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Abstract. The problem of simultaneous estimation of eigenvalues of 
covariance matrix is considered for one and two sample problems under a 
sum of squared error loss. New classes of estimators are obtained which 
dominate the best multiple of the sample eigenvalues in terms of risk. These 
estimators shrink or expand the sample eigenvalues towards their geometric 
mean. Similar results are obtained for the estimation of eigenvalues of the 
precision matrix and the residual matrix when the original covariance 
matrix is partitioned into two groups. As a consequence, a new estimator of 
trace of the covariance matrix is obtained. 

The results are extended to two sample problem where two Wishart 
distributions are independently observed, say, Si~ Wp(2"i, ki), i= 1, 2, and 
e igenva lues  of ~Wl~W2 -I are estimated simultaneously. Finally, some numerical 
calculations are done to obtain the amount of risk improvement. 

Key words and phrases: Wishart distribution, covariance matrix, eigen- 
values, squared error loss. 

1. Introduction and summary 

In this paper, first we consider the problem of estimating the eigenvalues 
of the scale matrix S, of  a Wishart distribution under  a squared error loss. 
Even if the squared error loss does not much penalize negative estimates, we 
have considered it for simplicity and convenience. Suppose S has a 
nonsingular Wishart distribution with unknown matrix L" and k degrees of 
freedom, i.e., 

S ~  Wp(k,S), k - p -  1 > 0 .  

Several authors including James and Stein (1961), Olkin and Selliah (1977), 
Haf t  (1980, 1983), and Dey and Srinivasan (1985, 1986) considered the 
problem of  estimating Z ~ directly under  several plausible loss functions by 
perturbing the eigenvalues of S. Here our objective is to estimate the 
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eigenvalues directly. The estimation of precision matrix S -1 was also 
considered by several authors. See for reference Dey et  al. (1986). However, 
our problem will be the estimation of the eigenvalues of -r -~ directly. In the 
same spirit, we will consider the estimation of eigenvalues of the residual 
matrix. 

Next, suppose $1 and $2 are independent p × p  Wishart matrices with 

Si ~ Wp(ki ,  Xi),  i =  1, 2 .  

We consider the problem of estimating the eigenvalues r/l->r/2- >-.. >- r/p>0 of 
S~S2  -1 under the sum of squared error loss. 

Let us now go back to the one sample problem. Suppose 21__... >2p>0 are 
the eigenvalues of Z'. Our problem is to obtain an improved estimate of 2 = (21, 
..., 2p) under the loss 

P 
(1.1) L ( a ,  2) = ~1 (a; - 2;) 2 . 

These roots are very important  since we encounter them in several 
problems in multivariate statistical analysis, e.g., testing hypothesis, principal 
components and discriminant analysis problems. In Section 2, we will obtain 
a new estimator which dominates the best multiple (including maximum 
likelihood) estimator of R, based on the sample eigenvalues. These estimators 
are developed in the spirit of Dey and Gelfand (1986). It is important to note 
that if ll>--'">_lp a r e  the sample eigenvalues of S, then E ( l ~ / k ) > 2 ~  and 
E(lp/k)<_2p.  In fact, the sample eigenvalues of S tend to be more spread out 
than the population eigenvalues of Z'. This fact suggests that one should 
shrink or expand the eigenvalues depending on their magnitudes. The 
estimator of 2 obtained in Section 2 indeed shrinks or expands the sample 
eigenvalues and it does towards the geometric mean. Then we use similar 
techniques to obtain improved estimates of eigenvalues of the precision and 
the residual matrices. As a consequence, we also obtain an improved 
estimator of trace of _r. 

Section 3 is devoted to the two sample problem. In this case, we defined a 
random matrix F with eigenvalues f~>_...>_fp>0 which have the same joint 

S -1 distribution as that of 1S2 . We consider the estimation ofq~>... >rlp>O , the 
eigenvalues of SIZ'2 ~, under the loss 

P 
(1.2) L ( a ,  r/) : iZ:l (ai - rii) 2 . 

These roots are also important,  for example, in the problem of testing/4o: 
-rl=Z'2 against Hi: SI~Z'2. In fact, the power functions of tests based on 
functions offl , . . . ,fp depend on Z'l and ,~2 only through the maximal invariant 
(r/l,..., r/p). For details, see Muirhead (1982) and Muirhead and Verathaworn 
(1985). Finally, in Section 5, numerical results are given which indicate the 
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percentage improvements. 

