
Ann. Inst. Statist. Math. 
Vol. 40, No. 1,41 59 (1988) 

STOCHASTIC NEURODYNAMICS 

KUNIO YASUE 1, MARl JIBU 1, TETSUYA MISAWA 2 
AND JEAN-CLAUDE ZAMBRINI 3 

t Research Institute for lnformatics and Science, Notre Dame Seishin University, Okayama 700, Japan 
2Department of  Applied Mathematics and Physics, Faculty of Engineering, Kyoto University, 

Kyoto 606, Japan 
3Mathematics Institute, University of Warwick, Coventry CV4 7AL, England 

(Received July 15, 1987; revised January 19, 1988) 

Abstract. Stochastic dynamics of relative membrane potential in the 
neural network is investigated. It is called stochastic neurodynamics. The 
least action principle for stochastic neurodynamics is assumed, and used to 
derive the fundamental equation. It is called a neural wave equation. A 
solution of the neural wave equation is called a neural wave function and 
describes stochastic neurodynamics completely. Linear superposition of 
neural wave functions provides us with a mathematical model of associative 
memory process. As a simple application of stochastic neurodynamics, a 
mathematical representation of static neurodynamics in terms of equilibrium 
statistical mechanics of spin system is derived. 

Key words and phrases: Neurodynamics, neural holography, neural wave 
equation, neural network, associative memory. 

1. Kinematics of nerve system 

We are now looking for a faithful mathematical model of neurodynamics. 
Consider a large scale integration of  neurons up to the order l01° in a typical 
cell assembly of  the cerebrum. Each neuron is connected with many other 
ones via about  l0 4 chemical synapses, electrical ephapses and tight junctions 
and the totality of  neurons can be considered as a huge dynamical system. We 
call it a nerve system or a neural network. A nerve system is said to be closed if 
no neurons in it are connected with external neurons. If a nerve system is not 
closed, it is said to be open. Among neurons of any open nerve system, those 
connected directly with external ones are called visible neurons. Those 
remaining are called hidden neurons. 

Let us consider, here, the degrees of  freedom belonging to a neuron in the 
nerve system. Neurological  action of  the neuron can be well described by 
illustrating the temporal  changes of cell membrane potential and firing 
threshold. Let t be a time parameter  in milli-second unit taking continuous 
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values between 0 and o.. Let u(t) and O(t) be values in milli-volt unit of 
membrane potential and firing threshold of the neuron at each time t. Firing 
mechanism of neuron is well known: 

The neuron fires and generates impulse if and only if u(t)>O(t). 
The threshold O(t) is slowly-varying compared with the membrane 

potential u(t). Therefore, it is convenient to introduce a reduced degree of 
freedom x(t) by 

(l.l) x(t)  = u(t) - O(t) , 

which will be called a relative membrane potential of the neuron. Then the 
neuron is active if x(t)>0, and not if x(t)<0. We assume the fundamental 
equation for kinematics of the relative membrane potential x(t) of the neuron, 

(1.2) dx(t)  = A ( t ) d t +  d w ( t ) .  

This is a stochastic differential equation (Nelson (1967)). The dynamical 
variable A(t)  describing the total electric current flowing into the membrane is 
called a drift. It represents the purely electric interaction between the neuron 
in question and others via neural connections. Therefore, A(t)  can be thought 
to depend on relative membrane potentials of all neurons in the nerve system. 
The second term in the right-hand side of equation (1.2) represents the 
fluctuating contribution to the membrane potential due to the spontaneous 
fluctuation (Abeles (1982), Buhmann and Schulten (1986)). It is given by a 
stochastic differential of a Gaussian stochastic process w={w(t)lO<_t<~} 
called a Wiener process such that 

(1.3) E[dw(t)] - O,  

(1.4) E[ldw(t) l  2] = v d t ,  

where E[.] means to take the mathematical expectation and the diffusion 
constant v is of the order of 10 (milli-volt)2/(milli-second) (Buhmann and 
Schulten (1986)). 

