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Abstract. We consider a modified two-stage procedure for constructing a 
fixed-width confidence interval for the mean of a U-statistic. First, we 
discuss a few asymptotic results with the associated rates of convergence. 
The main result gives the rate of convergence for the coverage probability of 
our proposed confidence interval which is seen to be slower than that for the 
purely sequential procedure. 
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1. Introduction 

Various problems related to rates of convergence for randomly stopped 
U-statistics have received much attention lately since the appearance of the 
works of Landers and Rogge (1976). One may note this trend from Ghosh 
(1980), Ghosh and DasGupta (1980), Callaert and Janssen (1981) and Aerts 
and Callaert (1982) among others. Csenki (1980) used the results of Landers 
and Rogge (1976) to derive the rate of convergence of the coverage probability 
for Chow and Robbins'  (1965) fixed-width sequential confidence interval 
procedure. Mukhopadhyay (1981) generalized this particular result by 
applying the tools from Ghosh and DasGupta (1980) to derive the rate of 
convergence of the coverage probability for Sproule's (1969, 1974) fixed- 
width sequential confidence interval procedure. The recent paper of 
Mukhopadhyay and Vik (1985) considers a nonparametric approach to a 
parametric problem and develops the rates of convergences of various 
characteristics of the proposed sequential procedures in general. In this 
present note, we continue the type of program started in Mukhopadhyay and 
Vik (1985) for suitable modified two-stage procedures. 

We first propose a general stopping time along the lines of the modified 
two-stage procedures of Mukhopadhyay (1980, 1981, 1982) based on U- 
statistics. We briefly present results on various aspects of rates of convergences 
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for such stopping times, and these are applied to obtain the rate of 
convergence of the coverage probability of a fixed-width confidence interval 
for the mean of a U-statistic followed by a few examples. For most of the 
groundwork and other references, the reader is referred to Mukhopadhyay  
and Vik (1985). 

2. A modified two-stage procedure 

In this section we propose a general modified two-stage procedure based 
on U-statistics and study some of its asymptotic properties. Let X1, X2,... be a 
sequence of independent and identically distributed (i.i.d.) random variables 
having a distribution function F(.) where F(.) belongs to a family F of 
distribution functions. Let ~b(Xl,..., Xr) be a symmetric kernel of  degree r. 
Now for n>_r, Hoeffding (1948) defined U-statistics as follows: 

n,r 

where E stands for the summation over all combinations {m < ' "  < a,} formed 
n,r 

from the integers {1, 2 ..... n}. Furthermore,  we define 

4~(x~, . . . ,  x~) = E { 6 ( X ~ , . . . ,  X31X~  = x~, . . . ,  X~ = x~} , 

{c = Var{~bc(X1,..., X~)}, c = 1,..., r . 

At this stage we refer the reader to Subsection 1.2 in Mukhopadhyay  and Vik 
(1985) for some examples and further comments. 

We will very shortly connect these { U,: n>_r} to an estimation problem for 
the mean of another sequence of U-statistics denoted by { I'm: m>_s}. We 
assume that 

Vm = (m)-i ~2 g(X~,,..., X~,) , 
m,s  

corresponding to some symmetric kernel g(x~,..., xs). We further assume that 
E{ Ig12}<~ and define r/c=Var{gc(X1,..., Xc)} where g~(xl,..., x~)=E{g(X~,..., 
Xs)IXI=xl,..., Xc=xc} for c=l , . . . ,  s. Let us write p=E{g(Xl,..., Xs)}. 

Given d (>0) and q e (0, 1), we would like to construct a confidence 
interval Im fo r / t  such that the length of Im is 2d and P{/~ ~ Im}~ l -q .  We 
propose to consider the natural confidence interval lm=[Vm+d] for the 
parameter/~. Now, 

PLu ~ t,,1 = P{I Vr, --/Zt --< d} 
= P{ImV2(Vm -/x)l < mind} . 
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From Hoeffding's (1948) results it follows that ml/2(Vm-lO L N(O, S2ql) as 
m--.~ if 0<q~<~. Thus, P{~ e lm}~(l--q) for large m if 2tO((mmd)(sq]/2) -~) 
- 1  ~ 1-q.  Let 2 ~ ( a ) - 1 =  l - q .  Then, m needs to be the smallest integer 
>_a2s2d-2~]l=md, say. 

