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Abstract. A class of multiple sample tests based on empirical coverages is 
proposed which is a generalization of Greenwood's and Sherman's one- 
sample goodness-of-fit test statistics. The asymptotic normality of the tests 
is established by embedding the empirical coverages into a stationary 
process satisfying the strong mixing condition. 
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1. Introduction 

Let X~,..., X, be a random sample from an unknown distribution 
function F. For a given continuous distribution function F0, define 

c ,  = Fo(X , , . )  - Vo(X , - , , . ) ,  

n+l 
A v  = Y~ [ G  - (n  + 1)-~1 v, 

i= 1 

i =  1 , . . . , n +  1 

v > 0  , 

where X~,,<.. .<X,,,  are the order statistics of Xt,..., X,, X0,, = - ~ ,  and 
X,.~,,=~. To test for the hypothesis F=Fo, Greenwood (1946) and Sherman 
(1950) proposed the test statistics A2 and A~, respectively. Rao and 
Sethuraman (1975) studied the empirical distribution of the G (which are 
often called coverages or spacings) and derived the asymptotic behavior of Av. 
Some exact percentage points of A~ and A2 under F=  F0 have been obtained 
for selected values of n (Rao (1976), Burrows (1979), Currie (1981) and 
Stephens (I 981)). 

These one-sample goodness-of-fit tests Av can be generalized to the 
multiple sample ease as follows. For a= 1,..., g, (g: an integer>2), let X) "~ ( j= 1, 
..., ha) be a random sample of size n, from an unknown distribution function 
b -~a). Set N=n~ +...+rig and note that the N observations divide the real line 
into N+ 1 intervals. Let FN(x)=(N+ 1) -1 (number of observations among the N 
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pooled observations being ___x) if x < ~ ,  = 1 if x = ~ .  Note that FN is slightly 
different from the empirical distribution of the pooled sample. Now, define 
the n~+ 1 empirical coverages associated with the n~ observations of the a-th 
sample by 

(1.1) Cj/~ = FN(Xj/~) - FN(Xj-~/~), j = 1,..., n~ + 1 , 

where XJ/~ <.. .<X,o/~ are the order statistics of X[~),..., ,.,o,Vtal X0/, =-oo,  and 
X,o÷I/~ =oo. For example, suppose g=2, n~=2, n2=4 and X v , < X I / 2 < X 2 n <  
X2/2<X3/2<X4/2. Then the empirical coverages are C~/1=1/7, C2/~=2/7, 
C3/~ = 4/7,  Ct/2 = C2/2 = 2/7 and Cs/2 = C4/2 = C5/2 = 1 / 7. Under the null hypothesis 
H0 that the g samples come from a common continuous distribution function, 
it can be shown that Cj/o has mean 1/(n~ + 1). We therefore propose to reject 
H0 if the statistic 

(1.2) 
g ha+ 1 

Bv = ~=Ya(n~/N)Z1, .= ICi ly -  ( n , +  1)-11 v 

is large where a:(0, I)---R is a positive weighting function. Hoist and Rao 
(1980, 1981) considered the two-sample case and derived the asymptotic 
behavior of the statistic Zhjlv((N+ 1)Cj/I- 1). Rao and Murthy (1981) proposed 
a two-sample statistic which is equivalent to B2 with constant weighting 
function. But they did not derive the asymptotic distribution. 

In the next section, it is shown, under H0 and Condition (A) (see Theorem 
2.1) and by embedding the empirical coverages into a stationary process 
satisfying the strong mixing condition, that Bv(v> 1/2) is asymptotically 
normal as N --'~. While we conjecture that Condition (A) holds in general, 
this condition is verified only for the special case of v= 2 and g= 2 in Section 3. 
We have not been able to obtain the power behavior of Bv against general 
alternative hypotheses. Some numerical results are given in Section 4. 

2. Asymptotic normality of B~ under Ho 

To derive the asymptotic normality of By under H0, we assume that n~ /N  
=r~ (a=l , . . . ,  g) for some constants r~ with 0<ra<l  and rl+"-+rg=l. Let 
J(1), J(2) . . . .  be an independent and identically distributed (iid) sequence with 

P(J(1) = a) = r~, a = 1 , . . . ,g .  

Define 

lk~={1 ,  if J ( k ) = a ,  
0, otherwise, 
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(2.1) M ~  = ~ I~ al k=l 

and 

(2.2) Uk a(rakl)l/~ k -l = - - rslkll , 

where k= k(k) = inf{j>k: J(j) = J(k) } . 

