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Abstract. Probability (multiplicity) distributions and those densities 
(KNO scaling functions) are investigated in a two-component (charged and 
neutral) branching process. It is shown that the two-component KNO 
scaling functions depend effectively on one variable in two typical cases. A 
formula for multiplicity correlation between two components (charged and 
neutral particles) is formulated. It is applied to the analysis of experimental 
data. 
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1. Introduction 

In hadron-hadron (h-h) collisions with energy more than several ten GeV 
(----109 eV)  in the laboratory system, many particles are frequently produced 
through the strong interactions between the colliding particles. See Fig. 1. 
A hadron means a strongly interacting particle such as proton, neutron, pion 
and so on. Experiments on high energy h-h collisions are done mainly by big 
accelerators, for example, the proton synclotrons at Serpukhov (USSR) and 
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Fig. 1. Illustration of a multiple particle production process in h-h collisions. Charged particles 
are expressed by solid lines, and neutral particles are by dashed lines. 
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Fermilab (USA), and ISR and the t ip collider at CERN (Switzerland). The 
production process is represented symbolically in the following way, 

h + h -- n charged particles + X ,  

where h is a hadron and X represents missing neutral particles. In many 
experiments, as the detector sensitive only to charged particles are used, 
neutral particles are not observed. The number n of charged particles is 
counted event by event and is sometimes called the charged multiplicity of an 
event. 

A mean number (n> of charged particles produced per event is a function 
of the Lorentz invariant energy squared s of colliding particles. It is defined as 
s=(pt+p2) 2, where p~ (i=1,2) is the four momentum of the i-th incident 
hadron. The observed mean charged multiplicity <n> increases with s: roughly 
speaking <n)o: s ~/4 (Alner et al. (1986)). Number distributions of secondary 
particles are considered to reflect their underlying production mechanisms. 

It is derived theoretically (Koba et al. (1972)) that the number distribu- 
tion P(n) of (charged) secondary particles in high energy h-h collisions 
satisfies the scaling law, 

(1.1) (n>P(n) --, ~u(z) , 

in the limit of n, (n)--oo with z=n/(n> finite. This is called the KNO scaling. 
From equation (1.1), the k-th moment of multiplicity is expressed as 

(1.2) Ck = E nkP(n)/(n> k--" z ~u(z)dz. 
n=O 

For example, let the probability P(n) be the Poisson distribution, the scaling 
function and the k-th moment become 

(1.3a) ~,(z) = ~(z - 1) 

and 

(1.3b) C~ = 1 (k = 2,3, . . . ) ,  

in the same limit. 
From the analyses of experimental data, the KNO scaling seems to work 

from the Serpukhov energy region (x/s = 11.5 GeV) (Slattery (1972)) up to the 
ISR energy region (x/s=60 GeV) (Breakstone et al. (1984)). The distributions 
(n>P(n) plotted with the variable z=n/<n> are almost same in shape and 
Ck~constant (> l) (k=2--5) are observed in those energy regions. 

Experiments at the ~p collider show that Ck observed at x/~=546 GeV 
and 900 GeV (Alpgard et aL (1983), Alner et al. (1984, 1986)) become larger 
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than those in the ISR energy region, namely, the KNO scaling breaks. 
However, observed multiplicity distributions are well described by one type of 
function (negative binomial distribution) (Alner et aL 0985)). 

It is pointed out (Ellis (1984), Durand and Ellis (1984), Biyajima and 
Suzuki (1985), Biyajima et al. (1987)) that some distribution functions P(n) 
derived in a single component birth process does not have the scaling form, 
but ~(z,(n)). This contrasts with equation (1.1). There is a possibility that the 
observed violation of the KNO scaling is explained by this effect. 

In this paper, we mainly consider multiplicity distributions in a two- 
component (charged and neutral) branching process. In Section 2, a two- 
component branching equation is rewritten into a differential equation for a 
generating function, and is solved under a general boundary condition. 
Multiplicity distributions corresponding to two typical initial conditions are 
obtained from generating functions in Section 3. A correlation between 
two-component (charged and neutral) multiplicities is considered in Section 
4. The KNO scaling functions for each component multiplicity distribution 
and those for the two-component distribution are derived in Section 5 where 
the Fokker-Planck equation corresponding to the two-component branching 
process is obtained and its solution is investigated. Section 6 is devoted to the 
analysis of experimental data. Summary and discussions are given in the final 
section. 

