. goes to infinity as n.---~. Thus fl~ and fl~ go to 0 as n . ~ .  
Eventually we may prove that the uncondit ional  asymptotic distribution of S 
under H0 is the standard normal.  The size a rejection region of the test based 
on S is, therefore, approximated by: 

S>_za, 

where za is the upper 100a% point of the standard normal distribution. 

4. Assessing the gain 

We first consider the asymptotic power of the conditional tests under the 
sequence of the alternative hypotheses, 

H l n :  ~n = ~ln "112 for given 6 > 0 .  

Hereafter we fix p=E(2 )  finite and let n.---~ by keeping rb=n/n, constant 
(O<qj< 1). 

THEOREM 4.1. Under the sequence of  the alternative hypothesis HI, 
the asymptotic power of  the test based on S is given by 

(a) for p fixed 

lim Pr {S  _ z.}  = E[q~{gH'(H-1(2)) B(1)/2 m - z . } ] ,  
n . ~ o v  

where 

B(O) = {zptjaj 2 -  o (zqj@2} 1/2 , 

H' is the derivative of  H, and the expectation is respect to the distribution of  2. 
(b) If  p---~ such that O,=n./(n.+p/p)--'O (0<0<_1) as n.--,~, 

lim Pr {S -> za} = clJ{6H'(H-l(,u)) B ( O ) / f l  1/2 - 7.a} . 
n . ~ o o  
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PROOF. See Appendix 2. 

We next consider the asymptotic gain due to the incorporation of the 
historical controls. If the historical controls are not incorporated, the square 
root of Armitage's test (1955) for a linear trend in the Poisson mean may be 
applied for testing H0:(--0 vs. H~: (>0.  This test rejects the null hypothesis if 

Y = xj.  - E n j a j  n a/- n .  _> zo 
j= 1 j= 1 

where E = x . . / n . .  Through similar arguments as the above theorem, the 
asymptotic power of this test under H~,: ~,,=3/n. ~/2 is obtained as follows. 

lim Pr {Y _> z,} = q~{6H'(H-~(2)) B(1) /2  ~/2 - z~}. 
M . ~ e ¢  

Therefore, supposing that p---~ as n.---~, Pitman's asymptotic relative 
efficiency of the conditional test with respect to the test which does not 
incorporate the historical controls is given by 

ARE (S f  Y)  = {B(O)/ B(1)} 2 , 

which is equivalent to that given in the binomial case by Yanagawa and Hoel 
(1985). 

5. Example 

We shall now apply the above exact conditional test to the example given 
in Tarone (1982). The data is reproduced in Table 2. From his paper we get 
fi= 12.20 and/~=8.35, which have been estimated from historical data. Since 
~//~ is not large compared to n.=15, it is expected that the gain of 
incorporating historical controls would not be substantial. In fact, using the 
maximum likelihood estimates in place of p and p, we have approximately 

ARE ( S L Y )  = 1.055. 

Now consider the p-value of the exact conditional test. We must calculate 

Table 2, Summary  of microbial mutagenesis assay data for benz(a)anthracene using TA 1537.* 

Dose level 0.0 0.3 1.0 3.3 10.0 
Replicate counts 4,2,4 4,6,8 7,6,8 4,8,4 13,13,9 

Total 10 18 21 16 35 

*The data is given in Tarone (1982). 
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the negative multinomial probabilities on the set 

{(xl,..., ~)1TE --- to = 130.7 for given _X0 = (4, 2, 4)}. 