THEOREM 2.1. 

Condition (A): 

where 

Assume that following Condition (A) holds. 

a2=var (UI )+2  ~- cov (U1, Uk)--f 'Z '-I(>O , 
k=2 

~t = k=l ~ Cov(U1, h(l)),. . . ,  k~=ICOV(UI,= Ik (g-l)) 

and ~ is a ( g -  1)x ( g -  1) matrix whose ( i, j )-component equals r,( l -ri) i f  i=j, 
--rirj i f  i ~j. Then for  v> 1 / 2, under Ho, as N --'°°, {(N+ 1)VBv-NE(U1) }/(Nl/2tr) 
converges to the standard normal distribution. 

It should be remarked that the tr 2 in Condition (A) is actually a 
conditional limit variance (see Lemma 2.3). The evaluation ofa 2 is difficult for 
general v and g. In the next section, 0 .2 is explicitly given for v=2 and g=2. 

LEMMA 2.1. Let 

g--I 
Wk = Uk + Y-, ddk ta) , a=l 

for  some constants d~,..., dg-~. Then the stationary sequence { Wk} satisfies the 
strong mixing condition and the mixing coefficients ~t(k) satisfy ~t(k) <_ Dp k, 
k= 1, 2,... for  some D>0 and 0<p< 1. 

(For the definitions of the strong mixing condition and the mixing 
coefficients, see pp. 305-306 of Ibragimov and Linnik (1971).) 

PROOF OF LEMMA 2.1. Denote by a(Xl,..., Xn) the a-field generated by 
random variables XI,..., Xn. For S~ etr ( Wk, k= 1,..., 1) and $2 e tr ( Wk, k= l+ m, 
l+m+ 1,...), $2 is independent of Si O Ewhere Eis the event that for each a 
(l<a<_g), there exists k such that l<k<l+m and J(k)=a. So, 

P(S~ nsz) = P(s~n&IE)P(E) + P(SIf'3S21Ee)P(E~), 
P( SItqS21E) P( E) = e( Sl I E)P(&ISlnE)P(E) = P( S2) P( SInE) 

= e ( s , ) e ( & )  - P(E3e(&)P(SllE3. 
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Hence,  

I P(S, 0 $2) - P(S~) P(S2) I 

= p(EC)Ip(s,  (3 S21ff) - P(Sz)P(S~]E~)] 

g 
<-- P ( E  c) <- a~=l(1 - ra) m-I < g ( 1  - mint~ ra)m-1 " 

This completes  the proof.  [] 

LEMMA 2.2. Assume that Condition (A) of  the theorem holds. Then 

N-l/2( kEl( Uk - E(U1)), M~ I - Nrl,... ,  M~ g-ll - Nrg-1) 

converges in distribution to (Zo, Zl , . . . ,  Zg-l) where the random variables Zo, 
Z1,..., Zg-l are jointly normal with E(Z~)=0 (a=0 , . . . ,  g -  1), and 

E(Z  2) = var(Ui)  + 2 Z c o v ( U l ,  Uk), 
k=2 

E(Z 2) = ro(1 - r~), a =  1 , . . . , g -  1 , 

E(ZoZ~) = ,~ cov(U~, Ikl~)), 
k=l 

a =  1 , . . . , g -  1 , 

E( Z~Z~) = - rarp, l < _ a # f l < _ g - 1 .  

PROOF OF LEMMA 2.2. Let 

g-1 

Wk = do Uk + Z d~Ik ~) , 
a=-I 

for  not  all zero constants  do,..., dg-L. If do=0,  then Wt, WE .... are iid so that  
N-v2( WI +... + WN-NE(WO)  converges to the normal  d is t r ibut ion with mean  

0 and variance 

(all,..., dg-1) Z(dl, . . . ,  dg-l)' = var(dlZ1 + ... + dg-iZg-~). 