2. A two-component branching process 

A system composed of two species of particles is considered. One has 
charge and the other is neutral. Two species will be identified as charged 
hadron (mainly pion) and neutral hadron (mainly pion) in a hadronic level, or 
quark and gluon in a sub-hadronic level. In either case, it is assumed that 
particles with charge are produced in pairs but not the neutral ones. In the 
following, we assign charged and neutral particle for two species without 
reference to the hadronic or sub-hadronic level. 

A branching process of charged particle (/quark q) and neutral particle 
(/gluon g) is considered (Giovannini (1979), Anselmino et al. (1981), Biyajima 
and Suzuki (1984), Durand and Sarcevic (1986)). Let P(n, m; t) be a number 
distribution of n charged particles and m neutral particles at t, where t is a 
parameter which describes an evolution of the q-g system. (The maximum 
value of t is determined by the s dependence of the observed mean charged 
multiplicities.) In an interval (t, t+dt), three types of interactions take place: (i) 
q ~ q + g  with a probability 2odt, (ii) g - , q + q  with a probability 2ldt, and (iii) 
g- -g+g with a probability 22dt. The elements of branching are illustrated in 
Fig. 2. It is assumed that ~.0, 3.1 and ,~2 are constants. 

Then the distribution P(n, m; t) satisfies the following difference- 
differential equation (Giovannini (1979)), 
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Fig. 2. Three elements of branching. The solid line and wavy line denote charged particle 
(/quark) and neutral particle (/gluon), respectively. 

(2.1) 
0 

-&t P(n ,  m; t) = n2oP(n,  m - 1; t) - n2oP(n,  m; t) 

+ (m + 1)21P(n - 2,m + 1;t) - m 2 ~ P ( n , m ; t )  

+ (m  - 1 )22P(n ,m  - l;t)  - m 2 2 P ( n , m ; t )  . 

In order to solve equation (2.1), we define the generating function: 

oo  

(2.2) l l ( x , y ;  t) = Z=o E= P(n ,  m; t )xny m . 

The two-component  multiplicity distribution, that of  charged particles and 
that of neutral ones are derived from equation (2.2), respectively, as 

1 O" 0 m 

(2.3a) P ( n , m ; t )  - n !m!  Ox" 0 7  II(x,y;t)lx=y=o , 

1 O n 
(2.3b) Pq(n;t)  =- E= P ( n , m ; t )  - n! Ox" H ( x , y  = l)lx=0 , 

1 0 m 
- -  - -  I I ( x  = l , y ;  t ) l y = 0  • (2.3c) P g ( m ; t ) -  m!  Oy" 

We can also derive the j - th  cumutant  of charged multiplicity ( j=  1,2,...) and 
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that of neutral one from equation (2.2): 

oo 

(2.4a) ( n q ( n q -  1 ) . . . ( n q - j +  l ) ) r~  Z n ( n -  1 ) . . . ( n - j +  1)Pq(n;t)  
n=0 

0J 
= Ox j H ( x , y  = l)lx=l , 

0 j 
(2.4b) ( n g ( n g -  l ) . . . ( n g - j  + 1))= Oy---- 7 I I ( x  = 1,y;t)ly=] . 

By the use of equation (2.2), equation (2.1) is rewritten into the following 
differential equation 

(2.5a) ~ I I ( x , y ; t )  =ft(x ,y)  -~x I I ( x , y ; t )  + f2 (x ,y )  l l ( x , y ; t )  , 

(2.5b) 
f l ( x , y )  = 20x(y - 1), 

f 2 (x , y )  = 22y 2 - (21 "1- 22)y + 21X z • 

An initial condition for equation (2.1) and a boundary condition for equation 
(2.5) are generally written as 

(2.6a) 

(2.6b) 

P(n ,  m; t = O) = f ( n ,  m )  , 

I I ( x , y ; t  = O) = ~ ~ f ( n , m ) x n y  m = f ( x , y ) .  
n=0 m=0 

In general, equation (2.5) cannot be solved analytically. Under the condition 
22=220 (Giovannini (1979)), we can obtain a solution. In the quantum 
chromodynamics (QCD), the relation 22=220 holds in the limit of N c ~ ,  
where Nc is the number of color states. 

