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Abstract. This paper considers the application of Kronecker product for 
the construction of factorial designs, with orthogonal factorial structure, in 
a set-up for multiway elimination of heterogeneity. A technique involving 
the use of projection operators has been employed to show how a control 
can be achieved over the interaction efficiencies. A modification of the 
ordinary Kronecker product yielding smaller designs has also been consider- 
ed. The results appear to have a fairly wide coverage. 
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1. Introduction 

A factorial design is said to have the orthogonal factorial structure (OFS) 
if the adjusted treatment sum of squares admits an orthogonal splitting into 
components corresponding to different factorial effects. The construction 
problem for factorial experiments in a block design with OFS has received 
considerable attention in recent years and broadly two general procedures 
emerged, namely, (a) the use of generalized cyclic designs (see John (1973), 
Dean and John (1975) and John and Lewis (1983) for a comprehensive list of 
references) and (b) the use of Kronecker or Kronecker-type products of 
varietal designs (see Mukerjee (1981, 1984, 1986) and Gupta (1983, 1985)). As 
for designs eliminating heterogeneity in several directions, however, it 
appears that much work yet remains to be done. Recently, John and Lewis 
(1983) extended the procedure (a) to row-column designs. The present paper 
aims at extending the procedure (b) to designs for multiway elimination of 
heterogeneity and hence, in particular, to row-column designs. For some early 
work in this connexion, see Zelen and Federer (1964). 
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In the procedure (b), an sl ×s2 x. . .  XSm factorial design is constructed by 
taking a Kronecker or Kronecker-type product of m varietal designs involving 
s~, s2,..., Sm treatments, respectively. Since these varietal designs are usually 
easily available, the method has much flexibility. Further, the method is 
useful from a practical viewpoint provided the resulting factorial design has 
OFS and allows an efficient estimation of the contrasts belonging to the 
factorial effects of interest. A review of the literature on the procedure (b) 
shows that Mukerjee (1981, 1984) and Gupta (1983) considered methods of 
construction for factorial block designs with OFS employing Kronecker-type 
products controlling the main-effect efficiencies (see also Lewis and Dean 
(1985) in this context), while Gupta (1985) and Mukerjee (1986) explored the 
possibilities of controlling the interaction efficiencies as well. In the present 
paper, it is intended to extend all these results to a set-up for multiway 
elimination of heterogeneity. The principal new feature is that while the 
earlier results are based entirely on explicit evaluation of eigenvalues, in the 
set-up considered in this paper, such an explicit evaluation is difficult and, 
therefore, a more subtle approach involving projection operators has been 
used to simplify the derivation considerably. Also, compared to Gupta (1985), 
a broader definition of efficiency has been adopted and the results are all 
exact. 

2. The method of Kronecker product 

Throughout this paper, whether the design considered is varietal or 
factorial, the fixed effects model with independent, homoscedastic errors is 
assumed. For l<_j<m, let Dj be a varietal design for t-way heterogeneity 
elimination involving sj treatments, nj observations and having a design 
matrix 

Vj = [ ~ 0 ,  Z j l , . . . ,  Z j t ]  , 

where Zj0 is njxsj and Zj~ is of order njXuj~ (l_<a<_t), uj,, being the number of 
classes according to the a-th way of heterogeneity elimination. For O_<a_< t, in 
each row of Zja exactly one element equals unity and the rest equal zero. 
Hence, 

(2.1) Zj01sj = Zjlluj, = . . . .  Zjt lu,, = 1,~, 

where In is an n× 1 vector with all elements unity. The sj columns of Zjo 
correspond to the effects of the sj treatments involved in Dj while for 1 <_a<t, 
the uja columns of Z~a correspond to the effects of the uj~ classes according to 
the a-th way of heterogeneity elimination. Let Dj be equireplicate with 
common replication number rj. Then, 
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(2.2) nj = r j s j  , Z~olnj = rjls, , Z)oZjo = rjL, , 

where L is the s×s identity matrix. The reduced normal equations for the 
treatment effects in Dj have the coefficient matrix 

(2.3) G = Z~o(pr±(ZJ)) Zjo, 

where 

(2.4) Zj = [Zj,,..., Zj,], 

and for any matrix L, pr (L )=L(L 'L ) -L ' ,  p r ± ( L ) = I - p r ( L ) ,  and (L 'L)-  is any 
generalized inverse of L'L. 