Different from the binomial case considered by Yanagawa and Hoel (1985), 
xjk can take values from 0 to infinity. Whereas the negative multinomial 
probabilities vanish quickly when xj. tends to large. We developed an efficient 
computer algorithm taking these points into account. Thep-value obtained is 
5.0402× 10 -4. For the asymptotic conditional test we find that S-3.954, with 
an associated p-value of 3.8517 x 10 -5. The difference of thep-values indicates 
that the normal approximation in this range of probability is not so good. We 
suggest to use the exact conditional test. Unfortunately, however, the 
calculation of the exact p-values in this range of probabilities in our program 
takes large computation time. It would be needed to develop a more efficient 
computer program for the exact conditional test to be used in practice. Note 
that Tarone's test for incorporating the historical control data provides 
~2= 11.45, with an associated one-sided p-value of 3.6× 10 -4. The p-value is 
closer to the exactp-value than the conditional asymptotic test. Tarone (1982) 
obtained his test by considering a random variable an unknown parameter. 
The values of the cumulants of S, which are all equal to zero for the standard 
normal distribution, are calculated as follows. 

fl~ = 0.38635, i l l=  0.25843, fl~ = 0.21181 and f i t= 0.22288. 

Finally we note that if the dose levels are equally spaced, say A, then the 
continuity correction by means of A/2 should be applied to the numerator of 
the asymptotic conditional test. This improves the approximation of the 
asymptotic test to the exact test at thep-values near 5% or 1%. However, the 
improvement is generally negligible at the range of small p-values like that in 
the example. 

Appendix 1 

Calculation of the cumulants of S 

Putting 

U= Z cjxj. 
j=l 

r 

where cj=c~-~lnkdk/Jq ( j= 1, 2,..., r), we have 

Eo(Wlxo)  - Xo. + p n j 4  
- n .  + p / p  J=~ ' 
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Vo(U[xo , -  Xo .+p  {~n,  d j 2 _ ( ~ n ,  ds.)2lh} 
- no + PIP m j=1 

S = TE/{ Vo(TEI ___0)} 1/2 = { U - E o ( U I  xo)}/{ Vo(Ulx_o)} u2 . 

Putting ~=0 in the argument in Section 2, we obtain fo(xo, x), the joint 
probability function of (_X0, X) under H0 as follows. 

f <~ ns ~ xsk 
fo(xo, x) = (-I II - -  exp(-n) . )g(2)d2 

j=O k=l Xjk! 

[I k~ Xjk ! g=o 

1 

(p/~)~ 
f;2 x+p-' exp{-(n. + p/lu)2}d2 r(p) 

F(x.. + p) (p/py 
lZl k~ Xjk! F(p) (n .  + p/p)x. .+p • 
j=O 

When _X0=_xo is given, the joint conditional distribution of =X=(X1,..., _X,) is 
given by 

f o ( x l  xo) = fo(xo, x)lfo(xo) 

1 F(x.. + p) (no + p/~)xo.+~ 

- f i  f i  xj,! r(xo.  + p) (n. + p /u)  ~+~ ' 
j=l k=l 

which is a negative multinomial distribution with parameters xo.+p and 
l / (no+p/p) (Johnson and Kotz (1969), p. 292). Thus the conditional 
characteristic function of =X given _X0=x0 is given by 

6~(t , , , . . . ,  tin,) 

= E{exp(i~k~tjkxjk)} 

-- [ n° + P /P ]x°'+; + ~-/--p 1 1 ~, ~ exp(itjk)]-txo'+P' 
n. + p /p  j=l k=l 1 

Therefore the characteristic function of U is obtained as follows. 
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- [ n° + P / P ]x°+P +-p--~ 1 

_ [  n o + p / p  1 

1-(xo.+p) 
1 E E exp(iqt) l  

n. + p/ l t  J=~ k=l \ t j  

1 , . . l - ( x ° ' + P )  

n. + p//a :En: expqqO]  

Thus  denot ing  the k- th  cumulan t  of  U by ilk, the cumulan t  genera t ing  
func t ion  of  U is 

~u( t )  = logckv(t) 

= - (xo. + p)log~ l 
( 

= - (xo. + p)log{ 1 

fl' (it) + ... + flk 
= 1--~. -~. (it)g + "'" 

1 ( 1 ~ n j q ) ( i t ) + . . "  
+ ~ no + Rift j=l '( l 

+ -~. no + p / p  j=l 

+ ~ (it) + ' . .  + ~ (it) k + . . .  