It is a standard result of the probability theory that the stochastic 
differential equation (1.2) determines a stochastic process x={x(t)lO<_t<~} 
called semi-martingale if the drift A(t)  and the initial condition x(0) are given 
(Nelson (1967)). Furthermore, the drift A(t)  is a mean forward derivative of 
the semi-martingale x defined by 

limE[, x( t  + h) - x(t)  ] (1.5) Dx(t )  1 h-O+ t h 

= A ( t ) .  
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Here, Et[.] means to take the conditional expectation given the present value 
x(t). We call the drift A(t) a mean forward current  of the relative membrane  
potential x(t). 

From the mathematical  point of  view, a mean backward derivative of  the 
semi-martingale x, 

(1.6) D . x ( t ) -  limEt[ x ( t ) -  x ( t -  h) ] 
h-o+ h ' 

can be considered also as the total electric current flowing into the membrane.  
We call it a mean backward current  of  the relative membrane potential x(t). 

Kinematics of a neuron can be illustrated in those three "coordinates", 
one for the relative membrane  potential, one for the mean forward current 
and one for the mean backward current. Now we proceed further to 
kinematics of a nerve system made up of N neurons, where N is of the order 
O(10J°). Since the activity of each neuron can be manifested in the coordinate 
of relative membrane potential, we use those of all neurons as a fundamental  
dynamical variable of the nerve system. Let Xi(l) be relative membrane 
potential of  the i-th neuron at each time t. Considering an ordered set of 
relative membrane potentials x(t)=-(xl(t), x2(t),..., xN(t)), we can illustrate the 
dynamical  variable of the nerve system by a vector x(t) in an N-dimensional 
coordinate space R N. This extremely higher dimensional space is called a 
configuration space of the nerve system and denoted by d~. Then, total action 
of  the nerve system can be described by a stochastic process x={x(t)10_<t<oo} 
in J d  subject to a stochastic differential equation 

(1.7) dx(t) = A(t)dt + dw(t) . 

Here, A(t)=(Al(t), A2(t),..., AN(t)), and A,(t) denotes the mean forward 
current  of the i-th neuron for i= 1, 2,..., N. The stochastic process w={w(t)= 
(wfft), w2(t),..., WN(t))[O<_ t<oo} is an N-dimensional Wiener process such that 

(1.8) E[dwi(t)] = 0 ,  

(1.9) E[dwi(t) dwi(t)] = vdt(Sij, 

where 6o is a Kronecker's delta symbol. 
Kinematics of the nerve system described by equation (1.7) is a direct 

result of  that  of  each neuron given by equation (1.2). Recall that the mean 
forward current of  a neuron depends on relative membrane potentials of  all 
the neurons by the electric interaction via neural connections. Therefore, we 
may write down 
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Ai(t) = ai(xfft), x2(t),..., xu(t), t) 

= ai(x(t), t) , 

for i= 1,2,..., N, where ai=ai(x, t)'s are certain functions of coordinates X=(Xl, 
x2,..., xu) in the configuration space JTand  time t in the interval [0, oo). It 
seems worthwhile to notice here that there is no retardation in the electric 
interaction between neurons. Propagation speed of such an electric interaction 
is much higher than any other ones taking place in the brain. This is the reason 
why we can assume the validity of equation (1.10). Putting a(x, t)=(affx, t), 
a2(x, t),..., aN(X, t)), we obtain the fundamental equation for kinematics of the 
nerve system, 

( l . lD dx(t) = a(x(t), t)dt + dw(t) . 

This is a stochastic differential equation of It6 type in the N-dimensional 
configuration space ~/. It is known that the stochastic differential equation of 
It6 type determines a specific stochastic process called a diffusion process 
(Nelson (1967)). The time development of relative membrane potentials x,-(t)'s 
is now represented by a diffusion process x={x(t)lO<t<oo} in JU. It is an 
N-dimensional Markov process, though each component  process xi = 
{xi(t)lO<_t<o~} is not. 