The Kronecker product of D~,..., Dm is a design D (for t-way het- 
rn 

erogeneity elimination) involving H sj (=v, say) treatments, J=~nJ observa- 

tions and having a design matrix 

(2.5) V= [ j=~l ZJ°' j--~l ZJt"'" ~ ZJt] ' j = l  

m 
where Q stands for Kronecker product, the columns of @ Zj0 correspond to 

j=l  m 
the effects of the I-lsj treatments and for l<_a<_t, the columns of QZja j=l 
correspond to the classes according to the a-th way of heterogeneity 
elimination. Physically, this means that if, for I <_j<_m, the treatment b occurs 
in the (/m..-,/jt)-th "cell" of Dj, then the treatment (il ..... ira) occurs in the 
((ll 1,..., lmO, (112,..., Ira2),..., (lit,..., lmt))-th "cell" of D. The rlsj treatments in D 
may be interpreted as factorial level combinations and, in this sense, D 
represents an s~Xs2X.. .Xs~ factorial design for t-way elimination of 
heterogeneity. 

Example  2.1. Let m=2, t=2, st=3, s2=4, and Dr, D2 be row-column 
designs such that 

DI: ~ , D2: 0 3 I - 

2 1 - 0 

3 2 1 
2 0 3  

Then their Kronecker product D is a 3×4 factorial design laid out in 8 rows 
and 12 columns as shown below. 
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D:  00 03 01 - 10 13 11 - 20 23 21 

02 01 - 00  12 11 - 10 22 21 - 20 

03 - 02  01 13 - 12 11 23 - 22 21 

- 0 0 2  00  03 - 12 10 13 - 22 20 23 

13 11 - 20 23 21 - 00  03 01 - 

12 11 - 10 22 21 - 20 02  01 - 00  

1 3 -  12 11 23 - 22 21 03 - 02  01 

12 10 13 - 22 20 23 - 02 00 03 

It may be noted that the rows and/or columns may be incomplete. Moreover, 
as in this example, some cells may be left empty. 

Analogously to (2.3), the v×v coefficient matrix of the reduced normal 
equations for treatment effects in D is given by 

(2.6) C =  Zjo (prl(Z)) Zjo , 
"= j=  1 

where 

(2.7) Z ~- Z j l , . . . ,  ~ Z j ,  . 
.= j= ! 

In order to show that D, as a factorial design, has OFS, the following concepts 
and lemmas will be helpful. The proof of the first lemma is available in 
Mukerjee (1980) and hence omitted here. 

Let I2 denote the set of non-null m-component (0, 1)-vectors. For any 
x=(xl,..., xm) ~ f2, define 

m 
( 2 . 8 )  G x = ® , 

j= l  

where 

/ L if xs = 1,  
(2.9) G/J= 

lsjl's~ if x s = O .  

LEMMA 2.1 (Mukerjee (1980)). The design D has OFS  i f  and only i f  
f o r  every x ~ £2, G x commutes  with C (i.e., CG x is symmetric). 

LEMMA 2.2. Let A~o, All  ..... Au  be matrices with the same number o f  
rows and A20, A2~ ..... A2, be matrices with the same number  o f  rows. Let 
A=[A1g~A21,..., Alt~A2t], Al=[A11,..., Zlt]. Assume that 

t 

~(A2o) C ~l/t(A2~), 
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where f o r  any matrix L, I t(L) denotes the column space o f  L. Then 

pr(A )(A,o@A2o) = {(pr(Ai))Alo}@A2o . 

PROOF. Clearly, there exist matrices Ba ( l<a< t )  and a matrix AI= 
[Aft,..., Aft]', where the number of rows ofA la equals the number of columns of 
A,a such that 

(2.1o) A2o = A2ana (l < a < t); A{A1A1 = AfA1o , 

so that 

t 
(2.11) pr(AOAm = AIAI = Y~ AI~AI~ . 

a=l 

Defining d =[d{l~ B(,..., ZJlPt(~ B~', after a little algebra using (2.10), it follows 
that A'AA=A' (Ato@A2o) ,  and hence, by (2.10) and (2.11), 

t 

pr(A)(Alo@A2o) = AA = X (Ala(~A2a)(Ala(~Ba) 
a=l 

t 
= Y. (A~Ax.)@(A2.Ba) = {pr (A l )Am}@A20 ,  

a = I 

completing the proof. 