2. Improved estimators of eigenvalues and trace of ~" 

Consider the estimator 0C(L)=(af(L) ..... a~(L)) where OC(L)=cli, c>0, is a 
constant. For  example, c = k  -~, i= l,... ,p,  gives rise to the maximum likelihood 
estimator (MLE) of 2i. In fact, c can also be chosen to give rise to a minimum 
mean square estimator. 

Let us consider the rival estimator given componentwise as 

(2.1) 6i(L) = e l i -  bHl~/p , 

where b will be appropriately chosen. The following theorem will show that 
the estimator (2.1) dominates 6C(L) in terms of risk under the loss (1.1), but 
first we note 

where 

and 

Thus, 

LEMMA 2.1. 

P R O O F .  

For any real a f o r  which k + 2 a > 0  

° S "  E ISI = I I c .k+2./cp,k, 

Cp,k = 2 pk/2 Fp(k/2) 

Fp(a) = rtPtP-l)/4 i~l F(a - ~ )  . 

If S- -  Wp(k, L'), the pdf of S is given as 

f ( S )  _ ly'll,..,i -k/2 e I-trL" 'si/2 isl(k-p-l)/2 , S > 0 . 
Cp,k 

E d S [  ~ = IS[~E, ISI ~ - IZI~( e -(tr s)/2[s]tk-p-l+2a)/2 ds 
cp,k ~s>0 

= iSi o cp,k+2~ 
Cp, k 

This completes the proof of the lemma. 
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LEMMA 2.2. For any real a such that k+2a>0 

E~[ISIOS] = ts, l .  Cp, k+2a 
Clo,k 

(k + 2a)Z". 

PROOF.  

L.H.S . -  ISl-k"~fs Se I-~s'sl/2 ISllk-~-'*2°'/2 ds 
Cp,k >o 

I sI-k/21SlU2+~ 
= Cp,k+2a(k + 2a)Z 

Cp,k 

= R.H.S. 

Now consider the following theorem which gives rise to the improved 
estimator of 2. 

THEOREM 2.1. Consider the estimator 6(L) given as in (2.1). Then, 6(L) 
dominates 6C(L) under the loss (1.1), i f  one o f  the fo l lowing  conditions hold: 

(1) d >  0 and 0 < b < 2dcp, k+2/p/Cp, k+@, 

(2) d < 0 and 2dCp, k+Z/p/ cp, k+4/p < b < 0 ,  

where 

d = c ( k + 2 / p ) -  1 5 0 ,  c > 0 .  

PROOF. Let d(A)=R(O(L), 2)-R(OC(L), 2) be the risk difference. 
Sufficient to show that A(2)<0, it follows that 

(2.2) d(2) = pb2ElS[ 2/p - 2bc E tr(SlSl l/p) + 2b(Z2i) EIS[ ~/p 

= pb2lS[2/p Cp, k+4/p + 2b(trS)lS[ ~/p Cp,k+2/p 
cp,k cp,k 

- 2be(trX)lXlVP(k + 2/p) cp,k+2/p 
Cp,k 

(using Lemmas 2. I and 2.2) 

= pb21~Fi 2/p Cp,~+4/p + 2bd(tr~)lSI  lip c;,k+z/p 
cp,k cp,k 

=PbISI2/P cpk[ bcp'k÷4/p- ' I [ ] -~ 2dcp k + 2 / p ~  . 
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Now using p-ltrX/IS[ l/p> 1, condit ions (1) and (2) of Theorem 2.1, the p roof  
follows f rom (2.4). 

Remark 2.1. If for some c and b the est imator  (2.1) is negative, one 
should naturally take the positive part version of it. 

Let us now consider the est imation of eigenvalues of the precision matr ix 
X -~. Dey et al. (1986) considered the problem of Z "-1 under  several plausible 
loss functions. However,  we consider the problem of the est imation of 
eigenvalues directly. It is easy to observe that  ( k - p - 1 ) S  -~ is an unbiased 
estimate of X -~ for k-p-2>_O and kS  -~ is the M L E  of X -~. Therefore, two 
natural  est imators of eigenvalues of X -~ are cli -~ where c = k - p - I  or k, 
~spectively.  The following theorem gives a class of improved estimators of 
OC(L) given componentwise  as ~[(L)=cli -1, i= 1,..., p. But, first, we have the 
following lemma. 