where  

1 = ~ njcj k (k = l, 2 , . . )  ak - - Ak and A k  j : l  
no + p / p  

F u r t h e r m o r e  expand ing  logar i thmic  func t ion  using the re la t ion of  the 
cumulan t s  and the m o m e n t s  (see for  example ,  Kendal l  and S tua r t  (1977), 
p. 72), we have by  put t ing v=(x0. +p)/(no+p//a) and y=  l / ( n o + p / g )  

fll = - (xo. + p)al = vA1 , 

: - (xo. + p)(a  - : v(A  + y a h ,  

f13 = - (Xo. + p)(a3 - 3ct2cq + 2u~) 

= v(A3 + 3yA2Al  + 272A~) , 

f 1 4  = - (xo- + p)(a4 - 4a3a1 - 3a~ + 12a2a 2 - 6a  4) 
2 2 ~  - -2  = v(A4 + 4yA3A~ + 3yA22 + 1 y A2A~ + 6y3A 4),  

f15 = - (Xo. + p)(as - 5a4al - lOa3a2 + 20a3a 2 + 30a~al 

- 60a2a~ + 24a~) 

= v(As + 5yA4A1 + IOyA3A2 + 20yEA3A~ + 30yZAZAI 

60 3 ~ - 3  + y A2A~ + 24~,4A~), 

f16 = - (Xo- + p)(a6 - 6asai - 15a4az + 30a~a 2 - 10a~ 

+ 120a3a2al - 120a3a~ + 30a~ - 270a2a~ 

+ 360a2u 4 - 120a~) 
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= v(A6 + 6yAsA~ + 15?A4A2 + 3072A4A~ + 10yA~ 
27" 3--2--2 + 12072A3A2A, + 120y3A3A~ + 30y2A~ + oy a 2 a ,  

+ 36074A2A 4 + 120ySA}) . 

we represent each Ak by using Bk=~:. njdj k (k= 1, 2 .... ,6).  Now 
i I 

Z l =  

A2 = 

A 6  = 

n j c j -  no + p / l t  Bt , 
j=l /~ 

- 2 ~  + (n. - no) B~ 
njc f  = B2 + ~2 , 

j= 1 n 

j : l  ~ n j c j 6  = B 6  - 6 --nl BsB1 + 15 --n 12 B4B~ - 20 ~-~1 B3B3 

14 -6r~ + (n- - no) B 6 + 15 - -  B2B 4 + --6 • 
/7 /7 

Then the cumulants  of U are obtained as follows. 

x0- + p  
fl, - B, (=Eo(UI xo) ) ,  

n. + p / p  

/~_ xo. + p  ( B 2 -  B~/~) ( = V o ( U l x o ) ) ,  
no + p/I t  

no + p/lu 

~4  __ Xo" + /0 ( n 4  - B 4 1 / n  3) -4- 3 1 
no + p i p  xo. + p 

/~ _ xo. + p (B~ - BI~t,~ 4) + l o  
no + p/ I t  xo. + p 

1~6 --  X0- -~- p (B6 - B6/~q 5) + 15 1 
no + p i p  Xo. + p 

1 1 
+ l O - - ~ -  ~5 ~ 

Xo. + p (Xo- + p)2 • 

~, 

~,& , 

f l4~2  

F r o m  the cumulants  of U, it is s t raightforward to obtain the cumulants  of S. 

Appendix 2 

Proof of Theorem 

Define 2 , = H ( a + ~ . d j ) .  ~n=6/n .  t/2, 2 = 2 o = H ( a ) .  then under  Hr. the 
condit ional  expectation and variance of T~ condi t ioned on 2 are 
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En(T~t 2) = n.{Y~qj(aj-  O,Z~qk&)(,~nj- 2) + ( l  - 0,)(,l - ~ ) E q j 4 . } ,  

Vn(Tel  2) = n.{Er/j(dj - O,,Y_,qkdk)22nj + qo(0,Er/~dj)22}. 