THEOREM 2.1. The design D has OFS. 

PROOF. Take any x=(x , , . . . ,  x,,) ~ f2. Without loss of generality (by a 
renaming of factors, if necessary) it may be assumed that xj= 1 (l-<j_f); =0 
( f+l<_j<m).  Then by (2.7) and (2.8), 

(2.12) 

ffl 

G '~ = G(1)QG (2), ~Z j~  =Z.(')~Z~(2) 
j=l 

Z = [ Z ( 1 ) ( ~ Z t 2 ) , , , , ,  Z > I ) ( ~ Z J 2 ) ]  , 

(0 < a _< t) , 

where 

(2.13) 

f m 
6 (')= ~ L ,  6 (2)= (~ l d ; , ,  

j =  1 j = f  + 1 

f m 
z~(~)= ®z:., z~(~)= ® Zjo 

j=l j=/+l 
(0 <_ a <_ t ) .  

By (2.12) and (2.13), 

(2.14) (;=~Z~o)G" = tZo(')G"}®{Zo(')~ (')} = Zo.)®(Zo(')G(')). 
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Also, by (2.1) and (2.13), for l<_a<t, 

(2.15) / 5  } ~ ' ~ ~0'~'G '~' Z~ (2) 1.,ol', = 11,,1,,1 = ~ )  {Zjo l , , l ' , }  = , 
I. j=f+ 1 j=f+l  j=f+l  

l 
so that #(z0~zlG 12)) C aq/l.l(Za{2)). Therefore, by (2.12), (2.14), (2.15) and Lemma 

2.2, 

(2.16) 
pr(Z Zj0 {pr(Z°))Zom}@{ZotZ)G 121} 

m I 

where 

(2.17) Z (1) ~ [ Z ~  1) . . . .  , Z ~ I ) ]  . 

By (2.2), (2.6), (2.12), (2.13), (2.16) and the standard rules for operations with 
Kronecker products, it follows that 

(2.18) 

CGX=(~=lZjo)'{l-pr(Z)}(~lZjo ) G = 

= ( m.~=lrjL,) G* - ( ~IZJo)'pr(Z) ( Z~IZJ °) G = 

= rj --  p~ t z~  ) z . o  I W )  ~N rjl~,lsj , 
t j=f+l 

which is evidently symmetric. Therefore, the result follows from Lemma 2.1. 

3. T h e  r e s u l t s  on e f f i c i e n c y  

We adopt a general definition of efficiency as indicated below. For every 
p (0<p_<oo) and every positive integer q, let htp ql be an extended real-valued 
function defined over the class F lq) of q×q non-negative definite (n.n.d.) 
matrices such that for any B ~ F Iq) with eigenvalues 2i(B) (1 <_i<_q), 

h tpq) ( B ) = 

{ when .= 

{ q q-i iE_ 1 (2i(B))-p when 0 < p < ~ , 

min 2i(B) when p = 
i<i<q 



K R O N E C K E R  F A C T O R I A L  DESIGNS FOR MULTIWAY ELIMINATION 201 

provided the 2,{B)'s are all positive. If 2,(B)'s are not all positive, then 
hp(ql(B)=0 (0<p_<~). For l<_j<_m, let Pj be an (s j- l )xsj  matrix such that 
[s:l/ZL,, P~]' is an orthogonal matrix. Then (cf. Kiefer (1975)) the ~bp-efficiency 
of the varietal design Di is given by, say, 

(3.1) H: .: ~1 h:ST1) ( p j G p f  ) (0 ~ p ~_ oo) , 

G being as in (2.3). Clearly, if p=0,  1, 0% then ~p-efficiency reduces to the 
standard D-, A-, E-efficiencies, respectively. 

Turning to the factorial set-up, for any x=(x~,..., x,,) ~ £2, define 

m 

(3.2) px = (~ PT' , 
j=l 

where for 1 <_j<_m, 

P j_ if x j = l ,  
(3.3) PT' = 1/2 1," if xj = 0 .  