LEMMA 2.3. For any real a such that k - p -  1 - 2 a > 0 ,  

,~,-1 

EslSl_aS_~ ce, k-za iSl_a 
cp,k k -  2 a - p -  1 

PROOF. 

I X I-~/2 
L.H.S. - - -  

Cp,k 
fS>O S-I e-trZ's/2 I Sllk-P-l-u~)n ds 

XI-kn X-~ WJ k/2-a 
z ,  I £ 'p ,k-2a 

Cp,k k -  2 a - p -  1 

-- R.H.S. 

THEOREM 2.2. Consider the estimator ~(L) given componentwise as 

(2.3) ~i(L) = ~C(L) - b 17 El/p, i = 1,..., p .  

Then ~(L) dominates ~c(L) under squared error loss if  one o f  the following 
conditions hold: 

(1) d > 0 

(2) d < 0 

and 0 < b < 2dcp,k-2/p/ CpA-4/p , 

and 2dcp, k-2/p/ Cp,k-4/p < b < 0 ,  

where 
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d = c / ( k -  2 / p - p -  1 ) -  1 ~ 0  and c > O. 

PROOF. Suppose zt(2-1) = R(~(L), 2-1) - R(~C(L), 2 -1) is the risk difference. 
Then using similar calculations as in the proof of Theorem 2.1, it follows that 

A(2 -1) = pb2ElS[ -2/p - 2bcE(trS 1181 l/p) + 2b trZ-lElSI -lIp . 

Now, using Lemmas 2.1 and 2.3, and the definition of d, it follows that 

pb Z [ X1- 2/p p-ltrZ-I cp,~-2/p} 
A(2-l) - Cp.k [bcp,k-4/p - 2bd--iz[_l/p . 

Finally, usingp ltrZ-l_> ]ZI-1/P, it follows that zJ(2 1)<0, which completes the 
proof of the theorem. 

Remark 2.2. If for some choice of c and b, the estimator (2.3) is 
negative, we again take the positive part version of (2.3). 

Next consider the problem of the estimation of eigenvalues of the 

S_[-r11 $12~ residual matrix. Suppose S--  Wp(k, X) and Z is partitioned as -~Z21 Z22]" 

The residual matrix is defined as ZI 1.2 =Sll -Z12 Z221Z21. The natural estimates 
are constant multiples of $1L2=$1~-$12S212S21 where S is also partitioned as 

-~$21 . In this case, it is well known that Sl 1.2-- Wp,(K-p2, X11.2), where 

$1~ is pl ×pl and p2=p-pl .  The inadmissibility of the usual estimates of the 
eigenvalues of S~L2 (i.e., multiple of eigenvalues of $11.2) follows immediately 
from Theorem 2. I. Similar result holds for the estimation ofeigenvalues of the 
other residual matrix Szz. I=$22-$21S1~$12. The estimation of eigenvalues of 
the inverse of residual matrices similarly can be done by using Theorem 2.2. 

Now we consider the estimation of trX. Olkin and Selliah (1977) 
considered this problem under weighted squared error loss and they estimated 
trZ directly. However, we consider this problem through the improved 
estimates of the eigenvalues of Z. The following theorem gives an improved 
estimate over the best scalar multiple of trS. 

THEOREM 2.3. Consider the estimator <5c(S) = c trS, the best multiple o f  
trS and define the estimator d(S) as 

(2.4) ~(S) = ~ ( S )  - blSl lip 

Then •(S) dominates 6c(S) under squared error loss, if  one of  the following 
conditions hold: 
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(I) d > 0 and  0 < b < 2dcp, k+2/p/Cp,k+4/p , 

(2) d < 0 and  2dep,k+2/p/ Cp, k+4/p < b < 0 ,  

where 

d = c ( k + 2 / p ) -  1-~0, c > O .  

PROOF. The proof is similar to that of Theorem 2.1. 