The auxiliary equations for equation (2.5) are given as 

d x  
(2.7a) dt - - f t ( x , y )  , 

(2.7b) dy 
dt 

- - -  

Changing the variables x and y with the new ones, u = x  2 and w = y / x  2, we 
get 

du 
(2.8a) - - -  22oU(UW- 1), 

dt 
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(2.8b) 
d w  

d t  
- (22 - 220)uw 2 + (21 + 22 - 220)w-  21 . 

By making use of 20=22/2, we obtain 

(2.9a) w - 1 = Aexp[21t] ,  

(2.9b) u =  1, 21 +22 - -  Aexp[21t] + 1 + Bexp[-22t] ) , 

where A and B are constants. The solution of equation (2.5), which satisfies 
the boundary condition (2.6b), is given as follows, 

(2.10a) H ( x , y ;  t) = F ( g l ( x , y ;  t), g 2 ( x , y ;  t))  , 

(2.lOb) 
g l ( x , y ; t )  = x[1 - 0 ~ l ( X  2 - l )  - a e ( y  - 1)] -l/2 , 

l q- ~ l ( X  2 --  1) + /~2 (y  -- 1) 
g 2 ( x , y ; t )  = 1 - a l ( x  2 - 1) - a 2 ( y  - 1) ' 

where 

(2.11) 

21 22 (e~ , e_~,,) (e ~'' 1), ct2 
21 + 22 2j + 22 

i l l =  l - e  , and f12= 

Note that g ~ ( x , y ;  t=0 )=x  and g 2 ( x , y ;  t=0)=y.  The generating function for 
the two-component  probability distribution is obtained under the condition 
20=22/'2. 

3. Typical solut ions  

In this section, we consider solutions for the following initial conditions: 

(3.1a) f ~ ( n , m )  = 3 . . . .  3 . . . . .  

(3.1b) 
® jl ~ pJ 

f b ( n , m )  = E Z6..2~ exp(-2)fi . , j  exp(-p)  
, : o j : o  - 

The initial condition (2.6a) is in general written by the sum of the function 
)Ca(n, m) with adequate weights. Then the solution (2.10a) can be derived from 
the solution corresponding to fa(n, m). The functionfb(n, m) is connected to 
the boundary condition of the Fokker-Planck equation derived from 
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equation (2.1). 
(a) fa(n, m)=6,,,o 6,,,mo: From equations (2.6) and (2.10), the boundary 

condition and the generating function are derived, respectively, as 

(3.2a) Fa(x,y)  = x"°y m" , 

(3.2b) l l . ( x , y ;  t) : x"°[1 - c4(x 2 - 1) - a2(y - 1)] -('~+m°) 

• [ l  + f l , ( x  2 - 1) + f l z ( y -  1)1 m° , 

where ),=no/2. For simplicity, we define the function as 

(3.3) Go(u, v; t) : I 1 o ( ~ ,  v; t ) / x  "° , 

where U = X  2 and v=y.  Ga(u, v; t) is also interpreted as the generating function, 
because Ga(l, 1; t)= 1. Hereafter, subscript a is abbreviated. 

The multiplicity distribution of charged particles and that of neutral ones 
are expressed by G(u, v; t), respectively, as 

(3.4a) 

Pq(no + 2n;t) - 
1 0" 

n! Ou" G(u, 1; t)[~--0 = p,(n; t) 

P q ( n ) = O  for n < n 0 ,  

( n = 0 ,  1,...), 

and 

1 0" 
(3.4b) Pg(m;t)  - m! OY m G(1,v;t)lv=o (m = 0, 1,...) . 