Let r be a v× 1 vector of (factorial) treatment effects in D. Then (cf. Kurkjian 
and Zelen (1963) and Mukerjee ( 1981)) it may be seen that Pxr represents a full 
set of orthonormal contrasts belonging to the factorial effect F :  .... FL" 

m 
(=((x), say), where the m factors are denoted by F1,..., Fm. Let a(x)=H (&- 1) x' 

be the number of rows of px and Ax denote the a(x) × a(x) coefficient matrix of 
the reduced normal equations for estimating Pxr in D (cf. Kiefer (1975)). Then 
the ~bp-efficiency of D with respect to the factorial effect ((x) is given by, say, 

(3.4) L~ --'-- r -1 h(paIx))(Ax) (0 <_ p <_ oo), 

m 

where r=I-I rj is the number of replications in D. 
j= 1 

The following lemmas will be helpful. Lemmas 3.1 and 3.2 are well- 
known while Lemma 3.3 follows from Poincare's separation theorem (see e.g., 
Rao (1973a, Chapter 1)). 

LEMMA 3.1. LetAv, A2jbematricessuchthatl.t(Alj)C~(A2j)(l<<_j<co ). 
Then 

LEMMA 3.2. 

~o o~ h . 

l f  p(A )C/fiB), then pr(B)-pr(A ) is n.n.d. 
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LEMMA 3.3. For q×q n.n.d, matrices A, B, if  A - B  is n.n.d., then 
h(pq)(h )~>h(pq)(B) (O~p~oo) .  

The next theorem provides lower bounds for the efficiencies with respect 
to different factorial effects in D in terms of the coefficiencies of the varietal 
designs D w . . ,  Din. 

THEOREM 3.1. For every X = ( X I , . . . ,  Xm) E ~ ,  and every p (O<_p<oo), 
Ep >_max{xjHJp}. 

I <_j.~_m 

PROOF. By Theorem 2.1, the factorial design D has OFS and hence (cf. 
Mukerjee (1986)) for every x ~ f2, A x = p x c p  x', C being as in (2.6). As before, 
let without loss of generality x=(xl,. . . ,  Xm) where xj=l (l_<j<f); =0 
( f+ 1 <j<m). Then by (2.8), (2.9), (3.2) and (3.3), 

(3.5) j=f+isJ] pI1)@ 1", G x , 
tj=f 

where 

f 
(3.6) p(U= @ pj.  

j= 1 

By (2.8), (2.9), (2.18) and (3.5), it follows after some simplification that 

(3.7) j 1 s=t rj I~(x) pr(Z (1)) Zo ~ , 

where Z I~l is as in (2.17). 

ByLemma3.1,/t Zja Clt ZI,@ I,, , l<_a<_t, sothatby(2.4),(2.13) 

and (2.17),/~(Zm)C/t ZI@ I,, . Consequently, by Lemma 3.2, 

(3.8) pr {Zt@( j__@2 I . , )}-  pr(Z(1)) = {pr(Z,)}@( j__@2/.,.)- pr(Z I1)) 

is n.n.d. Now by (2.2), (2.3), (2.13) and (3.6), and the definition of the matrices 

0 
- (P,Z{o pr(Za)ZmPO J= 
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- PIUZ~o11' pr(Z~ Z~oIIP II1' , 
.= 

so that by (3.7), 

[ ( , )  = 1-Irjl PIIlZ~o11' {pr(Z,)}@ j_@2In, - pr(Z c'l) 
j=f+l ] 

which is n.n.d, in view of the n.n.d.-ness of the right-hand member of (3.8). 
Consequently, by Lemma 3.3, 

){ ( )}] - j:~l rj (P1C, PO@ ~rjI+-, 
j=2 

m 

Dividing the above by Hrj, it is immediate from (3.1) and (3.4) that E~_>H 1 
x j (O_<p<~). Similarly, E~>_H/, (l_<j_<f; O_<p~),  and hence 

E; _> max{xjH/} (0 _< p _< o~) 
1 <j 'sm 

since xj=0 (f+ 1 <j<m).  This completes the proof. 

Remark .  In view of Theorem 3.1, by choosing D~,..., Dm suitably and 
then applying the method of Kronecker product, one can control and hence 
remain assured of the factorial effect efficiencies in D, in terms of the 
efficiencies of the varietal designs D~,...,  Din. This is important, since in 
practice it is often much easier to construct varietal designs rather than 
factorial designs. Theorems 2.1 and 3.1 make the task of construction of 
factorial designs, for multiway elimination of heterogeneity, rather simple. It 
is just enough to start from varietal designs D~,..., Dm and to take their 
Kronecker product. Then by Theorem 2.1, the resulting factorial design D has 
OFS, whereas Theorem 3.1 guarantees that the factorial effect efficiencies in 
D will be high, provided D1,..., Dm are efficient varietal designs. 