R e m a r k  2.3. It is to be noted that the estimate (2.3) is always positive. 
For d<0, we have b<0, thus it follows immediately that the estimator is 
positive. For d>0, c > p / ( 2 + p k )  and b<2dcp,k+2/p/Cp,k+4/p<2d=2c(k+2/p)-2. 

Thus 

ep - b > cp - 2c(k  + 2 /p )  + 2 = c (p  - 2 k -  4 /p )  + 2 

P p2 _ 2pk  - 4 
> - -  + 2  

p k + 2  p 

p2 

- > 0 .  
(2 + p k )  

Finally, 

6(S )  = c t r S  - blSI  `/p >_ cplSI  ~/" - b lSI  tip = (cp - b)lSI  '/p > 0 .  

3. Improved estimators of eigenvalues of ~1~'2 1 

Suppose S1 and $2 are independent p × p  Wishart matrices with 

S i - -  Wp(ki, S3 ,  i = 1 , 2 ,  

so that E(Si) =kiWi with k i>p+ 1, i= 1, 2. The problem considered in this section 
is essentially that of estimating the eigenvalues ql,..., r/p (r/1_>r/2_>... >r/p>0) of 
S~2"2 -1 under squared error loss function. Muirhead and Verathaworn (1985) 
studied this problem by considering a r andomp×p  positive definite matrix F 
such that the distribution of the eigenvaluesf~ >.. .  >fp>0 for Fis  the same as 
the distribution of the eigenvalues of  SIS2 -~ and depends only on rb,..., r/p, the 
eigenvalues of 271S2 -l. Muirhead and Verathaworn (1985) estimated the scale 
matrix of eigenvalues r/l,..., r/p directly, using a loss function based on 
"entropy" measure and hence obtained estimates of r/l,..., r/?. We, however, 
estimate the eigenvalues directly as mentioned in the introduction. 

It follows immediately that the best unbiased estimate of A =Z'~Z'2 -~ is 
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(3.1) A u -  k 2 - p - I  F ,  
kl 

but the eigenvalues of zit, either overestimate or underestimate the population 
eigenvalues. In fact, E(((k2-p-1) /k l ) fp)<-t lp  and E(((k2-p-1) /k l ) fO>_rl l .  
Now, the maximum likelihood estimates of r/i's are ; l i=(kz /k l ) f ,  i--i , . . . ,  p.  
Thus we can use our starting estimator of r/as fie(F) given componentwise as 

(3.2) ~(F)  = c f ,  

where e is an appropriate constant depending on kl, k2 and p. Consider the 
rival estimator 

P 
(3.3) f i ( r )  = 6C(F) - b i~=ifl/,. 1 , 

where 1 =( 1,..., 1)' and b is a constant which will be chosen later. Now, we need 
the following lemmas to calculate the risk difference of 6(F) and 6¢(F). 

LEMMA 3.1. For any real a such that k 2 - 2 a - p -  1 >0, 

(3.4) trE[lFl"F] - -  Cp,k,+2a Cp,k,.-Za kl + 2a [dl" trA 
Cp.k, cp.k, k2 - 2a - p - 1 

PROOF. L.H.S.=tr{E[S~I~S1}{E[S2[-~&-I}. Now using Lemmas 2.2 
and 2.3, the proof follows. 

LEMMA 3.2. For any real a such that ki+2a>0, i= I, 2, 

Ea I F[ ~ = [A I ~ Cp.k,+2~ ep, k2-2, 
Cp.k, cp, k2 

PROOF. The proof follows from Lemma 2.1. The following theorem 
provides an improved estimator of r/. 

THEOREM 3.1. Under squared error loss, the est imator (3.3) dominates  

(3.2) i f  one o f  the fo l lowing  conditions hold: 

(1) 

(2) 

where 

d > 0 and 0 < b < 2dcp,k,+2/p/Cp, k,+4/p " Cp,k2-4/p, 

d < 0 and 2dCp,k,÷z/p/Cp, k,+4/p • Cp, k2-4/p < b < 0 ,  
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kl + 2 / p  
d = c  - 150, c > 0 .  

k 2 - 2 / p - p -  1 

PROOF. Let A(r/)=R(fi, r/)-R(fi c, r/) be the risk difference. Then it 
follows using Lemmas 3.1 and 3.2 that 