In equation (3.4a), n denotes the number of produced charged-pairs within an 
interval (0, t), andpr(n; t) represents the probability that n charged-pairs exist 
at t. Both distributions reduce to the function (Biyajima and Suzuki (1984)) 

(3.5) P(n; t) = 
r(~ + z ) (  1-~)m, 

F(n  + 1)F(2) 

c ( 
(1 + a) ~÷x F -mo, -n ;2 ;  

°+p) 
a(l- ~) ' 

where F(a,  b; c; x) is the hypergeometric function. The charged distribution 
pr(n; t) is given by the substitution, a=a~ and fl=fla, and Pq(n; t) is by a=a2 
and fl=fl2. 

Thej-th multiplicity moment (nJ)r of charged particles is related to that 
(nJq) o f  produced charged-pairs: 
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o o  

<nJ>r = E=o(nO + 2n)Jp,(n; t) = <(no + 2nqq))}  . 

The j - th  cumulan t  of  charged-pai rs  and that  of  neutra l  particles are expressed,  
respectively, as 

(3.6a) <nqq(nqq - l ) . . . ( n q q  - j + 1)} 

( - Ou j G(u, l;t)lu:l - F ( j  + 2) a~F - m 0 , - j ; 2 ;  - -  
r ( 2 )  

al al + fll ) , 

(3.6b) (ng(ng - 1)...(ng - j  + 1)) 

0J ( ) 
Ov j G(l ,v; t ) lv=~ - r ( j  + 2) • = F(2)  aJzF - m o , - j ; 2 ;  a2 a2 + f12 . 

F r o m  equa t ion  (3.6), we obta in  the mean  multipl ici ty of  charged-pai rs  
(nqq}=)LCtl +m0(ch +fl]) and that  of  neutra l  particles <ng)=Aa2+mo(az+fl2). 

By the use of  G(u, v; t), the t w o - c o m p o n e n t  probabi l i ty  is expressed as, 

P(no + 2n, m; t) - - -  - -  
1 0 ~ 0 m 

n!m! Ou" Ov m G(u,v;t)l,:v:o : p , ( n , m ; t ) ,  

where  

(3.7) 

pr(n,m;t) = 0 for n + m < mo , 

pr(n,m;t)  = F(mo + 1)F(n  + m + 2) 6moi+/ n m az fix 
n [ m ! F ( m o + 2 )  -- : ' i j 

• a~'-Jfl~/(1 + a i + a 2 )  ~+"+m for m o < n + m .  

Equa t ion  (3.7) reduces to a d is t r ibut ion derived in Anse lmino et al. (1981) 
with (2 ,mo)=(1 /2 ,0 )  or  (0, 1). 

fb(n'm)=, ~ ~ 6" 2i(2i / i ! ) e x p ( -  ~ 6mj( lfl / j ! )exp( -g) :  2 and g in (b) 

fb(n,m) denote  the mean  n u m b e r  of  charged-pairs  and that  of  neutra l  
particles, respectively, at the initial stage of  the evolut ion (at t=0).  The 
b o u n d a r y  condi t ion and the generat ing funct ion  become,  

(3.8a) Fb(X,y) = exp[2 (x  2 -- 1)] • e x p [ / l ( y  -- 1)] ,  

[ /  x2 /] 
(3.8b) IIb(x,y;t) = e x p  2 1 - o q ( x  2 - 1) - • 2 ( y  - | )  - 1 
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[ {1 ,, }] 
• exp /t 1 -  al(x 2 -  1 ) - c t z ( y -  1 ) -  1 . 

The generating function for charged-pairs and neutral particles is defined as, 

(3.9) Gb(U, v; t) ----- Hb(x/U, V; t) , 

where u=x  2 and v=y. In the following, subscript b in equations (3.8) and (3.9) 
is abbreviated. 

The multiplicity distribution of charged particles and that of neutral ones 
are expressed by G(u, v; t): 

1 O n 
(3.10) Pq(2n; t) - n! Ou" G(u, 1; t) lu:0 = pr(n; t ) ,  

1 0 m 
(3.11) P g ( m ; t ) -  m! Ov" G(l,v;t)lv=O. 

The moment of charged particles is related to that of charged-pairs: 

(nJ)r = n~o ( 2n)Spr(n; t) = 2J (nJq) . 