Thus, we arrived at a mathematical model of the nerve system in which 
the total action of relative membrane potentials manifests an N-dimensional 
Markov process x={x(t) lO<_t<o~} in the configuration space ,7(. The ordered 
sets of relative membrane potentials x,-(t)'s, mean forward currents Dx~(t)= 
ai(x(t), t)'s and mean backward currents D,xe(t)'s form three basic dynamical 
variables of the nerve system, x(t)=(xl(t),  x2(t),..., XN(t)), Dx(t)=(Dxl(t) ,  
Dx2(t),..., DXN(t)) and D,x( t )= (D,xff t) ,  D,x2(t),. . . ,  D,xu(t)) .  

2. Dynamics of nerve system 

We proceed further to dynamics of the relative membrane potentials 
which represents neurodynamics in the present mathematical model of the 
nerve system. If the total action of neural network manifests a systematic 
order, there might be a certain dynamical law of neurodynamics. In our 
model, the relative membrane potentials x(t), the mean forward currents 
Dx(t) and the mean backward currents D,x( t )  are the basic dynamical 
variables. Kinematics of the nerve system is described by the N-dimensional 
Markov process x={x(t)lO<_t<oo} governed by the stochastic differential 
equation of It6 type (1.11). Therefore, it seems natural to suppose the 
fundamental dynamical law of neurodynamics in a form of variational (i.e., 
optimal) principle with respect to a certain universal quantity corresponding 
to the action account, the energy account or the entropy production (i.e., the 



STOCHASTIC NEURODYNAMICS 45 

negentropy account). We call the universal quantity to be minimized an action 
functional of the nerve system, and denote it by J[x]. The variational principle 
with respect to the action functional J will be called a least action principle. 
The action functional J may take different values for different stochastic 
processes. The least action principle claims that the real action of the nerve 
system is described by a Markovian diffusion process x={x(t) lO<_t<~} of the 
relative membrane potentials which achieves the minimum or minimal value 
of the action functional J. From the point of view of optimal control theory, 
such a variational dynamical law as the least action principle can be thought 
of as a feedback control mechanism. Namely the mean forward and backward 
currents, Dx(t)=a(x(t), t) and D,x(t), control the Markov process x= 
{x(t) lO<_t<oo} so that it achieves the minimum value of the action functional 
(i.e., the cost function). 

Therefore, the action functional J may have a typical universal form for 
any semi-martingales (not necessarily Markovian diffusion processes) 
y=  { y(t) 10<_ t<oo}'s in the N-dimensional configuration space JT, 

(2.1) J[y]= E[f~.~'(y(t), Dy(t), D,y(t))dt] . 

Here, ~ ' deno t e s  a given function of dynamical coordinates, that is, the 
relative membrane potentials, the mean forward currents and the mean 
backward currents. The upper and lower limits, a and b, are arbitrary 
provided that 0_<a<b<~. Explicit form of the function ~ thus characterizes 
the total action of a nerve system, that is, neurodynamics. We call it a 
Lagrange function of the nerve system. 

(2.2) 
1 ) 

~'(x(t), Dx(t), D,x(t)) = ~ ~ IDx(t)l 2 + ~ ID,x(t)l 2 - U(x(t)) . 

N N 
Here, IDx(t) 12=~(Dxi(t)) 2 and ID,x(t) 12=~(D,xi(t)) 2, and U is a certain 

function of coordinates x--(Xl, x2,..., xu) in the configuration space Jr. This 
function U may be understood to represent the total electrostatic energy 
contained in the configuration of relative membrane potentials of the nerve 
system. We call it a potential energy of the nerve system. Correspondingly, the 
first term in the right-hand side of equation (2.2) can be thought as the 
electrokinetic energy contained in the configuration of mean forward and 
backward currents. We call it a kinetic energy of the nerve system. 

Fundamental  theorem of stochastic calculus of variations (Yasue (1981 a, 
1981b, 1983), Zambrini (1985)) asserts that the Markovian diffusion process 
x={x(t)lO<_t<oo} in the configuration space J governed by the stochastic 
differential equation of It6 type (1.11) is a stationary or critical point of the 
action functional J if it is subject to the following equation. 
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c9S a5¢ a S  
(2.3) D - -  + D , - -  - - - 0 .  