Suppose  doe0.  Without loss of generality, we assume do= 1. Thus,  since Uk and lk O) 
(k>2)  are independent  of  I[ ~), 

o0 
(2.3) var (Wl)  + 2 X cov(WL, Wk) 

k=2 

= v a r ( U 0  + 2 ,~ cov(U1, U,) + 2d'( + d 'Sd 
k=2 



MULTIPLE S AMPLE TESTS 169 

= a 2 + (d + s - l o ' Z ( d  + Z-10 > 0 by Condition (A),  

where d'=(d],..., dg-l). By Lemma 2.1 and Theorem 18.5.3 of Ibragimov and 
Linnik (I 971), N-I/2( W~ +... + WN-NE(WO)  converges to the normal distribu- 
tion with mean 0 and variance equal to (2.3). This variance also equals 
var(Zo+d~Zi +... +dg-lZg-l). We have shown that every linear combination of 

the random variables N -1/2 Z ( Uk- E( U1)),... N -1/2 (M (g-I)- Nrs-1) converges 
k=l 

to a normal distribution so that they converge jointly to Z0,..., Zg-i in 
distribution. [] 

LEMMA 2.3. As N--,oo, for  every z, 

P(N-~/2 ~=~(Uk - E(Ul)) < zlM~") = n~, a = 1 , . . . , g - 1 )  

converges to ~(z /  a) where ~ is the standard normal distribution function. 

PROOF OF LEMMA 2.3. It may be remarked that Hoist (1979) 
considered a similar problem and derived conditional limit distributions. 
However, his results do not apply to our case since Uk are not independent. 

Intuitively, by Lemma 2.2, the conditional distribution of N -1/2 ~ ( Ilk- E(UI)) 

given M~ ")= na (a= 1 ,..., g -  1) converges to the conditional distribution of Z0 
given Z,=0 (a= 1,..., g -  1), which is normal with mean 0 and variance a 2. To 
make this rigorous, some delicate analysis is needed. 

In the following, we will consider only the case g=2. The general case can 
be treated similarly with more complicated notation. Let L(X) and L(XI Y=y) 
denote the distribution of X and the conditional distribution of Xgiven Y=y. 
For each N, let Jg(1),..., J~(N) be independent of J(k) (l_<k<oo) such that 

L(J~(l),..., J~(N)) = L(J(l) , . . . ,  J ( N ) I M ~  ) = nt) .  

For any fixed positive integer ~<_N ~/2, choose, at random, ~ of those nl J~'s 
that are equal to 1, and change the values of these ~ ~ 's  to 2. Denote this new 
sequence by Jff(1),..., J~(N).  Clearly, 

L(J/~(I),..., J~(N)) = L(J(1),..., J(N)  IM(~ 1) = nl - ~) . 

Define 

J~(k) = J[~(k) = J(k) for k > N + 1, 

and 
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(2.5) 
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-1 
U~ = a(r~k~)lk' - k - r ~k~ I ~, k <- N ,  

= - rj~k~l , k < N ,  U/' a(rj~k))lk" k -  -l v 

where k ' =  k'(k)  = inf{j> k: J~O) = J/r(k) } and k " =  k"(k)  = inf{ j>k:  J ~ ( j )  = J~(k)  }. 
Clearly, 

(2.6) L ( U L k =  1 , 2 , . . . ) = L ( U k ,  k =  1, 2,...IMk~) = n t ) ,  

(2.7) L ( U / ' , k =  1, 2 , . . . ) =  L(Uk, k =  1, 2,...IMluU = n , - ~ ) .  

Fo r  k = 1,... ,  N, U; and  U[' are different  only if one  of  the  three  events ENs(k) 

(i--1, 2, 3) occurs,  i.e., 

(2.8) { u; ~ u~"} c u eN,,(k), 

where the event  ENa(k) is tha t  Jff(k) = 1, J~ (k )=2 ;  EN,2(k) is tha t  J~(k)=J~(k)= 1 
and  there  exists a posi t ive integer  l<_N-k  such  tha t  J f f (0=2 ( i = k + l , . . . ,  
k + l - 1 ) ,  J ~ ( k + l ) = l ,  J~ (k+l )=2;  EN,3(k) is tha t  J~(k)=2  and  there  exists a 
posi t ive in teger  l < N - k  such  tha t  J f f (0=J f f (0=  1 ( i = k +  1,... ,  k + l -  1), J~(k+l)  
= 1, J~ (k+ l )=2 .  We have 

n~ ~ 
P(EN, I(k)) = N nl N '  

N-k nl(nl  -- 1)nz(n2 - 1)...(n2 - 1 + 2) 
(2.9) P(EN, z(k)) = E 

t=~ N ( N -  1 ) - . . ( N -  l) 

< Z  

<_ 1 -  N] ~nl]= 

(nl -0~  
nl(nl - 1) 

(2.1o) 
N-k n 2 n l ( n l -  l ) . . . ( n l -  1 + 1) 

P(EN,3(k)) = Y. 
i=-1 N ( N -  1 ) . . . ( N -  1) 

(n, - ~)--.(n, - ~ - l + 2)~ 

nl(nl - 1).-.(nl - 1 + 1) 

- _ <  

So, for  some  cons tan t  D I > 0 ,  
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(2.11) P ( U  Eu, i(k)) < DI(~/  N )  . 