The j-th cumulant of charged-pairs is expressed as, 

0 j 
(3.12a) (nqq(?lqq- l ) ' " ( n q q - j  + 1 ) ) =  0/2------ ] G(u, 1;t)lu=~ 

=F(j)(m)a{_~L~[II(_ (n~____~)) , a ~  

where (n 1) =(noq) = 2( 1 + al) +/~(al +Pl). 
The j-th cumulant of neutral particles is given by, 

0 j 
(3.12b) (ng(ng-  1) . . . (ng- j  + 1))= Ov ~ G(1,v;t)lv=l 

=l.,(j)(n2)a~-lL~j~x(_ (n2__.__)_)) , a 2  

where (nz)=(ng)= 2a2 + lt( a2 + fl2). 
From equations (3.8b), (3.9), (3.10) and (3.11),pr(n; t) and Pg(n; t) reduce 

to the equation (Biyajima and Suzuki (1984)), 
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(3.13) 

<n) ] 
P ( 0 ; t ) = e x p  1 + a  ' 

P(n; t) - - -  
n-1 <n> a 

n ( l + a )  "+1 

I <n> ILeal(- <n> ) ,n 12,, • exp - l + a  a(1 + a )  ' ' 

where (n)=<nqq),  a=ct l ,  and f l=fl l  for p,(n;  t), and <n)=<ng), a=a2,  and fl=fl2 
for Pg(n; t). 

The two-component  probabil i ty is expressed by 

1 O n 0 m 
(3.14) P(2n,  m; t )  - n!m----~. Ou n Ov m G ( u , v ; t ) l  . . . .  o = p r ( n , m ; t )  . 

As is known  (Biyajima and Suzuki (1985)), f b ( n , m )  is the sum o f f~ (n ,m)  
with the Poisson weights. Therefore,  the two-componen t  probabil i ty defined 
by equat ion (3.14) can be obtained f rom equat ion (3.7). 

4. Correlation between charged-pair and neutral particle 

Here, we consider a correlat ion between the number  of charged-pairs and 
that  of neutral  particles (Csikor et aL (1973), Zajc (1986)). The mean  number  
(ng), of neutral  ones when n charged-pairs are observed, and the mean number  
<nqq)r" of charged-pairs when m neutral particles are observed. It is noticed that  
we restrict ourselves to the case (3. l b). Those are also derived by the use of 
formulae,  

1 O" 0 
(ns) ,pr(n; t )  - n! Ou" Ov G(u,  v;t)Ju=o,v=l , 

1 0 O r" 
(nqq)r"Pg(m; t )  - m! Ou Ov" G(u,  v;t)lu=1,v=O . 

Then we obtain 

(4.1a) (ne), = r x ( n  + 1)pr(n + l ; t ) / p r ( n ; t )  + r(1 - x)n  , 

O-x) } 
( 4 . 1 b )  (nqq)m = 1 + (m + l ) P e ( m  + 1;t)/  Pg(m; t )  

r 
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(1 - x) 
- - m ,  

r 

where K=lt(l+at+a2)f l2/(ng) and r=(ng)/(nqq). It is noticed that x--,0 and 
r---22/21 in the limit of t--*~. Equation (4.1a) coincides with a formula in 
Csikor et aL (1973)and Zajc (1986), when x= 1 and r= 1. 

In the following, we examine asymptotic behaviors of equation (4.1 a) in 
two cases. Substituting equation (3.13) into equation (4. la), we get 

al  
(ng) ,= rKn - -  L~l l ( -x ) /L l~) l ( -x )  + r(1 - K)n (n = 1,2,...) , 

l + a l  

where x=(nqq)/{al(1 +al)}. 
(i) When Ix l¢ l .  The generalized Lagurre polynomial is written 

approximately in the form 

(n+ 1)! { n } 
L ~ ) ( - x )  -~ n! 1 + - ~  x + O(x  2) . 

Then we have 

{ , ( x  ) } 
(4.2) (ng) ,= r l + a ~  - ~ - a l - 1  x + l  n + r l + al --f . 

(ii) When Ixl>>l, using the approximation, 

xn{ (,)} 
L~)(-x) ~ . ,  1 + + 0 

x ~ ' 

we obtain 

C q -  1 } CtlK 
- - K  n + r - - x .  (4.3) (ng>,= r 1 + 1 + al 1 + al 

It is found that (ng), depends linearly on n in both limits. 

