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Abstract. Higher order asymptotic expansions for the distribution of 
quadratic forms in normal variables are obtained. The Cornish-Fisher 
inverse expansions for the percentiles of the distribution are also given. The 
tesulting formula for a definite quadratic form guarantees accuracy almost 
up to fourth decimal place if the distribution is not very skew. The 
normalizing transformation investigated by Jensen and Solomon (1972, J. 
Amer. Statist. Assoc., 67, 898-902) is reconsidered based on the rate of 
convergence to the normal distribution. 
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I. Introduction 

The distributions of quadratic forms arise in a variety of problems in 
statistics. A number  of authors have studied the distribution problems. Work 
has been done on the derivation of both exact and approximate distributions, 
and tables of percentiles and probabilities have been prepared for selected 
values of the parameters. A comprehensive survey of the pre-1970 work in this 
area, including applications, is given by Johnson and Kotz ((1970), Chapter 
29). For related work, see Gupta et al. (1975), Gupta and Chattopadhyay 
(1979) and references given therein. 

It may be emphasized that the problem of actually tabulating percentiles 
and probabilities using earlier results still remains to be investigated. Exact 
distribution expressed as an infinite series is not convenient for computations,  
where numerical difficulties increase rapidly with the number of variables 
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involved. In order to avoid the numerical difficulties arising from the series 
representations, several approximate methods have been proposed (see, e.g., 
Jensen and Solomon (1972) and Solomon and Stephens (1977)). The common 
weakness of approximate distributions suggested previously appears to lie in 
accuracy. It is desirable to obtain more accurate approximations which yield 
percentage points and probabilities for various combinations of parameter 
values. 

The purpose of this paper is to derive higher order asymptotic expansions 
for the distribution of quadratic forms in normal variables. In Section 2 an 
asymptotic expansion is obtained for the distribution of a transformed variate 
of a definite quadratic form (positive definite case) and expressed as power 
series in terms of the first moment. The resulting formula is accurate almost to 
fourth decimal place if the skewness of the distribution is not so large, as will 
be seen in Section 4. In order to obtain the desired percentiles, Cornish-Fisher 
inverse expansion is also given. Section 3 deals with the case of an indefinite 
quadratic form in normal variables. In the Appendix the normalizing trans- 
formation given by Jensen and Solomon (1972) is shown to be derivable from 
the viewpoint discussed in Konishi (1981). 

The REDUCE-I l l  system (Hearn (1983)) has been used to obtain many 
coefficients in this paper. 

2. Definite quadratic form 

2.1 Asymptot ic  expansion 
Let X1, X2,..., X~ be independent standard normal variables, and let 

2=(21, 22,..., 2k) and/~=(/tl,/~2,..., Pk) where 2j and/tj are constants. In this 
section we assume that 2j>0, j= 1, 2,..., k. Then the distribution of a definite 
quadratic form in normal variables is the same as that of 

k 
(2.1) Qk = Qk(2,/~) = j£ 2j(Xj -/~j)a, 

where 2 hasp (<_k) distinct elements 2{, 2L..., 2~; with multiplicities v~, v2,..., vp, 

respectively, so that v~ + v2 +... + Vp = k. 
It is known (e.g., Johnson and Kotz (1970), p. 153) that the r-th cumulant 

of Qk is 

(2.2) to* = 2 r - l ( r -  l)!mr , r = 1, 2,... , 

k r 2 where mr=£  2~(1 +rpj). We assume that for the mean x*=mi of Qk 
j= l  

(2.3) wj -- mflml = O(1) for j - -  2, 3,... , 
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as ml tends to infinity. Then the standardized quantity 

(Qk-mOI 2,v12-m2 = ~ { ( Q U m , ) -  l } l ~ l m l ,  

is asymptotically normally distributed with mean 0 and variance 1 as 
m ~ -  +o~. This standardized form suggests to derive an asymptotic expansion 
for the distribution of QU m l itself in terms of m l. However, Niki and Konishi 
(1986) have pointed out that a higher order asymptotic expansion for the 
distribution of the statistic itself, e.g., a chi-square variate and a sample 
correlation coefficient in a normal sample, could be much less accurate in the 
tail for a small sample size. They also have shown that this weakness may be 
overcome by the use of normalizing transformations like Wilson and 
Hilferty's (1931) cube root transformation for a chi-square variate and 
Fisher's ( 1921 ) z-transformation for a sample correlation coefficient. A higher 
order asymptotic expansion for the distribution of a transformed variate 
gives, in general, extremely high accuracy over the whole domain of the 
variate. Niki and Konishi (1984) obtained an asymptotic expansion for the 
distribution of Fisher's z for a sample correlation coefficient, up to terms of 
order of the reciprocal of the fourth power of the sample size, and showed that 
the resulting formula guarantees accuracy to five decimal places even when 
the sample size is as small as 11. A general procedure for finding normalizing 
transformations was given by Konishi (1981). 

