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Abstract. Under the assumption that a (p + q)-dimensional row vector (Y, 
X) is elliptically contoured distributed, the conditional covariance of Y 
given X =x  is characterized in the context of correctly ordering the co- 
ordinates Yt's of Ybased on X. This is an answer to a conjecture implicit in 
Portnoy (1982). Moreover some unified theory is presented for the problem 
of ordering Yk'S based on X. An essential tool is the decreasing in 
transposition (D. T.) function theory of Hollander et al. (1977, Ann. Statist., 
5(4), 722-733). 
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1. I n t roduc t i on  

Let Y=(Y1, }'2,..., Yp) be an unobservablep-dimensional  r andom vector 
with a mean vector/ t  and X=(XI ,  X2,..., Xq) be an observable q-dimensional  
r andom vector with a mean  vector v. If( Y, X) has a joint  elliptically contoured 
distr ibution,  we write (Y, X)=Ep+q((/u, v), Z), and if normal ly  distributed we 
write ( Y, X)=Np+q((it, v), Z). We assume that  Z i s  non-singular th roughout  the 
paper.  Let Zx, Zxy and Zy:x denote the covariance matr ix  of X, and the 
covariance matr ix  between X and Y, and the condi t ional  covariance of Y 
given Xrespectively.  Let e denote  the normal izedp-vec tor  whose all elements 
are equal to l /x/~. Por tnoy  (1982) has treated the problem of ordering or 
ranking Yk's based on X. Assuming that  ( Y, X)=Np+q((I~, v), Z)  and that  the 
condit ional  covariance of Y given X is of the form 

(1.1) Zy:x = aI + fle'e 

with real constants a and fl, he showed 
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(A) the probability of correctly ordering the co-ordinates Yds of Yis 
maximized by ranking according to the order of the best linear predictors, 
E( Y[ X= x). 
In this paper we assume that ( Y, X)=Ep+q((lu, v), X),  and the following four 
results are presented. 

(B~) If Zv  is assumed to be of rank p, that the fact (A) holds true for 
lu=re for some constant r implies that X,.:x is of the form 

(1.2) S,:x = a I  + ate + e ta ,  where a ~ / ~  and a e R .  

(B2) IfX~y is not assumed to be of full rankp, that the fact (A) holds true 
for all/t implies that Z'~,:x is also of the form (1.2). 

(B3) If the conditional density of Ygiven Xis assumed to be unimodal, 
that X,.:x is of the form (1.2) implies that the fact (A) holds true. 

(C) The problem of maximizing the probability of correctly ordering 
Yds based on X may be treated in a unified way in terms of D.T. function in 
the sense of Hollander et al. (1977). 

Note that (B1) and (B2) are the answers to a conjecture implicit in Portnoy 
(1982), and (B3) is a generalization to an elliptically contoured distribution 
from a normal distribution, and that (C) gives a new point of view to this 
ranking problem. 

Note that the concept of D.T. function is known to be useful to unify the 
monotonicity theory of many selection problems (see Berger and Proschan 
(1984)). Our results show that our problem is one of such interesting 
situations. 

2. Terminologies and preliminary results 

In this section we define some terminologies and list some preliminary 
results which are needed in the subsequent sections. 

DEFINITION 2.1. If a p-dimensional random vector Y has a density 
function of the form 

(2.1) h(y) = q(Cy - p ) X - l ( y  - p)') , 

where q(-) is a non-negative function on (0, ~), Yis said to have an elliptically 
contoured distribution and it is denoted as Y=Ev(la, X).  Moreover if q(.) is 
non increasing, we say that the distribution of Yis unimodal and denotes as 
Y= EMp(kt, X). 

N o t e  2.1. When (Y, X)~-Ev+q((kt, v), X) ,  we use the terminology 
E{ YI X= x} =/t + (x -  v)Zx-~Xxy and Zv:x = X y -  Zy~ Zx-~Z~y, even if the expectation 
and the covariance do not exist. It is well known that the conditional 



CHARACTERIZATION OF CONDITIONAL COVARIANCE 95 

distribution of Y given X=x  is Ep(E{ YI X= x}, Sv:x). In the unimodal case, the 
unimodality is also preserved. For other properties and notations about an 
elliptically contoured distribution, see Canbani et al. (1981). 