An = V n ( T e l a ) l n . G ,  

R,, = E n ( T E I k ) / ( n .  Cn) 1/2 , 

Cn - xo.  -}- p {y~l,/jdj2 _ On(~t l jd j )2}  ( = V o ( T e l x o ) / n . )  , 
no + P/l* 

un = { T ~ -  En(T~Ia)}I{Vn(T~I2)} '/= , 

then we may express 

(a) 

Now since 

I[  A 1/2 
S =  , - ,n~n + R n  . 

For  p fixed, clearly 0,--  1 as n.-- ,~,  and 

!!m Pr {S_> z~} = E[!!m Pr {Un >_ ( z ~ -  Rn) /A~ /2 l ) t } ] .  

n.l/z(1 - 0,,) = n. 1/2 P/IL --* 0 , 
n. + p/lu 

n.1/2(2,,j - 2) = n?/={H(a + ~ . 6 / n .  1/2) - H(a)} 
--; di tCH'(a) , and 

(xo. + p)/(no + p//~) --. ,~, 

in probabili ty as n.---~, we have conditionally 

Rn --" 6 n ' ( a )  {Y.qjdj  2 - -  (~"41j4")2 }1/2 / 21/2 
= a l l '  (H- ' (2))  B ( 1 ) / 2  '/2 , 

and An--* 1 in probability as n.---~. Thus 

lim Pr  {Un >_ (z~ - Rn)IA' . /21a} 

= q~[{6H' (H-~(2)) B ( 1 ) I  2 ' / = -  z,~} I'~1. 

Therefore,  the result follows. 

377 
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(b) When  p ~ o o  as n . - - -~ ,  the cond i t ion ing  is not  needed.  It is 
immedia te  to see 

2 ~ / L  and (xo. + p ) / (no  + p/ ,u) ~ it 

in p robab i l i ty  and tha t  U. converges  to  the s t anda rd  no rma l  d i s t r ibu t ion  
uncond i t iona l ly  as n . ~ .  We first suppose  0 . ~ 0  or  l as n .~oo .  Since 

E {n)/2(l - 0.)(2 - / t ) }  = 0 ,  

E {n.m(1 - 0.)(2 - / 0 }  2 = 0.(1 - 0 . ) /z ,  

we have 

2.j - -  fl and n . ' / z ( 1 - 0 . ) ( 2 - / l ) - - O  as n . ~ o o .  

F u r the r  

There fore ,  put t ing 

n . 1 / 2 ( 2 n j  - -  2 )  --" ~ 6 H ' ( a )  as n. - -  

R = 6 H ' ( a )  { £ r b 4  .2 - O(Eqjd j )2} /#  '/2 = 6 H ' ( H - ' ( / t ) )  B(O) / i  ~'/2 , 

it fol lows that  A . ~ I  and R . - - ' R  as n . ~ .  Thus  

lim Pr  {U.  >- (z~ - R . ) /A~/2  } 
n , 4 0 o  

: @ { 6 H ' ( H - I ( I ~ ) )  B(1) / /u  '/2 - z~) . 

Next  we suppose tha t  0.---0 ( 0 < 0 <  1) as n . - - -~.  We have 

A.  Zqja j  2 - 0(2 - o)(xqjaj )  2 
~ / ~ j d j  2 _ 0 ( ]~? ] j4 )2  = A as n. --- 

and R.  is asymptot ica l ly  equivalent  to 

B V . +  R ,  

where  

B ~-- {0(1  - 0 )} l / 2 (~ ,~ jd j )  { ~ j ~ 2  _ 0 ( Y ~ j d j ) 2  }-1/2 , 

Vn = { n . ( 1  - 0)}1/2(2 - / .~) / ( / .A0)  1/2 . 
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Therefore S is asymptotically equivalent to Wn+R, where 

Wn = AI/2 Un + BVn . 

Since Un and V. are asymptotically standard normal variates, it follows that 
W. is also asymptotically standard normal variate. Thus 

lim Pr {S >_ z~} = lira Pr { IV. + R _> z~} 

= ~b {OH'(H-*(~t)) 0 ( 0 ) / [ l  1/2 -- ga} . 
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