A normalizing transformation of QU ml is given in the form 

-- - -  - 1 -  h ( h -  1)w2 , 
ml mt 

where h= 1 - 2mlm3/(3m 2) and w2 = m2/ml. 
The derivation of the transformation, including the concept of normaliza- 

tion, is outlined in the Appendix. Jensen and Solomon (1972) obtained the 
quantity (2.4), by using the approach discussed in Wilson and Hilferty (1931), 
and suggested to approximate the distribution of Tk by a normal distribution 
with mean 0 and variance 1. To improve upon this approximation based on 
the asymptotic distribution of Tk, we obtain an asymptotic expansion for the 
distribution of Tk up to the terms of order mi 3. 

The characteristic function of Tk can be expressed as 

(2.5) 
1 

exp ( - -~  tZ) exp {xl(it) + 
(x2 -  1)(it) 2 + ~ ~y(it)J} 

j=3 j[ + 0(m-17/2) '  

where xj is the j-th cumulant of Tk and the orders of expansions of the 
cumulants are of the form 

xl = O(m71/2) , x2 = I + O(m] 1) , xj = O(m-1 j/2+l) , j >- 3 . 
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Expanding (Ok/m1) h in a Taylor's series around Qk/m~=l and taking 
expectations term by term with the help of (2.2), we obtain the first eight 
cumulants of Tk each of which is expanded up to terms of order m~ 3. 
Substituting the cumulants into the characteristic function (2.5) and inverting 
the result give an asymptotic expansion for the distribution of Tk. The result is 
summarized in the following theorem. 

THEOREM 2.1. Under the assumption that wj=mflm~=O(l) for  j=2,  
3 .... , an asymptotic expansion for  the distribution of  Qk = Qk(2, It) defined by 
(2.1), as ml--.o~, is given by 

( 2 . 6 )  

m 1 
m ,  _ m~ 

= ~ ( x ) -  ~(x)( ~, m-//2aj)+ O(m-17/2) 
j=l 

where m, and h are given in (2.2) and(2.4), respectively, ¢~(x) ands(x)  are the 
standard normal distribution function and its derivative and the coefficients aj 
are given below. 

a l = 0 ,  

a2 w-3{ (1 20 2 ) ( 2 2w2)} ~- 2 H3 ~ W4W2 -- ~ W~ -~ -~ W3W~ Jr nlw3 - -~ w3 Jr ~ 2 , 

{ ( 2  4 76 1 2 2 1  4) 
a3 = X/~w29/2 1-14 -~ wsw~ - 3 w4w3w2 + -~ w~ + -~ w3w2 - -~ w3w2 

4 2 w 4 +  w4w + 

+w~ ~ w ~ + ~  3 2 , 

a, w-6{ ( l w ~ w ~  10 l = ~ 1-I7 ~ , ~ - ~ w~w~w~ + ~ w4w~w~ 

4 o  
+ ~ ~ w3w2 + w3w2 

2 ~ 8 2 7 5 56 4 
+ H~ ~ w6w2-  ~ wsw~w2 + ~ w,w~w2 + ~ w, w3w~ + ~ w3 

1016 3 2 32 2 4 2 ) 
405 w3w2 + ~ w3w2 + -~ w3w 6 

( ~ 2 104 16w,w3 l l06w] 
+ H 3 w 3  - - -  w s w 2  + -~ w 4 w 3 w 2  + -~ -  - 24---~ 



DISTRIBUTION OF QUADRATIC FORMS 283 

76 2 2 2 w 4 4 ) 
- -~  w~w~ + ~ ~w~ + -~ w~ 

28 8 560 w 3 _  392 2 2 
+ n,w~ -~  w4w~w~ + ~ w,w~ - ~ --ff  w~w~ 

2 o  , ~)} 
27 w~w2 + 2w2 

W/2w215/2 { ( l w s w a w 3 2 8  2 2 4  2 2 2  ~5 = I"18 ~ ~ WsW3W2 "Jr- " ~  W5W3W 4 -- "~ W4W3W2 

118 13 2 3 1 1520 
"~- ~ W,W3W2 -- " ~  W4W3W2 -- - ~  W4W3W52 -- ~ W~ 

2187 
92 4 2 26 3 4 2 W2 6~ + - f ~  w3w2 + - ~  w 3 w 2 -  ~ 3w2) 

( 4 w 7 w ~ _ 8  148 2 2 8 7w2w 2 + m -~ -~ w6w3w~ + ~ wsw~w2 + -~ wsw3w~ - ~ , 3w2 

508 14 2 3 H w4w3w52 19016 w~ 
+ -if-f- w4w]w2 - -~- w4w3w2 - 3645 

70 4 2 556 3 4 34 2 6 4 ) 
+ ~ w~w2 + - ~  w3w2 - g-f w3w2 - ~ w3wl 

( 2 0  56 20 6 7 2  
-- -- W4W3W2 + H,w~ - -  w6w~ + T wsw~w~ + Y w~w~ - -  

391 w4w3w32_ 416 w4w~ 2168 w~ + 3124 w3w 2 1012 2 4 
18 - 40--3- - ~  ~ 2 + - - ~  w~w2 

4 6 4 w 8) - '~  w3w2- 3 2 

80 wsw3w~ + 16 4 328 w4w~w2 196 W4WaW~ 
+ I¢2w~ T T wsw2 - 5-4- - T 

28 ~ 1316 4 3394 3 2 1360 2 4 14w3w6_4w8) 
3 w4w2 + - - ~  w3 + - ~  w3w2 + ~ w3w2 + 