OD,x(t)  ODx(t) Ox(t) 

Substituting the explicit form (2.2) of the Lagrange function ~ ' in to  equation 
(2.3), we obtain 

(2.4) 1 + - v u ( = ( t ) )  
2 ' 

where V=(O/Oxl, OlOxz,..., 310xu) denotes the gradient operator in the 
N-dimensional configuration space J~". This is the fundamental equation 
which describes the dynamical law of the action of a nerve system. It will be 
called a neural equation of action of the nerve system. 

3. Stochastic neurodynamics 

It is known that equations (2.4) and (1.11) are equivalent to the following 
linear partial differential equation (Nelson (1984), Blanchard et al. (1987)). 

O~(x, t) v 2 
(3.1) iv - -  - 

Ot 2 
A~u(x, t) + U(x)~u(x, t ) ,  

for a complex-valued function ~v of the coordinates x in the configuration 
space JY and time t. Due to the imaginary factor in the time derivative, this 
equation becomes hyperbolic. This means that the dynamics of nerve systems 
is essentially undulatory. It seems natural, therefore, to call it a neural wave 
equation. The complex-valued function ~v(x, t) subject to the neural wave 
equation will be called a neural wave function of the nerve system. 

We have obtained the fundamental equation of stochastic neuro- 
dynamics, that is, the neural wave equation (3.1). Since it is a linear partial 
differential equation of hyperbolic type, analysis of action of a nerve system 
can be performed within the realm of conventional mathematical analysis. 
Equation (3.1) is of the same form as the many particle wave equation in 
quantum theory. It is well-known that such a wave equation as (3.1) has 
proper solutions in a class of square integrable functions defined on the 
configuration space ~ Therefore, we can assume the existence of solutions to 
the fundamental equations (1. ! 1) and (2.4). To get solutions we assume the 
neural wave function of the form 

(3.2) q/(x, t) = exp{R(x, t) + iS(x, t)} , 

compute 

(3.3) R(x,  t) = log ]qJ(x, t)l , 
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and 

(3.4) S(x ,  t) = arg ~u(x, t) , 

then find 

(3.5) a(x,  t) = v( V S(x ,  t) + V R ( x ,  t)) , 

(3.6) a , (x ,  t) = v( V S(x ,  t) - V R ( x ,  t)) , 

and 

(3.7) p ( x ,  t) = e 2RIx" ') 
= I~'(x, 012 • 

These functions a, a ,  and p determine the Markovian diffusion process 
x={x( t )  [0_<t<~} subject to the least action principle such that Dx(t)=a(x( t ) ,  
t), D , x ( t ) =  a , (x( t ) ,  t) andp(x, t) is the probability distribution density of x(t). 

We have found the following guiding principles in stochastic neuro- 
dynamics: 

1) Action of the nerve system is described by a Markovian diffusion 
process of relative membrane potentials of neurons. 

2) The Markovian diffusion process is completely determined by the 
neural wave equation. 

The neural wave equation (3.1), therefore, becomes a key concept of 
stochastic neurodynamics and plays an important role in the investigation of 
fundamental thought processes. It seems surprising that the action of a nerve 
system is described by a wave equation similar to that of a many particle 
system in quantum theory. It is merely a formal similarity. Stochastic 
neurodynamics has nothing in common with conceptual aspect of quantum 
theory. However, the formal similarity may arise naturally in the following 
sense: 

In quantum theory, the uncertainty principle gives intrinsic disorder in 
the motion of many particles. A systemized mechanism in such disordered 
motion of many particles could be found as a statistical dynamical law 
described by the wave equation. 

In stochastic neurodynamics, spontaneous release of calcium ion gives 
disorder or fluctuation in the action of relative membrane potentials. A 
systemized function of fundamental thought processes in such a fluctuating 
action of the nerve system could be found as a statistical time evolution of 
relative membrane potentials described by the neural wave equation (3.1). 