Note 2.2. We also need the concept of a decreasing in transposition 
(D.T.) function. A good reference for this is Hollander et al. (1977). 

DEFINITION 2.2. Let S(p) be the set of all permutations on the set of 
integers { 1,2,...,p}. Then for a • S(p), C(a) denotes the subset of R p defined as 
follows, 

C(a) = {y e RPIy~I) _< y~2) -< ... _< y~)} .  

DEFINITION 2.3. A mapping 6: x E Rq--'6(x) e S(p) is called a decision 
(function) for the problem of ranking Yk's based on X. 

DEFINITION 2.4. The decision 6o is defined as follows, 

& ( x ) = a  if E { Y I X = x } c C ( a ) .  

Note that 60 depends on (p, v, Z). Here we cite the fundamental theorem of 
Portnoy (1982), which will clarify our results, with easier proof than the 
original. 

THEOREM 2.1. For the ranking problem o f  Yk'S based on X a decision 
6( x) is optimal (that is, maximizing the probability o f  correctly ordering Yk" s) 
if and only if for  almost all x 

P{ Y • C(6(x))IX = x} = max P{ Y e C(r) IX = x} . 
r ~ S(p)  

PROOF. Let 6' be any decision and 6 be a decision satisfying the 
condition of the theorem. Then we have 

P{ Y • C(6'(x))IX = x} <_ P{ Y • C(6(x))IX = x} for almost all x .  

Taking an expectation of both sides of the above inequality with respect to X, it 
is clear that 6 is optimal in the sense of the theorem. Conversely, any decision 
not satisfying the condition of the theorem is clearly not optimal since 
decisions satisfying the condition of the theorem really exist. 

3. Characterization of conditional covariance 

Before stating the theorems, we give lemmas without proofs (see 
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Nomakuchi  and Sakata (1988)). 

LEMMA 3.1. For p>_3, let Y=Ep(O, Z). I f  P{ Y ~ C(a)}= 1 / p ! f o r  all a 
S(p), then 27 is o f  the form (1.2). 

LEM MA 3.2. Forp >_ 3, let Y= EMp(O, 27). f f Z  is o f  the form of( 1.2), then 
P{ Y ~ C(a)} = 1/p! for  all a ~ S(p). 

We also need the next lemma for Theorem 3.1. 

LEMMA 3.3. Let (Y, X)=Ep+q((~, v), Z). Let U be any measurable 
neighbourhood of  v in R q. Then P{X ~ U}>0. 

PROOF. Without  loss of generality we may assume Z =  I and (~, v)=(0, 
0). Set T= {(y, x) Ix  ~ U}. Then P{( Y, X) ~ T} = P{X ~ U}. F r o m  the sphericity of 
the jo int  distribution, the regions obtained by rotat ions of T have the same 
probabili ty P{(Y, X)  ~ T}. Since/~*q is covered by countable these regions, 
P{X ~ U} must be positive. 

THEOREM 3.1. Let (Y, X)=Ep+q((kt, v), Z) with q>_p>3. Assume that 
Zxy is o f  rank p. l f  6o is optimal for  tl=re with some real constant ~, then Z,.:x 
has the form of  (1.2). 

PROOF. Without  loss of generality we may assume v=0. Since Y - r e  
C(a) is equivalent to Ye C(a), we also assume/~=0. Let 6o be optimal.  F rom 
Theorem 2.1, it holds that  if E{ Y[ X=x} ~ C(a), P{ Y~ C(a) lX=x} = max P{ Y~ 

r c Sq,) 

C(r) lX=x}, which implies P{ Y~ C(a) lX=x}>_ 1/p!. Since ( Y, X) has the ellipti- 
cally contoured  distribution, f rom Lemma  3.3, there exists a sequence {xi} 
such that  xi--- 0, E{ Y[ X=  xi} = X~Zx-lZxy ~ C(a), and P{ Y ~ C(a) Ix= x~}_> 1/p!. 
Since (Y, X) has a density, it is not difficult to check P{ Y ~ C(a)IX=0}= 
limP{ Y ~ C(a) lX=xi}. Therefore we have P{ Y ~ C(a) IX=O}>_ 1/p!. Since this 
holds for any a ~ S(p), it follows P{ Y ~ C(a)IX=O}= 1/p! for any a ~ S(p). 
Applying Lemma 3.1, the proof  is completed. 