8 2 4 W4W3W~ 4 w4wS2 + 88 248 3 2 + w~ - ~ w,w3w2 - -~ - -~ - ~  w'~ + ~ w3w2 

18___~_ 2 4 22 4 28)} + w3w2 + ~ w~w~ - -~ w , 

{ 4,OOw, a6 = w29 Hll w4w2 - w4w3w2 + w4w3w2 + - ~  

20 3 3 1 2 5 4000 w 6 
243 w4w3w2 + -ff~ w4w3w2 59049 3 

400 5 2 40 w4w4 4 3 6) 
+ 6 - ~ w 3 w 2  2187 3 2 + 2 - ~ w 3 w 2  

(1  4 4 0  2 3 4  2__~ 2 4  12 
+ m ~ ~ w , w ~  - -ff-f w~w~w~ + ~ w,w~w~ + w~w~ - T w~w4w~w~" 
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368 3 2 68 2 4 4 109 2 2 2 
+ ~ wsw3w2- ~ wsw3w2- ~ wsw3w 6 + 5-d w,w3w2 

3 2 4 5356 4 788 3 3 32 2 5  1 7 
+ -~ w, w3w2 - 121---'-5 w,w3w2- - ~  w4w3w2 + "-~ w4w3w2 ~ -~ w, w3w2 

6304 19736 5 2  2927 4 4  106 3 6  17 w2w8 ) 
+ ~ w 6 + ~ w3w2 3645w3w2-121----5w3w2+~ 3 2 

( 16 4 7 6  2 3 2 8  48 3 
+ 1-17 w8w~ -- - -  w7w3w2 -~- ~ w6w3w2 q- ~ W6W3W~ -- T w5w4w3w2 

4336 3 2  1552 2 4  104 6 ~ 2 z 2 
+ - - ~  wsw3w2 135 wsw3w2 - ~ wsw3w2 + - -  wnw3w2 

16 2 4 12233 4 682 3 3  325 2 5  7 
+ -~ w4w3w2 243 W4W3W2 -- ~ W4W3W2 -1- - ~ -  W4W3W2 ~- 2W4W3W2 

4275352w~ + 1120492 5 z 285704 4 4  31132 3 6  
+ 22963~ 7654----~ w3w2 2551----~ W3Wz 8505 w3w2 

2872 w2w 8 8 1o) 
+ 2 - - ~  3 2 + - ~  w3w2 

496 W6WsW~ + 16w6w~ 5416 2 2  + Hsw3 - 16w7w 4 + -if '-  - 13----'5- W5W3W2 

1012 4 244 266 2 2 28  2 4 7 0 0 0  3 
15 w~w3w2- 7 w~w6 + T w4w3w2 + T w4w2-  8--5- w,w~w2 

220 2 3  214 1732396 w~ + 23480 4 2  
~- - - ~  W4W3W2 ~- T W4W3W~ "~ 17w, w~ + 32805 ~ w3w2 

13954 3 4  7900 2 6  778 8 wtO] 
243 w3w2 243 w3w2 + ~ w3w~ +-~ 2 ] 

1040 3 160 1984 2 2  896 4 
+ I4~w~ -5-4- w6w~w~ + y w6w~ - 2---4- w~w3w2 -~ w~w~w~ 

272 3 2668 
- 32wsw~ + ~ WaW3W2 + ~ WnW~W~ + 132w,w3wS~ + 44w4w~ 

55616 1040 4 2  2552 3 4  2216 2 6  
+ 2-i-U w~ + 5 ~  w3w~-  2---4- w~w2-  2---4- w~w~ 

1,2 ~4~ ) 
+ - - ~  w3w2 + - -  w~ ° 

64 160 4 32 6 160 W4W]W2 
+ I4~w3 - - (  w,w~w~ ~ w~w3w2- T w~w~ + T4- 

196 w~ 3932 waw z 784 2 3  416 W4W3W52 -~- 24W4W7 + ~ 729 3 2  ~- ~ W4W3W2 ~- "~ -- - -  

7 0 8 1 3 4 3 3 5 8 w 2 w 6  ~7 w3w82 + 4_~ w~O)} 
243 w3w2- 8---(- 3 z -  

Here ~ is the Hermite polynomial o f  degree j. For j= 1, 2, . . . ,  10, these are 
given in Kendall and Stuart ((1977), p. 167) and for  j= 11,... ,  15, in Niki and 
Konishi (1984). 
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It is interesting to note that the term of order 1 / ~ in the asymptotic 
expansion (2.6) reduces to zero, which will be discussed in the Appendix. 

In the case when Itl=p2 . . . . .  Itk=0 in Qk = Qk(2, lt), the formula (2.6) 
yields an asymptotic expansion for the distribution of linear combination of 
independent chi-square variables. A number of papers have been published 
on the distribution of Qk(2, 0). Among them, an approach based on linear 
differential equation by Davis (1977) appears to be useful for computation. 

If 2=(1, 1,..., 1)=e, say, in Qk(2, It), then Qk(e, It) has the noncentral 
chi-square distribution with k degrees of freedom and noncentrality para- 

meter a~2=j~ It2. An asymptotic expansion for the distribution of Qk(e, It) is 
1 

given by (2.6) with 

(2.7) 
mr = k + r¢o 2 wj = (k + jo~z)/(k + ¢o z) 

1 h = ~ + 2¢o4/{3(k + 2092)  2 } . 