Such a formal similarity to quantum theory may arise frequently when 
one looks for a systemized mechanism in high disorder of huge elements. 
Indeed, Nagasawa (1980, 1981) applied the "wave equation" formulation of 
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stochastic processes to population growing in biology. Albeverio et al. (1983, 
1986) applied it to pattern formation problems in both earth and space 
sciences. Among them are confinement of winds in zones on the surface of 
planets, formation of jet-streams in the protosolar nebura, morphology of 
galaxies, and stratification of galaxy distribution in the universe. 

4. Geometric representation of association 

In stochastic neurodynamics, fundamental perceptual processes will be 
described in terms of Markov processes of relative membrane potentials or 
equivalently neural wave functions of the nerve system. They are governed by 
the neural wave equation (3.1). (Recall the guiding principles 1 and 2.) 

Following the guiding principles, we can investigate fundamental 
perceptual processes by means of neural wave functions. We look for 
mechanisms of memory and perceptual processes characteristic to the 
mathematical structure of neural wave equation (3.1). 

First, we consider a mechanism of memory processes in the nerve system. 
Let us start with the neural wave equation (3.1) of the nerve system. As it 

is well known equation (3.1) can be reduced to the stationary neural wave 
equation. It defines an eigen value problem in the Hilbert spaceX=L2(R/V), 

(4.1) Hu = 2u ,  

where H is a self-adjoint operator on ~ d e f i n e d  by 

V 2 
(4.2) H -  L1 + U(x) .  

2 

We call H an action operator of the nerve system. It is known that for a wider 
class of potential energy functions the eigen value problem (4.1) has infinitely 
many solutions h,'s (Kato (1966)). Let 2,, n--1, 2 .... , be the n-th eigen value 
corresponding to the n-th eigen function h,--h,(x) belonging to • ,  

(4.3) Hh, = 2~h, . 

Neural wave functions ~u.'s given by 

(4.4) ~.(x, t) h . ( x ) e x p ( - i  2~ ) - -  t , 

V 

n--1, 2,..., are all subject to the neural wave equation (3.1). Therefore, they 
determine infinitely many N-dimensional stationary Markov processes of 
relative membrane potentials xn--{x,(t)I 0_< t<~}'s with equilibrium probabili- 
ty distributions 
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(4.5) p . ( x )  =- I h . ( x ) l  2 . 

Each stationary Markov process x. is governed by a stochastic differential 
equation of It6 type 

(4.6) dx.(t) = ao(xn(t))dt + dw(t) 

with 

(4.7) a~(x) = v V logh.(x) 

V h.(x) 
--11 

h.(x) 

The eigen values 2~'s are assumed to be increasingly ordered, that is, 

(4 .8)  21 < 22 < 23 < . . . .  

Those eigen values are nothing else but the possible mean total energy of 
relative membrane potentials of the nerve system, 

(4.9) 1 1 f~ i U(x.(t))] 2,,=E[~(-2lDx~(t) + ~ [D.x~(t)12) + 

1 I ~ U(x.(t))] = E[ ~ [a.(x=(t)) + 

1 U(x)}p.(x)dN x 

1 U(x) Ih.(x) 12 }dNx = f~ { ~ l V h.(x)l= + 

= <h., Hh.>, 

for n = l ,  2 . . . . .  
No other functions different from the stationary neural wave functions 

h,'s can describe stable action of the nerve system. In other words, the nerve 
system with the action function (2.1) (and (2.2)) admits only selectively limited 
actions of relative membrane potentials represented by each of the stationary 
neural wave functions h,'s. Therefore, the admissible actions of the nerve 
system are completely characterized by those eigen functions h,'s which can be 
considered as vectors in the Hilbert space,~. 

The neural wave equation (3.1) and the eigen value problem (4.1) provide 
us with both mechanism and geometric representation of perceptual processes 
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in the nerve system. The perceptual process is realized in the light of 
H etmholtz' old idea of resonating strings (Pribram (197 I)). The nerve system 
behaves as an assembly of weakly coupled N strings resonating to the 
selectively limited neural "waves" of relative membrane potentials ~,'s given 
by equation (4.4). 