Of course, md would be unknown in most applications. Motivated by the 
developments in Mukhopadhyay (1980, 1981, 1982) we now define a modified 
two-stage procedure giving]rise to the following stopping variable. For 
arbitrary but fixed 0<r/<2, l~t the starting sample size m0 be defined by 

mo = max{[(a/d)"] * + 1, s} , 

where [x]* stands for the largest integer smaller than x. We assume that the 
sequence {Urn: m>-r} is such that {E(Um)}~=k~rll for some known positive 
numbers a and k~. Now, we define the stopping variable as 

(2.1) Md = max{m0, rl as \2 ~], 

That is, having observed XI,..., Xmo, we determine Aid and we sample the 
difference at the second stage, if necessary. Having recorded X1,..., XM,, we 
obtain VM~ and we thus propose the confidence interval IM, for/1. 

LEMMA 2.1. Assume that E(th2)<~ and ~1>0. Then, for  the stopping 
variable Md defined in (2.1) we have 

(i) e ( M d  < ~ )  = 1, 
(ii) Md--~  w.p. 1 as d~O, 

(iii) E{(Md/md)~}--I as d--'O/fE{1612~} < ~ f o r  ( > max(d/2, 1/2), 
where md=(as/ d) 2 ql and d is positive. 

Parts (i) and (ii) follow directly from the definition of Md. A proof of part 
(iii) can be constructed along the lines of Lemma 2.4 in Mukhopadhyay and 
Vik (1985). Further details are omitted. 

We have somewhat stronger assertions in the following lemma for a-- 1. 

LEMMA2.2. Leta=l  inthedefinition(2.1)ofthestoppingvariableMa. 
I f  E(d?2)<oo, then we have as d--O 

(i) E{Mad2(a2s2ql)-l} = 1 + O(d2), 
(ii) Var{Ma}[Var{U,,o}{as(dkt)-~} 4] = 1 + O(d2-"), 

where kl is defined by E( Umo)--k~ql and q ~ (0, 2) appears in the definition o f  
mo. 

Its proof is omitted for brevity. The reader is referred to Vik (1984). 
Now we consider the coverage probability when I~d is proposed as the 

confidence interval for/~. From Sproule (1969, 1974) it follows that lim P{/~ 
d--0 
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IMp}= l - q ;  however, we wish to study the rate of this convergence along the 
lines of Csenki (1980), Mukhopadhyay (1981), and Mukhopadhyay and Vik 
(1985). In order to do that, we will need the following result for Md. 

THEOREM 2.1. Consider Md as def ined by (2.1). A s s u m e  that E{l~b[ 2~ } < 
f o r  ~_>(1-22)/(2r/-4+82) where 2 e (1, l / 2 ) f o r  l=(2-r/) /4.  Then we have as 
d--'O 

P{ l (Ma/md)  - 11 > k d  21'/2 ~} = O ( d  j/2 2) , 

where ma=(as/  d)2ql and  k(>O) is arbitrary. 

PROOF. Let k be a generic positive constant independent of d and 
c--(aS/kl )  2. Now, we have 

(2.2) P{Ma > ma + kmJ/2+2} 
-2 a ~ I / 2+2 -2 a 

<_ P{cd Urn,,+ 1 > ma + Kma , cd  U,%>m0} 
+ e { c d  -2 U~m,, <-- m0} , 

and we also have 

(2.3) P{cd-2U~o > ma + kmJ/2+'~ - 1} = O(d ¢14{a ,/21+.1) , 

by the Corollary 1.2 in Mukhopadhyay and Vik (1985). For the term in (2.3) 
to have the specific order, we need (__-(1-22)(2r/-4+82) -~ and 2>(2-q) /4 .  
Next, we note that 

P{cd-2 U~o <- mo} _< kmo ~ = O ( d  1/2-2) , 

if ~___(1/2-2)/r/. This will always hold if the conditions for (2.3) to have the 
specific order hold. So far we have shown that under the conditions of 
Theorem 2.1, 

(2.4) P{(Md/md)  -- 1 > k d  211/2-~1} = P{Md > md + km~j >~} = O(d  1/2-~) • 

Again we have 

(2.5) P{I - (Ma/ma)  > k d  211/2-a)} <- P{O a - U,~o > km~ +1/2} . 

By comparing (2.5) with (2.3), we see that the same kind of arguments that led 
to (2.4) will be also applicable to obtain the specific order in (2.5). This 
concludes the proof of Theorem 2.1. 

The following theorem establishes our main result. 
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THEOREM 2.2. Consider Ma as defined by (2.1). Assume that E{ 14~ I ~} <°° 
1"or {___(1-22)/(2v/-4+82), E(g4)<oo and2  ~ (l, 1~2)for 1=(2-r/)/4. Then we 
have as d---'O 

t M , }  = (1 - q )  + . 