Next  theorem treats the case where Z'xy is not  of rank p.  In this case 
E{ YI X=x} may be restricted to the set of Lebesgue measure 0, for example, 
the boundary  of some C(a) even i fx  take all values of R q. For  this situation, it 
is obvious that  we must  introduce the class of randomized decisions. A 
randomized decision d is defined as a mapping  f rom the sample space of 
X(= R q) to the set of probabil i ty measures on S(p). Typically 60 is defined as 
followsi 6o(x) = cr with probability 1 if E{ YI X=  x} e Int (C(¢r)) and 60(x) =a,- (i= 1, 
2,..., k) with probability Ilk,  if E{YIX=x} ~ Bd(C(ai)), where Int(A) and 
Bd(A) denote the interior and the boundary of the set A respectively. 
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Moreover, in this degenerate case, to obtain those sequences {xA in 
Theorem 3.1, we need to assume that/~ is not fixed. 

THEOREM 3.2. Let ( Y, X)~-Ep+q( (p, v), S). I f  t~o=6o((p, v), S)  is optimal 
for  all p ~ U, S,:x must be o f  the form (1.2). Here U may be an arbitrary small 
neighbourhood of  the origin o f  R p. 

PROOF. Under the assumption, the existence of the sequence {xi} in the 
proof of Theorem 3.1 is clear. Rest of the proof is the same as that of Theorem 
3.1. 

THEOREM 3.3. Let (Y, X)=EMv+q(~, v), Z), I f  Sv:x has the form o f  
(1.2), then 6o is optimal. 

PROOF. This is postponed to Example 4.2. 

4. Unified theory through D.T. function theory 

In this section we present some unified theory for the problem of ranking 
Yk's based on X. In Portnoy (1982) and our previous sections the conditions 
are needed on the conditional covariance of Ygiven X = x  in order that the 
decision 6o is optimal. Here we show that optimal decision functions are 
determined by the D.T. structure of conditional density funct ionf(yl  x). 

THEOREM 4.1. Assume that the conditional density o f  Y given X=x,  
f (y lx ) ,  is represented as f ( y l x )  = h(y, g(x)), where g(x) = (gl(x), g2(x),..., gp(x)) 
and h(y, z) is a D. T. function in y and z. Then the probability o f  correctly 
ordering Yk'S is maximized if, observing X=x,  Yk's are ordered according to 
the order ofgk(x)'s (k= 1, 2,..., p). 

PROOF. From Theorem 2. I, the maximal probability is realized when, 
for X=x,  Yk'S are ordered according to the order represented by the cone C(tr), 
where P{ Y ~ C(a)lX=x}= max P{ Y ~ C(r)lX=x}. Now, without loss of 

r E S ( p )  

generality, we may assume that gl(x)<g2(x)<... <gp(x). Then, since h(y, z) is a 
D.T. function in y and z, for any • ~ S(p) 

h(y, g) <_ h(y(z), g) for all y e C(r) .  

Integrating both sides of above inequalty on the set C(z) with respect to y, 
we have that 

f,.~ c(~) h(y, z)dy <_ fy~ ct~) h(y(z), g(x))dy 



98 KENTARO NOMAKUCHI AND TOSHIO SAKATA 

-- f~,.ly,<y~<. < .,,I h((yt, y2,..., yp), g)dy , 

which implies that 

P{ Y e C(r) l X = x} _< P{ Y ~ C(o-0) lX = x} for any r ~ S(p) . 

This completes the proof of the theorem. 