In particular, if ((x) represents a main effect (i.e.,f= 1), then it is easy to 
see, from the proof of Theorem 3.1, that equality holds in the lower bound 
given by Theorem 3.1. On the other hand, if ((x) represents an interaction 
involving two or more factors, then very often, one gets the satisfying 
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observation that the actual value of Ep is much greater than the corresponding 
lower bound. For example, for the designs in Example 2. I, it may be seen that 
Dt, D2 are balanced with H1=0.75, Hp2--0.6667 (0___p<_oo). By Theorem 3.1, 
therefore, for the resulting factorial design D, one obtains Ep~°_0.75, 

01 Ep ___0.6667, E'_>0.75. Actual computat ion shows that for Ep °, E °1, these 
lower bounds are attained while the true value of E~ 1 is as high as 0.975. 
Hence, the method is expected to be particularly useful when emphasis lies on 
the efficient estimation of the interaction contrasts. 

4. The restricted Kronecker product 

Although Theorems 2.1 and 3.1 make the method of Kronecker product 
attractive from theoretical considerations, one practical difficulty may arise 
with this method, when the number of factors, rn, is large in the sense that the 

number of observations in D, namely 1~ nj, may then become prohibitively 
j=l 

large. To overcome this difficulty, one may consider a method of construction 
which guarantees OFS but exercises a control only over the lower order 
interaction efficiencies. Such an approach appears to be reasonable since, 
especially when the number of factors is large, not much interest usually lies in 
the higher order interactions. To that effect, we consider below a modified 
version of the method of Kronecker product. 

With notations as in Section 2, suppose for l<_j<_m and O<_a<_t, it is 
possible to partition Zjo as 

( 4 . 1 )  Zja = [Z}al ,  Z}a2, . . . ,  Z;awj]t , 

where for l<_l<_wj, Zs~t h a s  r/jwj I (~-~j ,  say) rows, such that 

(4.2) l~jZjal---- l~,Zja2 . . . . .  l~,Zja~:, ( = I//~a, say) 
(1 _< a_< t; l < _ j < _ m ) ,  

(4.3) Is; Zjot = (r jwj-1)L;  (1 _< 1 <_ w i; 1 _<j _< m). 

By (2.1) and (4.1), for l<_l<_w i and l<_j<m, 

(4.4) Zjotl~ = Zjul.,, = . . . .  Zjtllu,, = lp,. 

Also, recalling that for 1 <_j<_m, in each row of Zjo exactly one element equals 
unity and the rest equal zero, it follows from (4.1) and (4.3) that 

(4.5) Z}o~Zjot = (rjwfl)L, (1 <_ 1_< wj; 1 _<j_< m ) .  

Physically, the partitioning (4.1) means that for 1 <_j<m, the varietal design Dj 
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is partitioned into wj subdesigns such that each subdesign involves flj 
observations, in each subdesign, each of the sj treatments is replicated rjws ~ 
times and the condition (4.2) holds. In many practical situations, such a 
partitioning can be attained in a natural way. An illustrative example in this 
connexion will be presented at the end of this section. 

In the following, for matrices L1,..., L,o having the same number of 
(o 

columns, we define t_) Li=[Lf , . . . ,  L ' ] ' .  Then the restricted Kronecker product 
i=1 

m 

of order g(<_m) of DI, . . . ,  Dm is a design D ~gt involving Hsj treatments and 

having a design matrix 

I ,~gl = U Zion,, Zj,~,, . . . ,  7~,~, , 
(y, . . . . .  y~)'~T j = l  j = l  

m 

the union being taken over only a subset Tof theH wj possible combinations 

(y~,..., ym)' such that the combinations included in T, written as columns, form 
an orthogonal array (possibly with variable symbols) with m rows, strength g 
and wl, . . . ,  Wm symbols (cf. Rao (1973b)). As before, D IgJ may be interpreted as 
an Sl ×... ×s,, factorial design for t-way elimination of heterogeneity and if N 
be the cardinality of T, then the number of observations required in D Igl is 

easily seen to be N njw~ which is less than the number of observations,ill nj, 

in the ordinary Kronecker product design D, whenever the orthogonal array 

T is non-trivial, i.e., whenever N<j~ wj. Note that in D Igl each of the V 

m -1  
(factorial) treatments is replicated N(jH riwj )(= r Ig', say)times. In particular, if 

g = m ,  then the restricted Kroncker product reduces to ordinary Kronecker 
product. Theorems 4.1 and 4.2 below extend Theorems 2.1 and 3.1 to the 
present set-up. 