In the special case when 2=e and It=0, Qk(2, It) has a chi-square 
distribution with k degrees of freedom, for which (2.7) further reduces to 
m,=k ,  wj=l and h--1/Y In this case the formula (2.6) gives an asymptotic 
expansion for the distribution of the cube root transformation of the chi- 
square variate Qk(e, 0). A multivariate extension of the quadratic forms has 
been discussed by Khatri (1966) and Hayakawa (1966). 

2.2 Cornish-Fisher expansion 
The asymptotic expansion (2.6) can be used to calculate the probability 

Pr[Qk<q0] for an assigned value q0. To obtain desired percentiles of the 
distribution of Qk(2,it), the Cornish-Fisher inverse expansion is very 
convenient. The method suggested by Hill and Davis (1968) is useful for 
deriving the expansion of this type. 

Suppose that an asymptotic expansion for the distribution of a certain 
variate Xn has the form 

oo 

Pr[X. < x] = q~(x) - 9~(x)~1 Aj(x)n-J/2 

We take uo so that, for an assigned probability (1 - a), 1 - a= Pr[Xn<x~]- ~(u~). 
Then the Cornish-Fisher inverse expansion for x~ is given by 

x~= u~ + E DIrl - Aj (u  r! , 
r=l j=l u = u a  

where DI1} denotes the identity operator and 
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DI~) = (u - D,)(2u - D,) --. { ( r -  1 ) u -  D,} for r = 2, 3,... , 

with D,,=d/du, the differential operator. 
Applying this general formula to our problem, we have the following 

theorem. 

THEOREM 2.2. The Cornish-Fisher inverse expansion for the percentile 
q~ of  the distribution o f  Qk(2, Iz) defined by (2.1) is given by 

q~ = ml{(2h2w2/ml)l/2x, + 1 + h(h - 1)w2/ml} 1/h 

and 

(2.8) x~= u~ + ( E m-lJ/2bj) + O(m-i 7/2) 
j=l 

where m, and h are, respectively, defined in (2.2) and (2.4), u~ is the percentile 
point o f  the standard normal distribution and the coefficients bj, using the 
notation wj=mj/ml for j=2, 3,..., are given below. 

hi  -~- 

b2 = w3{u  l' ) ,4 )} 
{ ( 2  2 4 7 6 w ] + 1  2 2 1 4) b3 = W~w29/2 u 4 ~ w5w2 - -~ w ,  w3w2 + - ~  -~ w3w2 - -~ w3w2 

12 2 272 2 w2w2] 
+ u 2 - - ~  wsw: + 6w4wsw: --if-f- wl - ~ 3 2] 

6 2 62 w~ } 
+ -~ W5W2 -- 2W4W3W2 + ~ 

b4 w-6{ usa( 2 8 2 9w2w2 2 1 = 2 -~ W6W 3 -- -~ WsW3W2-  -~ 4 2 ~- 6W4W3W2 + -~ W4W3W~ 

I144w~_ 52 wSw2 2 2 4 2 ) 
405 1 ~  3 2 - w3w2 + T5 w3w6 

20 W6W3 -}- 64 2 2 z 367 2w 
+ u~ - T T wsw3w2 + 9w, w2 ~ w,w3 2 -  w, w3w~ 

4144 20 3 2 8 2 4) 
+ ~ w~ + ~ w3w2 + wsw2 

+ Ua( lOw6w~ 24w,wsw22 8-~ w2w2 113 - - - -  . 2 + - -y-  w,w~w2 

4 w~w2,}  350 w~ + 3 2] 
27 
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( 4  4 8 12 64 2 1 
b~ = ~ w ~  ":~ u~ ~ w~w~ - ~ w~w3w~ - T w~w,w~ + -~w~w~w~ 

4 4 T W4W3W2 81 "~ W4W2W~ -- -~ W4W3W~ + - ~ W s W 3 W 2 + 2 0  2 2 I192W4W]W2__2 2 

59392 W~ + 256 W4W 2 64 W3W4 8 W2W6 4 ) 
+ T O - ~  - ~  ~ ~+i-43 ~ 2+  ~ 2 - ~ w ~ w ~  

60 . 100 144 1144 2 2 
q'- U4 -- T W7W2 + T W6W3W~ Jf- T W5W4W~ - 1"-'~ W5W3W2 

8 4 70w]w3w~ + 3784 28 2 -- -~ W5W3W2 -- ~ W4W~W2 + - ~  W4W2W~ "1" "~ W4W3W 5 

6 4 1 6 w ~ _ 3 4 0  4 2 38 3 4 2w2w6' ~ 

180 4 2 2 -~ U2 T W7W2 -- 80W6W3W32 348 w 3 768 4 ~- ~w,w~ + - 3 -  w~w3w2 + ~ w~w~w~ 

+ 142w]w3w~ 6592 w 4 w ] w 2 -  2 2 3 264272 w ~ -  8 4 2 
- 2----7- -~ w4w3w2 + 364-------~ ~ w3w2 