Example  4.1. Let assume that ( Y, X)=  Np+q((/.J, ~'), ,~") and Z:,:x = aI+fle'e. 
Then the conditional density of given X = x  is 

f ( y l x )  = h(y, g) = c exp { - (1/2)(y - g)Z;:~x(y - g)'} , 

where g= E{ Y] X--x}. Since Z~.:x is of equi-correlated structure, h is D.T. (see 
Hollander et al. (1977)). Hence the probability attains its maximum when a 
decision c~0 is adopted, which was a main result in Portnoy (1982). 

t + t  
Example  4.2. Let ( Y, X)~-EMp+q((It,  v), ~') and Zv:~=aI+e a a e. Then 

the conditional density is 

f ( y l x )  = h(y,  g) = q((y - g)Zv:x(y - g) ' ) ,  

where g= E{ YI X= x}, and q is a non-increasing function on [0, oo). Neglecting 
a constant multiplier we can write Zv:x = l+flete+y(ate+eta) with l at = 1, aet=O, 
where fl and y e R 1 and a e/k w. Since 2 = 1 +f l -y2= (e-ya)G:x (e-ya)~> 0, setting 
F=I-(l+2-~/2)e~e+y2-1/2ate, we have that YF=EMo(gF,  I). Since z e C(cr) is 
equivalent to z F e  C(cr) for any z ~ R p and cr~ S(p) ,  without loss of generality, 
we may take Z,:x=L Then the quadratic form in q(.) is D.T. and therefore 
f (Y,gl  x) is D.T. Applying Theorem 4.1, we have 6o is optimal. This gives the 
proof of Theorem 3.3 from a unified point of view. 

Example  4.3. A density funct ionf lx)  is said to belong to the Furlie- 
Gumbel-Morgenstein family with four variables if it is represented as follows 
(see Johnson (1985)), 

4 [ 
f i x )  = H J~(x;) 1 + ,,<J:Z a;~, {1 - 2g,(x;,)} {1 - 2_~=(xj~)} 

-}- "'" -{- 0~1234 J=~H{1 - 2Fj(x/)}] , 

where ~ is the distribution function o f~ , j=  1,..., 4. Here we consider a simple 
special case wheref~{x)=h(x) , j= 1,..., 4, ajj~j,= 0 (1 <jl <jz<j3 <- 4), and 0q234--0. 

In this case the conditional density of(xl ,  x2) given (x3, x4) is represented 
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as fo l lows ,  

f(xl, x2lx3, x4) = h(xl)h(x2)[Sl(Xl, x2) + $2(x3, x4) 
- {1 - 2H(x,)}g,(x3, x,) 
- {1 - 2H(x2)}g2(x3, x4)]/{1 + $2(x3, x4)} 

= h(xl, X2, gl(X3, X4), g2(x3, X4) IX3, X4) , 

where  

gl(x3, x4) = - a,3{1 - 2H(x3)} - a,4{l - 2H(x4)} , 
g2(x3, x4) = - a=3{1 - 2H(x3)} - a/4{1 - 2H(x4)} , 

Sl(xl, x2) = a12{1 - 2 H ( x 0 }  {1 - 2H(x2)} , 
$2(x3, x , )  = a34{1 - 2H(x3)} {1 - 2 n ( x , ) }  , 

w h e r e  H(x) is the  d i s t r i b u t i o n  f u n c t i o n  o f  h(x). R o u t i n e  w o r k s  a sce r t a in  t ha t  
h(xl, x2, gl(x3, X4), g2(x3,  X4) lX3, X4) is a D . T .  f u n c t i o n  in (x l ,  x2) and  (gl,  g2). 
H e n c e  it f o l l ows  t h a t  an  o p t i m a l  dec i s ion  f u n c t i o n  r a n k s  (x l ,  x2) a c c o r d i n g  to  

the  o r d e r  o f  gl and  g2. Th i s  gives an  e x a m p l e  o t h e r  t h a n  an  e l l ip t ica l ly  
c o n t o u r e d  d i s t r i b u t i o n  to  wh ich  T h e o r e m  4.1 is app l icab le .  
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