We develop now a geometric representation of perceptual processes 
within the realm of Hilbert space geometry. From the point of view of 
functional analysis, the eigen functions {h,}n~l usually form a complete 
normalized orthogonal system of vectors in the Hilbert space ~ .  Namely, 
each eigen function hn is normalized in a sense that 

(4.10) 
2 N 1/2 

= ((h. ,  hn)) m 

= 1 ,  

holds. The quantity II hn II is called a norm of hn. Two different eigen functions, 
say hn and hm, a r e  orthogonal in a sense that their inner product vanishes, 

(4.11) (hn, hm) = f.x h n ( x ) h ' ( x ) d U x  = O . 

The totality of eigen functions {h.}.~l is said to be a complete system of vectors 
in X if any function f i n  a~g'can be given by a linear combination of hn's, 

(4.12) f(x) = Z anhn(x) . 
n=l 

Here, each coefficient an is in general a complex number given by 

(4.13) an = (hn, f )  

= f~ h ' , ( x ) f ( x )  d N x .  

Let us look at the neural wave functions as infinite dimensional vectors in 
the Hilbert space ,~. We may be allowed there to call a neural wave function a 
vector in o~. Since the neural wave function describes completely the action of 
relative membrane potentials, it may be called a state vector or a perceptual 
state of the nerve system. Among many state vectors, those corresponding to 
stationary neural wave functions are called eigen vectors or eigen states of the 
nerve system. They are of particular importance because they describe 
selectively limited stable actions of the nerve system. 

A general solution of the neural wave equation (3.1) can be given in terms 
of a state vector. For each time t, the neural wave function ~u(x, t) can be seen 
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as a vector ~u(t) in o~ p. By the completeness of eigen vectors h,'s, it is 
decomposed in a form 

(4.14) ~'(t) = E___aa.(t)h.. 

Substitution of this expression into the neural wave equation (3.1) yields 

da.(t) 
(4.15) iv ~ -  )..a.(t) , 

n=  1, 2, . . . .  Those ordinary differential equations can be integrated to be 

(4.16) a,(t) an e x p ( - i  2" ) = - -  t , 
V 

n=  I, 2,..., where a,'s are constants of integration. It is found therefore that a 
general state vector of the nerve system is 

(4.17) ~ u ( t ) = Z a ,  ex - i - - t  r l  . 

= V 

This describes the most general form of possible time evolution of the 
perceptual state of the nerve system. 

For the better understanding of state vectors, we calculate the mean 
energy of relative membrane potentials when the nerve system is in the 
perceptual state described by the state vector (4.17). Let x={x(t) lO<<_t<~} be a 
Markovian diffusion process of relative membrane potentials associated with 
the neural wave function (4.17). Then, the mean total energy becomes 

, , , ,D .x , , , ,2 )+  (4.18) E[~(~ [Dx ( t ) l  2 + 

, , 2 , 2) / , , ,x t,d  -- f{ ~(  ~ la(x, t)l + 7 I",(x, t)l + G(x) 

V 2 

= (~u(t), H~u(t)), 

by equations (3.3)-(3.7). See also Nelson (1984). Substituting equation (4.17) 
into equation (4.18), we find the mean energy of the nerve system 
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(4.19) (~(t), HvJ(t)): ~ A. l a . I  2 . 
n=l 

The normalization condition claims 

(4.20) I1~,(/)112: ~: la~l 2 : 1  . 
r/=l 

Since An is the mean energy of the nerve system in the perceptual state 
described by the eigen vector h,, equation (4.19) implies that the mean energy 
of the nerve system in the perceptual state (4.17) coincides with the "mean" of 
all mean energies 2,'s of the eigen states h,'s with weights given by l a, 12's. In 
other words, a general state vector of the form (4.17) can be thought to 
describe a composite action of membrane potentials which fluctuates between 
stable actions in the eigen states h,'s with probability l a, 12's. Such a composite 
action coincides with one of the stable actions x,'s with probability l a.12's. 