5. KNO scaling functions and Fokker-Planck equation 

In this section, the branching equation for pr(n, m; t) is considered: 

0 
(5.1) -~  pr (n ,m; t )  = 2n2op, (n ,m - 1;t) - 2n2op,(n ,m;t )  
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+ (m + 1)2]pdn - l , m  + 1;t) - m2~p, (n ,m; t )  

+ (m - l)22pr(n, rn - 1;t) - m2zpdn ,  m;t)  . 

We get equat ion (5.1) f rom equat ion  (2.1) by replacing n by 2n, and P(2n, m; t) 
by pr(n, m; t). By the use of the generating funct ion 

(5.2) 
o~ o o  

G ( u ,  v; t)  = • " " ,  E=o E=oP,(n,m,t)u v 

equat ion (5.1) is reduced to the differential equation,  

O O O 
(5.3a) ~-  G(u,v; t )  = f f f u ,  v) -~u G(u ,v; t )  + f2(u,v)  -~v G(u ,v; t )  , 

(5.3b) f f fu ,  v) = 220u(v - I) , 

(5.3c) fffu, V) = 22V 2 -- (21 + 22)V q- 21lg . 

The distr ibution function pr(n, m; t) of discrete variables n and m is 
connected to the cont inuous  funct ion ~u(z~, z2; t) of zl and z2 by the Poisson 
t ransform, 

(5.4) p , ( n , m ; t ) -  (n>" <m> m f o f ~  ° , m nt m! ZI Z2 

• exp[-(n)z~ - (rn)z2] ~u(zl, Z2; t)dzldz2 . 

In equa t ion  (5.4), (n) and (m) do not  depend  on t, but  are to be identified with 
the mean  number  of charged-pairs,  (glqq) and that  of neutral particles, (ng), 
respectively. The Laplace t ransform of ~u(z~, z2; t) and its inverse t ransform are 
defined by the following equations,  

(5.5a) F(st,s2;t) = ~(z i , z2; t )exp[-s lz~ - s2z2]dzldz2 , 

( 1  12fc]+i*°f c2+'~ 
(5.5b) g/(zl,zz;t) = ~ni  ] a~,-i= v,'~-i~ F(s],sz;t)exp[slzl  + s2z2]dsldS2 , 

where cl and c2 are some real constants. Then we have 

(5.6) F(sl, s2; t) = G(1 - sl/(n), 1 - sd<m); t) , 

f rom equat ions (5.2), (5.4) and (5.5). Equat ion  (5.6) means that  the two- 
c o m p o n e n t  scaling funct ion ~u(z],z2; t) can be derived f rom the generat ing 
funct ion ofpr(n ,  m; t) by the inverse Laplace transform. 
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In the following, we consider two cases corresponding to the initial 
conditions (3.1a) and (3. Ib) in Section 3. 

(a) An adequate initial condition for equation (5.1) cannot be derived 
from equation (3. la). However, we can obtain 

(5.7) 
[o l  o2]  0[  2]m0 

F(s1,S2;l) = 1 + - ~  Sl + ~m) $2 1 - - ~  8 1 -  ~m) $2 , 

from equations (3.2b), (3.3) and (5.6). 
First of all, we will derive the scaling function of charged-pairs and that 

of neutral particles from equation (5.7): 

(5.8a) 1 flz+i~F(sl,s2 = O;t)eS,Z,dsl ~,~(z,; t) = ~ -~ ~ 

(5.8b) 1_~ fc+i® F(sl  = O, s2; t)eS2Z2ds2 . ~ug(z2; t) = 2hi %-i 

Both functions reduce to 

(5.9) ~,(z; t) - 
mo!~ 

FO. + too) 
(¢z)'~-lexp[-¢z] ( -  -~ - m°l~-° ( a + p  ) 

. mo - - T -  Cz , 

where ~=<n>/al, a=a l  and f l=fll  for ~'r(z; t), and ~=<m>/a2, a=a2 and fl=~z 
for ~Ug(Z; t). 