THEOREM 4.1. The design D Igl has OFS. 

PROOF. Defining 

Qa ~y,....~,;,r j:, zm,  (0 < a < t); Q = [QI,..., Q,] ,  

the v× v coefficient matrix of the reduced normal equations for the (factorial) 
treatment effects in D Ig) is given by, say, 

(4.6) C Ig~ = Q~ prl(Q) Q0, 
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which is analogous to (2.6). In order to apply Lemma 2. l, one must show that 
c(g)G x is symmetric for every x e g2. Without loss of generality, let x=(x~,. . . ,  
x,,), where xj=l  (l_<j_f); =0 (f+l<_j<_rn). Then as in (2.12), G~=GItI@G 121, 
where GIll, G 121 are defined by (2.13). Let 

f f  ~ 
(4.7) Q~I)= u {®Z~o~,} ( 0 _ a _ < t ) ;  

(~'l . . . . .  7,.1'~ T j : l  [ - -  j 
QIl t= [Q~ll,..., QI1}] . 

(4.8) 

Now if one defines 

= ,qO),  f~(1) GI1)" Qtl)'QI1)AI ~ ~o 

v m 

j=f  + 1 j= f  

(recall that uja is the number of columns in Zja) and applies (2.1 3), (4.2), (4.4) 
and (4.8), it follows after considerable algebra that 

(4.10) Q'Qd = Q'QoG", 

since both sides of (4.10) equal to 

~ ~ ( Z ;ay, Zjo,j ( l ~ a  1 ;  . 
a=l (y~ ..... )'m)'~T j=l 1 

The details of this derivation follow essentially along the line of proof of 
Lemma 2.2 but are omitted here to save space. From (4.9) and (4.10), 

(4.11) ' x , = -1 , Qdpr(Q)QoG -- QdQA {Q0(')'pr(Q Ill) Q0 (1) @ (rswj ls, ls, , 
j = f + l  J 

again after some algebra based on applications of (4.3) and (4.4). Evidently, 
Qdpr(Q)QoG x is symmetric. Also by (4.5) and the definition of Q0, 

(4.12) Q~Qo = N rjwj @ L ,  
]=l 

as defined earlier N being the cardinality of T. From (4.12), Q~QoG ~ is 
symmetric. Hence, by (4.6), C Ig) G ~ is symmetric, completing the proof. 

For our next result, the notations are as in Section 3, the only change 

- -  v v p Clearly, there exists a matrix Al-[Al l , . . . ,  Alt], where the number of rows of 
Ala equals the number of columns of Q~ll (l_<a_<t) such that 
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being that for any x ~ f2, the coefficient matrix of the reduced normal 
equations for estimating P~r in D Igl is denoted by A~ g) and accordingly, 

E~p(g) = rlg~-' h~))(A~ 8)) 

represents the ~p-efficiency of D (gl with respect to the factorial effect ((x). 

THEOREM 4.2. For x=(xl  .... , xm) ~ £2 and every p (O<p<_~) 

E~(g) -> max {xjHg} i<j~_m 

provided among X l  . . . . .  Xm at most g are unity. 

PROOF. Without loss of generality take x=(x~,..., Xm) where xj=l 
( l< j<f ) ;  =0 ( f+l<j<_m) and f<_g. Since the combinations (yl,..., ym)' 
included in Tform an orthogonal array with Nassemblies and strength g (and 
hence with strength f, forf_<g), it follows that for every (y~ .... , yf)' (I <Tj<_wj; 

1 <_j<_f) there are exactly N .= wj combinations in Twith the firstfentries 

equal to y~,..., y/, providedf<g. Hence by (4.1) and (4.7), for any a, k (0_<a, 
k<_t), 

(4.13) a(l},,r'~(') / ~  )1 a ~k = Z ,r (Z~or, Zj*r, 
(Y' ..... )'~)' [ j=l 

. . . .  :c1  
y~=l Yf= [ j=l ) 

= N  w j ®  
j= 1 

{ ~IZ;Q~ZJkr,} 
{Z;aZjk} = (g/~-Iwj)  Z(al'tZ(k 1} \ ~j=l 

wheneverf_<g. In the above, Z~ 11, Zk ~ll are as defined in (2.13). By (2.13), (2.17), 
(4.7) and (4.13), it now follows that 

wheneverf<g. Therefore, forf<g,  

Qo~l)'pr(Q I~)) Qo " ) =  ( N / ~  wj){Z~o~)'pr(Z I~)) Z~oXl} . 