4 3 4) 60 4 96 41~2 
-- W5W3W2 27 w3w2 ~ W7W2 + 20W6W3W 3 -~- T W5W4W3 -- - -  2 2 

2 2 1192 4 1 0 9 6 w ~ _  4 4 z} 
- 32w4w3w2 + ~-~ w4w]w2 3645 ~ w3w2 . 

b6 = W29{ 7 [ W W 5 Ua~ 8 2 
16 4 4 440 4 

-- T W7W3W2-  5W6W4W2 + ~ W6W2W 3 -'}- -~ W6W3W52 

64 2 4 476 15584 3 2 64 w 2 4 
- 2-"5 wsw2 + - - ~  wsw4w3w 3 405 wsw3w2 - "-~ 5w3w2 

16 wsw3w 6 + 81 3 3 1021 w2w2w2 7 wZw3w 4 + 18892 4 
- 4--5 "-~ w4w2 - I----if- 4 3 2 - ~ W4W3W2 

70 23 1 1090784 w 6 5248 5 2 
+ ~ w4w]w~2 + ~ w4w]w~2 + ~ w4w3w~ 45927 - 510-----3 w3wz 

2048 w4w 4 220 w3w 6 92 2 8 8 w3w21O) 
5103  3 2 -- 5---6"ff 3 2 -- 5--'-~ W3W2 "[- ~" ~ 

+ u ~ ( -  21wsw 5 + 96WTW3W 4 + 85w6w4w 4 6892 2 3 40 - 2---4- w6w3w2 - T w6w3w~ 

1056 2 4 2364 3 215728 wsw]w2 + 176 2 4 
+ ~ w,  w2 - T w,w4w3w2 + 40---~ ~ wsw3w2 

32 1179 w3w3 3049 W2 2 2 2 4 
ql_ .-~ WsW3W 6 __ l'-"~ 4 2 "~- T 4W3W2 -~- 5W4W3W2 

236348 4 524 3 3 35 2 5 7 9095056 w 6 
24----~ w4w3w2 - ~ w4w3w2 - - -  w4w3w2 - w4w3w2 + 3280-----~ 

5320 5 2 1132 4 4 52 3 6 16 2 8) 
+ - ~  w~w2 + - ~  w~w2 + -£f w3w2 + ~ w3w2 

24560 w w 2 3 + u~ 105wsw~ - 400WTW3W 4 - 345w6w4w~ + ~ 6 3w2 
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20 4224 W2W4 8228 3 669856 w w 3 2 
~- T w6w3w~ - -  2---if- 5 2 + --if-- wsw4w3w2 405 5 3w2 

64 2 4 16 6 4059 3 3 4663 2 2 2 23 2 4 
-- T WsW3W2 -- ~ W5W3W2 + ~ W4W2 -- T W4W3W2 -- ---~ W4W3W2 

649937 4 440 W3W3 4 2 5 167432 w6 
+ 24-----~ W4W3W2 + ~ W 4 3 2  + -~ W4W3W2 243 

3 3 6 4 5 2  2 9 6 4 4  2~ 3 6 ) 
729 W3W2 + - ~  W3W2 + W3W2 

Ua( -- 105WsW~ + 320W7W3W 4 + 285w6w4w4 - T5500 w6w3w223 

130064 3 2 16 2 4 3456 2 4 5676 wsw4w3w~ + 135 wsw3w2 - ~  wsw3w2 w s w 2  - - - T -  - 

2889 3 3 5591 2 2 2 112673w4w4w2+ 14 3 3 
16 W4W2 "4- T W4W3W2 81 -~- W4W3W2 

2089036 w~_ 376 ' 2 2~3 4 4)} 
6561 ff-~ w3w2 + w3w2 . 

+ 

+ 

+ 

We note that the standardized quanti ty can also be rewritten as 
(Qk- m L) / ~ = 2v/~2{ Qk / (2m2)- m l/(2m2)} and that (Qk / 2m2) h = a(Qk / m l)h 
with a=(mt /2m2)  h. Hence, under the assumption that mr/m2=O(1)  for r= 1, 
2,..., as m2--- + ~ ,  similar results can be obtained for the t ransformed variate 
(Qk/2m2) h. 

3. Indefinite quadratic form 

This section contains results concerning an indefinite quadratic form in 
normal variables. 

Suppose that the coefficients 21, 22,..., 2k in Qk = Qk(2, ix) defined by (2.1) 
are ordered and that 21_>.-->21>0>2~+1_>.-->2k. Under  this assumption a 
power t ransformat ion is not valid, since Qk may have negative real numbers 
for the domain. 

It is easily seen that the characteristic function of the standardized 
quantity can be expressed as 

E[exp { ( i t ) ( Q k -  ml)/v/fm-22 }] 

-- exp - ~ t 2 exp _Z_3 (it) r ( 2 ~ 2 ) r _  2 - -  

= ~1(t)992(t ) . 

2r2( m_,)l 
r m2 

This implies that if 

vj = mflm2 = O(1) for j = 1, 2, 3,... , 
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as m: tends to infinity, then the standardized quantity is asymptotically 
normally distributed with mean 0 and variance 1. The distribution of the 
indefinite quadratic form Qk can be expressed as power series in terms of 
(2m2) -1/2. Expanding ~02(t) in a Taylor's series and inverting the result, we have 
the following theorem. 