We can also derive the two-component scaling function from equation 
(5.7): 

(5.10) 1 
~//(Zl,-72; t) : (~(~2-72 -- ~1-71) " ~  [~2~/./r(-71; t) "q- ~ll /Jg(-72;/)] ,  

where ~1 =<n)/cq and ~2=<m>/Ct2. The function ~(z~, z2; t) depends only on a 
single variable zl or z2, because of the term 6(~2z2-~z~) on the r.h.s, of 
equation (5.10), namely, two components are not independent. Furthermore, 
the two-component scaling function is expressed by two single component 
scaling functions. 

Here, let's consider the relation between <n) and (nqq), and also <m) and 
(ng). Equation (1.2) implies 

o0 
Co = ,E__o = 1 and Ci = ~, nP(n)/<n> = 1 .  

n=0 

Therefore, each single component scaling function should satisfy 
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(5.1 la) ~,(z; t)dz = 1 , 

(5.lib) z ~ ( z ; t ) d z  = 1.  

The following relations are derived from equation (5.1 l b): 

(5.12) <n>=<nqq> and <m>=<ng>. 

In the limit of <nqq>, <ng>---~ (t--*~), we have the following asymptotic 
distributions, 

)~ + rn0 
~,(z; t) -- ~us(z) - F(2 + m0) 

(b) 

{(2 + m0)z} a+"° 'exp[-(2 + m0)z] , 

~//(Z1, Z2; l )  ~ ~s (ZI ) t~ (Z2  -- 2"1) . 

The initial condit ion pr(n,  m; t=0)=(2" /n! )e-X(i /" /m!)e  -u is 
obtained from f i ( n , m )  in Section 3. Then the inverse Laplace transform 
of ~u(zl, Z2; t) is given as follows, 

[ ~ ~ ] (5.13a) F(sl,s2;t  = 0) = exp - ~ s~ - ~ s 2  , 

= [ 1 - sl/(n> 
(5.13b) F ( S l , S z ; t )  e x p  [ 

• e x p  

1 + alsl/(n> + a2s2/<m> 
,)] 

( l - ~lSl/<n>- [32s2/<m> )] 
1 + a~Sl/<n> + a2sz/<m>- I . 

Two single component scaling functions, ~ur(z; t) and ~ug(z; t) are derived 
in a similar way as equation (5.9). They reduce to 

(5.14) ~u(z; t) = ~(z/¢')-t/2e-¢(¢'+z)Ii(2~u/-~) , 

where ~=(n>/al and ~'=<nqq>/<n) for ~u,(z; t), and (=<m)/a2 and ('=<ng)/<m> 
for ~Ug(Z; t). 

Next, we consider about the two-component scaling function. The 
boundary condition for ~u(zl, zz; t) is given by 

(5.15a) ~u(zl, z2;t = O) = 6(zl - 2/<n>)6(z2 - /~/<m>),  

from equations (5.5b) and (5.13a). The two-component scaling function is 
also derived by the inverse Laplace transform of equation (5.13b): 
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1 
(5.15b) ~l(Zl,Z2;t) = ~(~2Z2 -- ¢IZl) T [¢21//r(Zl; t) + ¢lqlg(Z2; l )]  , 

where ~1 =(n)/a] and ~2 =(m)/a2. 
From equations (5.3), (5.5) and (5.6), we obtain the following Fokker- 

Planck equation, 

(5.16) 
O 220( 02 0 )(z]v/) 

-~t ~U = ~m) Oz,OzI-I-2 + (n> Oz--T 

22 02 0 (m)21 0 ] (z2v) .  
+ (m) Oz---~2 + (2~ - 22) Oz--T (n) Ozl 

Equation (5.15b) becomes the solution for equation (5.16) with the boundary 
condition (5.15a) and 22=220. 

In the limit of (nqq), (ng) ---~oo, we obtain the following asymptotic 
expressions, 

~(z; t) ---, Ms(Z) = (2 + kt)z-1/2e-(a+u)(l+z)It(2(J. + t . t)x/~) , 

~u(zl, z2; t) --" ~vs(zl)~(z2 - zO • 

6. Analysis of experimental data 

Equations (3.13) and (4.1 a) are applied to the analysis of experimental 
data in pp collisions (Dao et al. (1972, 1973), Dao and Whitmore (1973)). 
We assume that produced secondary particles are mainly pions. We interpret 
charged-pairs as charged pion-pairs and neutral particles as neutral pions. 
Equation (3.13) is used for the probability distribution of negative pions. 
Equation (4.1 a) is for the mean multiplicity of neutral pions (no),, when n 
negative pions are observed in the final states. 