In view of our Theorem 2.1, we can construct a proof of Theorem 2.2 
quite easily along the lines of Csenki (1980). The reader may also look at the 
proof of Theorem 3.1 in Mukhopadhyay and Vik (1985) for some clarification. 
We omit all further details. 

Remark 1. If we compare this last result about the rate of convergence 
of the coverage probability with the corresponding result for the sequential 
procedure (see Theorem 3.1 in Mukhopadhyay and Vik (1985)), we readily see 
that for the modified two-stage procedure (2.1), 2 is bounded below by a 
positive constant. This gives us a slower rate of convergence for the modified 
two-stage procedure (2.1) in comparison with that for the sequential one. In 
the terminology of Mukhopadhyay (1981), this two-stage procedure is only 
"first-order asymptotically consistent", while the corresponding sequential 
procedure is also "second-order asymptotically consistent". Note that the rate 
for the two-stage procedure gets better as r/e (0, 2) gets larger in the definition 
of m0 in (2.1). 

Remark 2. Here, we will take the opportunity to correct the requirements 
for Theorem 5 in Mukhopadhyay (1981). In the context of that paper, 
Theorem 5 holds for (1 -r / ) /4<7< 1/2. Thus, the sharper rate of convergence 
of the coverage probability is obtained in Mukhopadhyay's (1981) Theorem 5, 
if we choose larger r/in [0, 1). One may note that this observation is completely 
in agreement with our findings here in Theorem 2.2 and Remark 1. 

3. Examples 

As in Mukhopadhyay and Vik's (1985) Section 5, we can easily illustrate 
the result obtained in Theorem 2.2 by specializingFto Bernoulli (p), Poisson 
(&), Gamma (&, fl), etc. To be candid, we refrain from doing that; instead, we 
give an example from the N(/z, 0 -2) population. 

Let Xz, X2,... be i.i.d. N(/~, a 2) random variables with/1 ~ ( - ~ ,  ~), a ~ (0, 
~). We consider the problem of estimating a 2 when/~ is unknown. For m_2, 

let us use S2--(m - I) -l i~1-- (X'-)[m)2' which is a U-statistic as an estimator of a 2. 

Now, from a result of Hoeffding (1948) we get 4ql=lim {m Var(S~)}, that is 

~ =a4/2. We then suggest I~=[S~+d] as the fixed-width confidence interval 
for a 2 where M=Md is defined as in (2.1); that is, we let 
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mo = m a x { 2 ,  [ (a /d )~]  * + 1} 

M = m a x { [ 2 f d - 2 S 4 o ]  * + 1, mo} for r/¢ (0, 2) . 

Now, Lemma  2.1 gives 

E{Md 2 / (2fa4)} ~ 1 , 

as d ~ 0 .  Also, for 2 e ((2-11)/4, 1/2), Theorem 2.2 gives 

P{a  2 ~ I~1 = (1 - q) + O ( d  '/2-~) . 

Let us now consider the two-stage procedure leading to the sample size M* 
proposed by Graybill and Connell  (1964). This M* is defined by M* = m l + M1 
where m1(_>2) is the starting sample size and 

M1 = [2 + rc{q -2:1~' " 1} 2 (ml - 2 4 - 1) Sin, (4d 2) 1], + 1 . 

Then, P(a  2 ~ IM,)>_ l - - q  and 

E ( M * )  = ml  + 2 + h(q ,  ml) a4d -2 , 

where h(q,  rnl)= (1/4)rc{q -2/Im'-~l- 1 }2(m~- 1). Let us now compare  our M with 
Graybill and Connell 's (1964) M* by considering 

e(q ,  m 0  = lim { E ( M * ) /  E ( M ) }  = h (q ,  m O / 2 a  2 . 
d-O 

As an illustration, let q=  .05. Now, the following table gives the values of e(.05, 
m 1) for some values of ml. The quanti ty e(.05, m 0  being larger than unity will 
signify the superiority of our  two-stage procedure.  In the context  of this 
part icular  problem, Table 1 shows that  the procedure th rough  M* will need 

Table 1. Values of e(.05, mr). 

ml e(.05, m 0 

10 9.05 
50 4.32 

100 3.98 
500 3.73 

1000 3.70 
10000 3.67 

100000 3.67 
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more  than  3.5 t imes the sample  size requi red  by the p rocedu re  t h r o u g h  our  M, 

over  the range  o f  ml cons idered  here. Howeve r ,  the larger  average  sample  size 
requ i red  by  the p rocedu re  t h r o u g h  M* is expec ted  to p rov ide  us with higher  
coverage  probabi l i ty  than  our  asympto t ic  target,  namely,  ( 1 -  q). 
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