THEOREM 3.1. Under the assumption that vj=mj/m2=O(l) f o r j = l ,  
2,..., an asymptotic expansion for  the distribution o f  the indefinite quadratic 
form Qk is, as m2-.oo, given by 

Pr[ ( ml x] 
2m2 2m2 ) < 

= crp(x) - 9(x)(  j~ (am2)-J/2aj ) + 0((2m2)-7/2), 

where mr is given in (2.2) and the coefficients aj are given below. 

2 2 4 2 8 
a~ = -j H2v3 , a2 = -~ Hsv~ + H3v, , a3 = -if-( I-Isv] + -~ H6v4v3 + ~ H, vs , 

2 2 (,6 l v )+8 a4 = ~-~ Hl,v~ + -~ I-Igv4v~ + H7 -~ vsv3 + ~ -~ I-I5v6 , 

a 5 -  
4 (,6 i )  

4 H14v] + Hlzv, v] + H, ov3 "~ vsv3 + "~ v ] 
3645 

(16 8 ) ~ 
+/-/8 -~- V6V3 -~- ~ V5V4 "~ n6v7 , 

a6 - m 4 H~TV~+ 2 4 ( ) 32805 ~ Hlsv4v3 + H13v~ ~-~32 vsv3 + -~1 v24 

(16 16 1 ) 
+/-/11 ~ v6v~ + ~ vsv4v3 + ~ v, ~ 

(64 8 3 2 )  
+ H9 - ~ v 7 v 3  + - ~ v 6 v 4  + - ~ v ~  + 8 H T v s .  

By an argument similar to that discussed in Subsection 2.2, the Cornish- 
Fisher inverse expansion is given in the following theorem. 

THEOREM 3.2. The Cornish-Fisher inverse expansion for  the percentile 
qa o f  the distribution o f  the indefinite quadratic form Qk is given by 

qa = 2V~z Xa + m l , 

and 
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6 
x ,  = u~ + ~2 (2m2)-J/2bj + 0((2m2) -7/2) , 

j=l 

where m~ are def ined in (2.2), u, is the percenti le  po in t  o f  the s tandard normal  
distribution and  the coefficients bj, using the notat ion vj= mj / m2, f o r  j=  1, 2, 
3,...,  are given below. 

2 2  2 3( 8 2 )  
b ,  = ~ u o v ,  - -~ v ,  , b2 = u v4 - -~ v 

(8 6 , ) (4=  
b3 = u~ -~ vs - 4v,v3 + ~'~ v] + u 2 - --~ 

24 272 
4- T ~)5 -- 8V4V3 4- - ' ~  V~ , 

( 20 I) + ua - 3v4 + ' -~  v , 

848 ) 
v5 + 20v4v3 - - - ~  v~ 

8 128 9 2 56 224 ) 
b4 -- u~ "~ "1)6 -- " ~  V5V3 -- 5 V4 4- ~ V4V~ -- - ~  Y 4 

( 8 0  1088 412 135044) 
+ u 3 - --~ v6 + ~ vsv3 + 36v ] - "-~ v4v~ + ~ v3 

( 448 8 7 2 4 2 8  12088 v4), 
4- Uu 40V6 -~ VsV3 -- -~  V4 + ~ V4V~ 243 

32 160 96 2048 VsV~ + 48vZv3 
b~ = ~I  5 -  v7 - - 7 -  v,v3 - T ' ~ " '  + 

256027 v4v] + --~8192 v~) 

480 2080 1152 23168 
4- U 4 -  T V7 4- -9 V6Y3 4- T Y5V4 45 

25696 3 42368 v~) 
4- ~ 1)4123 135 

2 516V]V3 - -  Y5Y3 -- 

9728 
57 v,vl 

1440 1760 2784 16768 2 
+ ul - - 7 -  v7 - - 3 -  v, v3 - - 7  v~v, + ~ v~v3 

1927936 ) + 1084PLY3 48416 V4V~ AI- - -  V~ 
27 3645 

480 768 256vsv~ 256v2v3 + -- T V7 4- I60V6V3 4- T V5V4 -- 

339328 v~ 
3645 ' 

7( 256 320 512 2 1152 
b6 : u .  8])8 - ~ v7v3 - 40v6v, + - 7  V6V~ -- ~ V5 4- T 'V5V4V3 

4576 4 36608 ) 11264 3 81 3 396v42v~ + v4v3 v~ 45 vsv3 + -~  v4 - -9 243 
4736 46880 2 8448 2 

+ u~ - 168v8 + --7-- vvv3 + 680126V4 2----7- Y6V3 ~- - ' ~  V5 
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+ 

17472 1461248 3 
V5V4V3 + - - V S V 3  - - - -  

5 405 
536032 4 20135296 v~\ 

81 v4v3 + 10935 ) 
20480 

u~ 840v8 - - - ~ V T V 3  - 2760v6v4 + - -  

1179 v] + 5462v]v~ 
2 

176000 2 33792 2 
27 V6V3 25 v5 

52012 2 2 
- -  V4V3 

3 
62336 960256 vsv] + 4059 

+ - - - 7 -  vsv4v3 81 T v3 

1562072 4 161078848 ~ 
+ 8 ~  v4v3 32805 v ) 

17280 + Ua - 840v8 + ~ v 7 v 3  + 2280V6V4 4240-------0-0 2 27648 vsZ 9 v6v3 + 

1007872 vsv] 2889 v] + 32734 2 2 
8896vsv4v3 + 13------if- - ~ - - - 7 -  v4v3 

876424 4 81364384 v~) 
81 v4v3 + 32805 " 

The exact distribution of indefinite quadratic forms has been studied by 
Imhof (1961), Press (1966) and so on. Algorithm to calculate probabilities of 
Qk was proposed by Davies (1980), based on the method of Davies (1973) 
involving the numerical inversion of the characteristic function. 