A(q)  = pbZElF[ 2/p + 2b trAEIF[ '/p - 2bc trE[lFI 1/pF] 
= pb2lA 12/p cp, k,+4/p Cp, k2-4/p 

Cp,k, Cp, k2 

+ 2b( trA) lAlVp cp, k,+~/p Cp, k~-2/p 
Cp,kt Cp, kz 

_ 2bc( trA)[A[V p Cp,k,+2/p Cp, k,-z/p k~ + 2 / p  
Cp.k, Cp.k, k2 - 2 / p  - p - 1 

= pb2[A[Z/p Cp.k,+4/p cp.k,-4/p 
Cp, k, Cp, k~ 

- 2 b d  Cp.k,+2/pCp.~-2/p (trA)[A[~/p . 
Cp, k,Cp, k~ 

Now, usingp-~trA / [A I -l/p>- 1, conditions ( 1 ) and (2) of Theorem 3.1, it follows 
that A(r/)<0 which completes the proof. 

R e m a r k  3.1. If for some c and b the estimator (3.3) is negative, we take 
the positive part version of it. 

4. Numerical studies 

In this section, we use Monte Carlo simulation method to compute the 
risk of the maximum likelihood estimates (R0) and that of the improved 
estimates (R1) of the eigenvalues 2~,..., 2p and compute the percentage 
improvements in risk P I = ( R o - R O ×  100/R0. Then we do the similar calcula- 
tions for the estimation of trace of Z'. In our calculations, we take several 
values ofp and k and generate 100 Wishart variates for different choices of Z'. 
The X matrix is taken to be diagonal for simplicity and the diagonal elements 
are selected in such a way that we get a wide spectrum of eigenvalues. Table 1 
gives the percentage improvements in risk for the improved estimates of 
eigenvalues and the trace of _r for different p, k and Z" values. 

Next, we consider the two sample problem. F o r p = 4  and kz, k2= 10, 15 
and 20, a sample of 100 Sl's and 100 S2's are generated where S~-- W4(k~, I4), 
$ 2 ~  W4(k2, A),  S~ and $2 are independent. For each (k~, k2), the 100 pairs (S~, 
$2) are transformed into 

F = A ~/2 $1/2 S ~  SI/2 A m ,  
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Table 1. Percentage improvement for eigenvalues (PI1) and trace (PI2). 

p = 2  

Z - d iag  (1,1) Z = d iag  (2,1) S = d iag  (25,1) 

k PI  1 PI2  PI  1 PI2  PI  1 PI2 

4 15.9 19.3 17.9 17.5 13.2 12.4 

10 12.2 12.5 12.9 12.2 11.2 7.4 

25 11.2 12.3 11.7 12.2 6.3 8.7 

p - 3  

- diag (1,1,1) 27 = d iag  (4,2,1) S = diag (25,1,1) 

k P I I  PI2 PII  PI2 PI I  PI2 

5 11.5 12.6 12.2 12.6 6.3 8.7 

10 10.1 11.9 11.8 12.9 4.5 1.8 

25 3.9 9.9 6.8 11.9 1.6 0.9 

Table 2. Percentage improvements of 8(F) over &~(F) for p = 4 .  

c = k 2 / k l  c = ( k2  - p  - 1 ) / k l  

A - diag (1,1,1,1) 

kl  = k2 = 10 57.87 85.58 

kl = k2 = 15 45.62 79.19 

kl = k2 = 20 27.56 39.34 

= diag (8,4,2,1) 
kl = k2 = 10 49.65 77.92 

ks = k2 = 15 39.48 62.23 

kl = k2 = 20 16.73 34.14 

= diag (25,1,1,1) 
kl = k2 - 10 20.68 60.57 

kl = k2 = 15 17.27 51.72 

kl = k2 = 20 2.05 11.02 

for each of 3 choices of A. The choices of A are taken from Muirhead and 
Verathaworn (1985). The eigenvalues of F's are then obtained to form the 
estimates of t/. Finally, the percentage improvements in risk of the improved 
estimators over ~C(F) are computed in Table 2. 

Table 1 indicates that for most choices of S, the percentage improvements 
are very significant. Table 2 indicates that for all choices of zl, the percentage 
improvements are very significant and are largest when zl =•4. 
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