Hence by (4.6), (4.11) and (4.12), forf_<g, 
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rn -1 

/  r wj' 1 
j--f+l 

which is analogous to (2.18). The rest of the proof may now be completed 
proceeding along the line of Proof of Theorem 3.1. 

In view of Theorem 4.2, applying the method of restricted Kronecker 
product of order g, one can control and hence remain assured of the factorial 
effect efficiencies in D tg~, for effects involving up to g factors, in terms of the 
efficiencies of D1,..., Dm. In particular, if it is desired only to control the main 
effect efficiencies, then g= 1 and T should represent an orthogonal array of 
strength l, which can be obtained very easily. If, in addition, it is desired to 
control the two-factor interaction efficiencies, then g=2 and T should be an 
orthogonal array of strength 2. This also poses no major combinatorial 
problem since orthogonal arrays of strength 2 are available in plenty (see e.g., 
Raghavarao (1971)). 

As indicated earlier, in many situations there exists a natural way of 
attaining the partitioning (4.1) such that (4.2) and (4.3) are satisfied. For 
example, considering a set-up of row-column designs (i.e., t = 2), suppose Dj is 
a complete or an incomplete latin square which can be partitioned into 
disjoint transversals such that each transversal contains each of the sj 
treatments in Dj exactly once. Then these transversals provide a natural way 
of attaining a partitioning (4.1) such that (4.2) and (4.3) hold. These 
considerations indicate that the method of restricted Kronecker product has a 
wide applicability. The following example serves as an illustration. 

Example 4.1. To construct a 4x 5 x 7 factorial row-column design, take 
D1, D2 and D3 as incomplete latin squares given by 

Dr:  0 2 3 , D2: 1 - 3 4 D3: 0 - 2 5 - 

3 I - 2  1 3 0 - 2 4 - 0 

I 2 0  2 3 - 0  2 - 4  6 - 

- 0 i 3  4 0  2 - 4 - 6  1 - 

4 1 2 - - , 6  1 3 

5 ~ -  I 3 

0 3 5 

Here s~ =4, s2=5 and S3----7. In each of these squares the cells will be denoted by 
ordered pairs (y~, y2) (y~, y2--1, 2,... ). Then a partitioning of D~ as in (4.1) 
which satisfies (4.2) and (4.3) (with W1=3) is given by the three sets of cells: 
{(1,1),(2,2),(3,3),(4,4) }, {(1,2),(2,1),(3,4),(4,3) }, {(1,3),(2,4),(3,1),(4,2)}. 
A similar partitioning of Dz with w2= 3 is given by the three sets of cells: 



KRONECKER FACTORIAL DESIGNS FOR MULTIWAY ELIMINATION 209 

{(1,2),(2,3),(3,4),(4,5),(5,1)}, {(1,4),(2,5),(3,1),(4,2),(5,3)}, 
{(1,5),(2,1),(3,2),(4,3),(5,4)}, 
and a partitioning of D3 with W3=3 is given by the three sets of cells: 
{( 1,1),(2,2),(3,3) ,(4,4),(5,5),(6,6),(7,7) }, {( 1,3),(2,4),(3,5),(4,6),(5,7),(6,1),(7,2) }, 
{( 1,6),(2,7),(3,1),(4,2),(5,3),(6,4),(7,5)}. 
Note that wl=w2=w3=3. Hence taking T-{(1,1,1),(1,2,2),(1,3,3),(2,1,2), 
(2,2,3),(2,3,1),(3,1,3),(3,2,1),(3,3,2) }, which is an orthogonal array of strength 
2, and applying the method of restricted Kronecker product (with g=2), one 
can get a 4 × 5 × 7 factorial row-column design, say D 121, which has OFS and in 
which the main effect and two-factor interaction efficiencies are controlled in 

3 

the sense of Theorem 4.2. Note that the cardinality of Tis 9 whilej~ wj=27, so 

that the number of observations required in D 12) is only one-thirds the number 
of observations required in the ordinary Kronecker product of Dl,  D2 and D3. 
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