Note that in (2.9) and (2.10), the/-th term of the sum decreases geometrically 
fast as l increases. Also, note that U~ and U7 grow only polynomially fast in 
k ' - k  and k"-k(see  (2.4) and (2.5)), while P ( k ' - k = l )  and P ( k " - k = l )  
decrease geometrically fast as l increases. So, it can be shown that for some 
constant O2>0, 

for k =  1,..., N, ~ < N  1/2 and large N. So, by (2.8), (2.11) and (2.12), 

g I k~=NI(U/~ - Ukt') "~ k~=NIE{I U/~- Ukt'[ I ? EN, i(k)} P(? EN, i(k)) 
<_ 2DID2~ . 

That is, for 0<e< 1 and ~ < 6 2 N  1/2 and for large N, 

(2.13) P (U[ - > e N  m <_ 2 D I D 2 ~ / ( e N  m )  <_ 2D1D2e . = 

By (2.13), for any fixed z, for ~<e2N 1/2 and for large N, 

P( N-1/2 N ) ZI{U~ - E(UI)} <- z - e - 2DlD2e 

< P( N-I/2 N ) 
_ k~__l{Uk" -- E ( U I ) }  -< z 

_ gZ__ {U[ - E(U,)} <_ z + e + 2 D , D 2 e .  

which, by (2.6) and (2.7), is equivalent to 

(2.14) I ) El{Uk - E(U,)} <_ z - e M(u ' I =  nl - -  2D,D2e 

< e N -~/~ ~ { U k  - E(U~)} <_ z M~ ') = nl - 

_< ~(N-'" ~ { ) Uk-E(U,)}<-z+eM~ ) = n, + 2D,D2e , 
= 

for all positive integers ~</~2N1/2 and for large N. Therefore, 

( N 1 2  ) 
(2.15) P N -'/2 EI{Uk - E(U1)} -< z - < N - l / Z ( M m  - Nrx) < 0 
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is also bounded from below and above by the left-most term and the right- 
most term of (2.14), respectively. By Lemma 2.2, letting N - - ~  and then 
e- -0+,  (2.15) converges to 

lim P(Zo <- zl - e 2 < Z1 < O) = P ( Z o  < z l Z l  = O) = O ( z / a )  
c-O+ 

and so 

(2.16) 

lim lim P(N-~/2 ~:I{ ) U k - E ( U O } < z - e  M ~  1}=hI  < q~(z/a) 
c-0+ N - ~  = 

<l im lim p(N- l /2~ l  { e ) c-o+ N-= = Uk - E(U1)} <- z + MIN~)=rtl " 

Since (2.16) holds for all z and since O(z/a)  is continuous in z, we have 

u _ z Mk ) O(z /a)  [] lim P N -1/2 Y.{Uk - E(U0} < = nl = . 
N - ~  k=l 

PROOF OF THEOREM 2.1. Define, for k= l , . . . ,  N, 

Vk N = a(rstkl) lc -- k N +  1 v 
' nStk} + 1 

V k , N  , if 
Vt~,N= N +  1 v 

[a(rslkl) ( N +  1) - k - -  if 
nJ tk  ) + 1 ' 

/ ~ < N  

/ ~ > N ,  

where k=k(k )= in f { j>k :  J( j )=J(k)} .  Also define, for a=  I,..., g, 

wa.u = a(ra) ~t N +  1 v 
na+ 1 ' 

where ti= a(a)=inf{j: J(j)=a}.  Since, conditional on M~ ~) =n~ (a=  1,..., g - 1 ) ,  
g 

all of the N ! / H  n,! permutations of nl 1 's,..., ngg's are equally likely, and since 
g 

under H0, all of the N ! / H  n~! possible allocations of the N measurements to 

the g samples of sizes nl,...,  ng are equally likely, we have 

(2.17) L ( ( N  + 1)~B~IHo) 

= L  w , , N + E  k , ~ l  = n ~ , a = l , . . . , g - I  . 
- k=l 

It is easily seen that 
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(2.18) L w~,N + Z V[~,N - Vg,N M }  ") = n, ,  a = 1, . . , ,  g - l 
- k = l  = 

= Op(l).  