The observed multiplicity distribution of negative pions at vrS=24 GeV 
(Dao et al. (1972)) is shown in Fig. 3 with the theoretical curve. Observed 
values of (n)=3.428 and C2= 1.408 are used to fix the parameter (n) and al. 

In analyzing the correlation between neutral pions and negative pions, 
we put r= 1, namely, we assume the mean number of neutral pions is equal to 
that of negative pions. Calculated results of (no), with x=0, 0.4 and 1 are 
compared with the experimental data at x/s= 24 GeV (Dao et al. (1972)) in Fig. 
4. Data are well described by the linear equation, 

(6.1) (no), = 0.858 n + 1.19. 

Equation (6.1) is determined by the method of linear regression from the data 
point of n=0 to that of n--8 and the correlation coefficient (c.c.) is 0.973. 
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P(n) 

10-1 

10-2 

10 .3 

i i 

pp: x/~=24 GeV 

l I t l I I r 

0 4 8 12 16 
/ 7  

Fig. 3. Multiplicity distribution of negative pions at ,/J=24 GeV (Dao et al. (1972)). Solid lines 
represent the theoretical results obtained by equation (3.13). 

Our calculated results are also expressed by the linear equation,  
(no),=an+b. The slope parameter  a is a decreasing function of x; a= l at r = 0  
and a=0.277 at ~c--I. For  example,  we get 

(n0)n = 0.712 n + 0.982 (c.c. = 0.9998) . 

with r=  1 and r=0 .4 .  Our  results with X = 0 ~ 0 . 4  are consistent with the data. 

7. Summary and discussions 

The two-componen t  branching equat ion is investigated under  the 
condi t ion A0=22/2. It is proposed by Giovannini ,  but is only investigated 
under  the simple initial condit ions,  6 .... ~ ..... with (no, m0)=(1,0) or (0, l) 
(Giovannini  (1979)). Even in these simple cases, two-componen t  probabil i ty 
distr ibutions or those scaling functions are not derived (Anselmino et al. 
(1981), Durand  and Sarcevic (1986)). 
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i i i , i 

pp:  x/~=24 GeV 
(no). 

I0 

0 5 

x = 0  / 
/ 

t 

x=0 .4  

o . . -  K ~ l  

.... Qzo),,=0.858 n + 1.1' 

i I a i i J I 

10 

Fig. 4. Mean multiplicity of neutral pions, when n negative pions are observed in the final 
states. Data are taken from Dao et al. (1973). Theoretical results with r=  I and x--0, 0.4, l are 
obtained by equation (4. I a). 

We obtain solutions under two typical initial conditions, (3.1a) and 
(3.1b), using the method of the generating function. In each case, the 
multiplicity distribution of charged-pairs and that of neutral particles are 
reduced to the same function. This function is also the same as that obtained 
in a single component birth and death process (Biyajima and Suzuki (1984)). 
The two-component multiplicity distribution is explicitly obtained under the 
initial condition (3.1 a), 6,,,o ~ .. . . .  

The two-component scaling functions are investigated in two cases. It is 
found that only one variable is effective in those functions, namely, two 
components are not independent. The two-component scaling function is 
given by the single component scaling function multiplied by a g-function in 
each case. This result is contrasted to the formula in Durand and Sarcevic 
(1986). 

The Fokker-Planck equation for the two-component branching process 
is obtained and its solution is found by the use of the inverse Laplace 
transform for the generating function. Further consideration on the Fokker- 
Planck equation and its solution will be reported elsewhere (Biyajima and 
Suzuki (1988)). 

As for the correlation between charged-pairs and neutral particles, the 
formula is derived for the conditional mean multiplicity of neutral particles 
when a given number of charged-pairs is observed. It is applied to the analysis 
of experimental data. 
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