4. Accuracy of approximations 

Several approximations have been suggested for the distribution of Qk(2, 
/~) with 2j>0 for j=  1,..., k, including the central and noncentral chi-square 
distributions. It is known that, for the central chi-square distribution, Wilson 
and H ilferty's (1931) approximation gives high accuracy even for small values 
of degrees of freedom. Jensen and Solomon (1972) adapted the Wilson- 
Hilferty method to develop a normal approximation to the distribution of 
Qk(2, ,u) and obtained the normalizing transformation T~ given by (2.4). They 
also gave extensive numerical comparisons and references, in which their 
approximation compares favorably with the previous approximations. 
However, the Jensen-Solomon approximation is based on the leading term 
• (x) in our asymptotic expansion (2.6). So it is sufficient to cheek the 
accuracy of the asymptotic expansion (2.6) itself. The Cornish-Fisher inverse 
expansion (2.8) gives the same order of accuracy as the asymptotic expansion] 

The formula (2.6) expanded up to terms of O(ml j/z) is referred to 

Pr[Tk < x] ~- Fj = ~(x) - ~o(x)(alm-i t/z + a2m-l' + ... + asm-i j/2) , 

for j =  1, 2,..., 6, in which F1 stands for the Jensen-Solomon approximation. 
Tables I and 2 contain an overall comparison of the four approximations 
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Table 1. M a x i m u m  errors in approximating the values of Pr[,~(to2)<xl 

Max imum error × 10 5 

k ~ fit f12 FI F2 F4 /:'6 

4 I 1.347 2.667 516 333 I10 27 
4 1.089 1.667 733 335 97 40 
7 0.926 1.185 629 240 39 20 

10 0,818 0.917 519 178 15 8 
12 0.764 0,796 460 149 13 4 

5 1 1.222 2.204 375 228 56 10 
3 1,085 1.686 549 273 69 17 
6 0.928 1.204 544 2t6 38 14 
9 0.821 0.930 473 164 17 7 

12 0,743 0.756 406 129 8 3 

6 I 1.125 1.875 291 167 32 4 
3 1.021 1,500 430 210 43 8 
5 0.928 1.219 458 192 34 9 
7 0.854 1,020 440 165 22 7 
9 0.794 0.875 409 141 14 5 

II 0.745 0,765 377 121 9 3 

7 2 1.008 1.488 302 156 26 3 
4 0,925 1.227 371 166 27 5 
6 0.854 1.030 382 150 21 5 
8 0.795 0.885 369 131 14 4 

10 0.746 0.774 347 114 10 3 
12 0.705 0.687 324 100 6 2 

Table 2. M ax i mum errors in approximating the values of Pr[X,)tiZ2,<x]. 

M a x i m u m  e r r o r ×  105 

#1 f12 F, F: F~ F6 

L~ = .6X~ + .3Z~ + .1X~ 1.106 1.954 360 162 33 17 
L2 = .5Z42 + .3X~ + .2Z42 0.966 1.500 206 131 21 I1 
L3 = .6X 2 + .3;(62 + .1;~62 0.903 1.302 226 89 12 4 
L4 = .6X~ + .3Z~ + .Ix~ 0.782 0.977 163 58 6 2 
L5 = .62'42 + .3X~ + .1;~ 2 1.090 1.913 423 186 36 17 
/~ = .6X62 + .3X~ + .Ix 2 0.972 1.484 216 97 15 4 
L7 = .6X62 + .33f~ + .Iz~ 0.982 1.507 170 78 14 4 
Ls --- LI + L2 0.742 0,893 152 70 5 1 
L~ = 2Ll + L7 0.837 1,179 327 185 24 13 
Lm = L~ + 2L7 0.832 1.126 239 100 13 5 
Ln = L2 + L5 0.736 0.883 164 72 5 1 
L~z = L2 + llo 0.703 0.792 116 44 3 1 
Lu = L2 + L7 0.707 0.800 105 42 3 I 
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F~, F2, F4 and F6 to the distributions of the noncentral chi-square variate Qk(e, 
It) and the linear combination of independent central chi-square variates Qk(2, 
0) in terms of the maximum error 

max I Pr[Qk < x] - Fjl x 105 , 
x~S 

where Pr[Qk<x] is the exact distribution. Exact values of the probabilities of 
Qk(e, It) and Qk(2, 0) were calculated to sixteen decimal places at intervals of 
0.02×(x*) 1/2 between 0 and 99.9 percentile points by using the program in 
Yamauti (1972) and the formula (2.1) given by Imhof (1961), respectively. 