By (2.17), (2.18) and Lemma 2.3, it suffices to show that 

(2.19) L Z U k -  NVk,NM~ ") = na, a = 1, . . . ,  g -- 1 = o p ( N  1/2). 
k=l k=l 

~ :/: -1 Since the ra are fixed and k and/~(k) are integers, k - k  rs(k~ implies that 
k - k - r  J(k) is bounded away from 0. Clearly, 

r; 1 -  ( N +  l) / (n.  + 1)=  O ( N - I ) ,  

so that for large N, for k - k ¢ r s ( k ~ ,  

v-1 -1 (2.20) I Uk - Vk,NI --< a(rs(k))vlDI [r J(k) -- ( N  + l)/(ns(k) + 1)1 

<- a(rs(k~)2v[fi¢ k -1 ,v-l, -l - ( N  + 1)/(ns(k) + I)[ - - - r s ( k )  l I r s t k )  

where D is between k - k - r  1(g) and f ¢ - k - ( N +  1)/(nj(k)+ 1). 
For ~ -1 k - k = r  s(k), 

-1 (2.21) l U g -  V~,ul < -a ( r j ( k ) ) l r s ( k ) -  ( N  + 1)/(nj(k)+ l)l v=  O(N-V)  . 

For 2-1<v<1, since 

-1 v-1 r - 1  sup{I/~ - k - rj(k) :/~ - k ~ s(k)} -< sup sup [/' - r-,ll v-1 < :~ , 
l<-a~g j~ra' 

it follows from (2.20) and (2.21) that 

~ l ( U g -  V,,u)] = N { O ( N  -1) + O(N-')} = O ( N ' - ' ) ,  

proving (2.19) for 2-1<v<l.  For v>_l, by (2.20) and (2.21), for large N, 

(2.22) (U~ - <- a(rJikl)[r SIk~ -- ( N  + l)/(mIkl + 1)1 ~ 
N 

+ 2v Z {a(rjik)) I/~ - k - r-l~ikl I v-~ } 
k=-I 

-1 
• I r J ( k~ -  ( N +  l)/(nj(k)+ 1)1 

N 
< {sup a(r,)} ~l O(N-V)  
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N 

+ 2v Y-.{Uk + a(rslkl)} O ( N  -1) 
k=l 

N 
= O ( N  I-v) + O ( N  -1) E U, + O(1) .  

k=l 

Since by Lemma 2.3, 

L (  k=, ~ Uk M ~ '  = n~, a = l , . . . ,  g - 1 )  = O , ( N ) ,  

it follows f rom (2.22) that  

L Uk - Vk.u) M~ ~1= n,, a = 1,..., g - 1 = Op(1) , 
= 

proving (2.19) for v___ 1. [] 

3. The case of B2 with g=2 

Condi t ion (A) of Theorem 2.1 is needed for applying the central limit 
theorem for strongly mixing sequences, i.e., Theorem 18.5.3 of Ibragimov and 
Linnik (1971). We conjecture that  this condi t ion is satisfied if the weights a(ra) 
are not all zeroes. In this section, we compute  o .2 for the case of v=2  and g = 2  
and show that  Condi t ion  (A) holds in this special case. However,  we are not  
able to verify this condit ion for general v and g. 

For  v=2 and g=2,  

(3.1) tr 2 v a r ( U l ) +  2 ,~cov(Ul ,  Uk) - l - , { , ~ c o v ( U l ,  l~l))}2 - -  r l  /'2 • 
k=2 k=l 

Let It=E(U~) and note that  r2= 1 - r l .  For  ease of notat ion,  let m = a ( r l )  and 
a2 = a(r2). We now evaluate separately the three terms on the right-hand side of 
(3.1). For  a-- 1, 2, 

- 1 \ 2  2 z l  
E(UII~ a)) = E a , ( i  - 1 - r~ ) r~tl - r~) '-2 

i=2 

= a~r-,l(1 - r~) , 

2 

It = E(U1)  = E(UII111) + E(UIl121) = Y-. a~r-~l(1 - r~) 
ct=l 

2 
E(U~) = IF. ~ a ~ ( i -  1 - r~,')4r~(l - r~) i-2 

a=l i=2 

2 
= Z a~r-~ 3 {(1 - r~) + 7(1 - r,) 2 + (1 - r a )  3} , 

a= 1 
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Since Uk is independent of  the event { J(1)= J( / )=a,  J ( j ) ~ a ,  2 < _ j < i -  1 } for i < k ,  

the first term on the right-hand side of (3.6) equals 

2 k-1 -1 , ,2  2~ ] 
Y. Z a~(i - 1 - r~ ) Itr~tl  - ra) i-2 - / 1 2  

k=2 a=! i=2 
o~ 2 oo 

= - It Z Z g a ~ ( i -  1 - r~L)2r2(l - r,) '-2 
k=2 a= 1 i=k 

2 
= - It 52 a~r~,2(2(1 - ra) + (1 - r~) 2) . 

t/= 1 

Similarly, after some tedious algebraic manipulations, the second and third 
terms equal, respectively, 

2 2 - 3  E a~r~ ( l - r , )  2 
a = l  

and 

2 2 a l a 2 [ ( 3 + r a ) + ( l - r a + r ~ ) ( l - ( 1 - r a ) + ( 1 - r a ) 2 ) r ~ l ( 1 -  r,) -l] . 
t / : I  

From (3.2), (3.3), (3.5) and (3.6), 

0.2 , 2 - 3 r 2  4 2r2r-3 = "+a~r~ 2 q- a2  1 2 + 8 a l a 2  , 

al +a2>0. So, from the theorem, under H0, which is positive if 2 2 

(3.7) [ ( N +  1)2B2-  -l -1 . . . .  N ' 4  2 - s 2  4 2 2 - 3  N ( a l r l  r2 + a2rlr2 ) l / t  t alrl  r2 + a2rlr2 + 8ala2)] u2 

converges to the standard normal distribution. 

4. Some remarks 

R e m a r k  4.1. If one has a specific alternative in mind, then the weighting 
function a should be chosen to maximize the power  against the alternative. 
However,  since we are unable to obtain the asymptotic behavior of Bv against 
general alternatives, the problem of finding the optimal weighting function 
remains open. 

R e m a r k  4.2. While only the special case of  B2 with g=  2 was considered 
in Section 3, the same techniques, with much more complicated calculation, 
can be used to derive the asymptotic mean and variance of By with any even 
number  v and any g. But, we are not able to deal with the case of non-even v. 

R e m a r k  4.3. It can be shown that 



MULTIPLE SAMPLE TESTS 177 

[( 1 )2 ]  2(N+I,°o 
E Q/a /40 = 

n. + 1 ( N +  l)(n. + 1)(n. + 2) (na + 1) 2 

So, for g=2, 

(4.1) 
2(N+ l ) - n l  1 } 

E(BzIHo) = a, (N + ])(-nl + 2) n, + 1 

{ 2 ( N + l ) - n 2  1 } 
+a2 ( N +  ]-)(-n2 +-2) n2+ 1 " 

By (3.7), it is easily seen that 

A 2 2 - 3  1/2 (4.2) [(N + 1)2B2 - (N + 1)2E(B~lHo)]/[N(4aZrT3r22 + ~4a2rlr2 + 8ala2)] 

is also asymptotically standard normal. Rao and Murthy (1981) presented 
some limited simulation results for a statistic equivalent to B2 with g=2 and 
a -  1. From their results, we obtained the (estimated) 95th percentiles of B2 for 
several pairs of (hi, rt2). We then used the two normal approximations (3.7) 
and (4.2) to estimate the probability that//2 exceeds the 95th percentile. The 
results are given in Table 1. It appears that approximation (4.2) is better than 
(3.7). Both approximations are poor either when rtl and BE are small or when 
the ratio n~/n2 is far from 1. In addition, they both tend to overestimate the 
upper tail probabilities. 

Table 1. Normal approximations (3.7) and (4.2). 

nl 9 9 9 9 19 19 19 19 49 
n2 9 19 49 99 19 49 99 199 49 

(3.7) 0.253 0.177 0.180 0.276 0.161 0.102 0.116 0.170 0.064 
(4.2) 0.147 0.098 0.098 0.163 0.099 0.060 0.069 0.105 0.043 
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