Table 3 presents the exact and approximate probabilities for the 
distribution of linear combination of noncentral chi-square variates with 
positive coefficients, in which the exact values are due to Imhof (1961). The 
values of the skewness ~1 ~"/(7 / (K~) 3/2 and the kurtosis ~2 =/(4 ~ / (/~2~) 2 where x* 
are defined by (2.2) are included in each table. The notationz2(o92) refers to a 
noncentral chi-square variate with k degrees of freedom and noncentrality 
parameter co:. 

It may be seen from these tables that the asymptotic expansion (2.6) gives 
high accuracy over the whole domain of Qk(2, It) for various types of 
distributions, provided that the value of the skewness is not so large. For 
fll<l.0, the approximation F6 guarantees accuracy to about fourth decimal 
place and may be regarded as an expression which generates exact probabili- 
ties of Qk(2, It). For fit_>2, the approximation is not so accurate and must be 
developed. Tables also show the efficacy of higher order terms in the 
asymptotic expansion. 

The approximation F6 appears to be lengthy. It should, however, be 
noticed that the asymptotic expansion is most convenient for computations in 

Table 3. Comparison of exact and approximate values of Pr[Y-21Z~,(co~)>x]. 

Approximation 

fll f12 X FI F4 F6 Exact  

L~4 = .7X~(6) + .3Z~(2) .834 .998 2.0 . 9934  .9938  .9939  .9939 
10.0 .4089  .4087  .4087  .4087 
20.0 .0217  .0220  .0221 .0221 

L~s = .7X~(6) + .3Z~(2) 1.065 1.567 1.0 . 9592  .9550  .9548  .9549 
6.0 .4086  .4078 .4076  .4076 

15.0 .0211 .0224  .0223  .0223 
1 

LI6 = ~ (Ll4 + Lis) .659 .612 3.5 . 9570  .9563 .9563  .9563 
8.0 .4153  .4153  .4152  .4152 

13.0 . 0456  .0462  .0462  .0462 
1 

LIT = ~ (L4+ Lt4 + LI~) .547 .440 3.0 .9838  .9842  .9842  .9842 
6.0 .4264  .4264  .4264  .4264 

10.0 .0118  .0117  .0117  .0117 
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which no numerical difficulty is involved, unlike the case of exact distribu- 
tions. The approximation F4 simplified by neglecting the terms higher than 
O(ml 5/2) yields values which agree almost up to three significant figures with 
the exact values and differ only in the fourth decimal place, iffl~ < 1.0. It seems 
to be satisfactorily accurate for practical applications. 

Appendix 

Normalizing transformation of O,(A, p) 

Concerning the approach used by Wilson and Hilferty (1931) and Jensen 
and Solomon (1972) to obtain the normalizing transformations, obscurities 
remain in the following: (i) Why was the form of transformation restricted to a 
class of power transforms? and (ii) what does the normalization mean? 

In order to make these points clear, we consider the normalizing 
transformation of Qk(2,/t) with positive coefficients, based on the viewpoint 
discussed in Konishi (1981, 1985). 

As shown in Section 2, the variate Qk/m~ has asymptotic normality as m~ 
tends to infinity and its expected value is one. Letf(aQk/mO be a strictly 
monotone and twice continuously differentiable function in a neighborhood 
of aQk/m~= a, where a is a constant. Using the approach discussed in Section 
2, an asymptotic expansion for the distribution off(aQk/ml) is given by 

°Qkm, )_:,o)_Cm, 

(A.I) = q~(x) - - -  --3- 

+ _c{2w3w:+ l ix2 + O m,l) 

where wj=mflml, r={2w2a2f'(a)2} 1/2 and c is the asymptotic bias of the 
transformed variate f(aQk/m~). 

From above it follows that the transformed variate 

r { f (  aQ-----L) mlc }, 

neglecting the term of order O(mll/2), is approximated by a standard normal 
variate. To get an accurate approximation, we search for a function which 
makes the term of order m~ 1/2 vanish for all values of x. This requirement is 
achieved by solving the differential equation 

(A.2) 2W3W2 3/2 + 3wl/2 a f"(a) f'(a) -1 = 0 , 
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from (A. 1) and, for the solution of (A.2), choosing c as 

-3/2 
C - -  W 3 W 2  72 .  

3 

Solution of this differential equation is found to be 

( Q , /  mO'-zw,/(3wb = (Qk/ ml)'-2m'm'/(3mb , 

and then c - - h ( h -  1)w2, where h is given in (2.4). Substituting these results into 
(A.1), we have the normalizing transformation Tk given by (2.4). It is of 
interest to note that 

Pr [T,  < x] = qS(x) + O(m~ 1) , 

while 

P r [ v / - ~ i { ( Q k / m O  - 1}/(2w2) 1/2 < x] = fib(x) + O ( m l  1/2) . 

This implies that  by making a suitable t ransformation with an appropriate 
bias correction c, the term of order 1 / x / r ~  in the asymptotic expansion can be 
made to vanish, so the error involved is of order rn~ 1. Then it can be said that 
the transformation Tk achieves normality. 

Recently, Hayakawa (1987) has shown that Fisher's z-transformation is 
effective for a sample correlation, canonical correlation and multiple 
correlation coefficients under an elliptical population. 
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