Validity of this statistical interpretation of the general state vector (4.17) 
may be understood also by computing the probability distribution density of 
the Markovian diffusion process of relative membrane potentials x-- 
{x(t)lO<_t<~}. For simplicity of computation, we assume a,~0 only for n=k 
and n=m, where k and m are certain given natural numbers. Then, equation 
(4.17) becomes 

(4.21) ~,(t) akexp( - i2~  ) ( Am ) = - -  t hk + a,, exp - i m  t hm , 

with the normalization condition 

(4.22) lakl2+ lain[ 2= 1. 

The probability distribution density can be obtained immediately, 

(4.23) p(x,  t) = [~(x, 012 

= lakl21hk(x)[ 2 + lamlelhm(x)l 2 

+ 2]akam, Ihk(x)hm(x)lcos{ (2k-  2,,)2_v t} 

= lakl2pk(X)+ laml2pm(X) 

+ 2lakaml Ihk(x)hm(x)lcos{ (l~k--/~m)t} 
The last term in the right-hand side of equation (4.23) is rapidly oscillating and 
vanishes effectively. In this sense, we have 
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(4.24) p ( x ,  t) = lak i2pk(x )  + laml2pm(x)  , 

which is the desired result. 
Thus, we are now able to describe any admissible actions of relative 

membrane potentials, that is, any perceptual processes taking place in the 
nerve system, in terms of the Hilbert space geometry. This is because they are 
illustrated by Markovian diffusion processes in the N-dimensional configura- 
tion space o,Y specified by neural wave functions subject to the neural wave 
equation. Those neural wave functions and the neural wave equation are 
respectively vectors and a unitary evolution equation in the Hilbert space of 
square integrable functions on 5,7". For any normalized vector u0 in the Hilbert 
space Y we apply a unitary operator 

(4.25) i H t ) ,  Kt -= exp v 

where H is the action operator of the nerve system given by equation (4.2), 
obtaining another vector 

(4.26) ut = Kt uo . 

This vector ut satisfies the neural wave equation (3.1) written in terms of 
Hilbert space geometry as 

d 
(4.27) iv --~ u, = H u t .  

Because u0 is arbitrary, any vector in Hcan  be thought to represent a possible 
initial state of perceptual process in the nerve system. Such an initial state 
changes in time according to the unitary operator K,. Eigen vectors hn's are 
only exceptions, that is, they are stable (i.e., unchanged) under the unitary 
operator Kt,  

(4.28) Kth, ,  = e-i~"/V)t h,, . 

Following are the abstracted scheme of geometrical representation of 
perceptual process: 

Action of a nerve system with N neurons is represented in an infinite 
dimensional complex Hilbert space P~. We call it a neural state space. 

Each vector in the neural state space ~'~ represents a possible form of 
action of the nerve system. We call it a perceptual state of the nerve system. 

Time development of a perceptual state is given by applying the unitary, 
operator (4.25). It represents a possible perceptual process in the nerve system 
characterized by the action operator (4.2). 
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A perceptual state which is stable under the application of unitary time 
development (4.25) represents a memory process in the nerve system. Eigen 
vectors of the action operator (4.2) manifests memory processes. Those 
specific perceptual states are called eigen states or memory states. 

Linearity of the Hilbert spaceo~:admits to represent any perceptual state 
as a linear superposition (i.e., a sum) of other perceptual states. If a state 
vector u happens to be a linear superposition 

(4.29) u = u~ + u2 , 

of the other two orthogonal state vectors such that (u l, U2) = 0, we interpret the 
perceptual state u as a statistical composite of perceptual states Ul and u2 with 
probability lu~12=l<u, ul>l 2 and lu212=l<u, u2>l 2. In other words, any 
perceptual state u in ~ c a n  be thought in part as a statistical composite of any 
other one v in ~ w i t h  probability proportional to 

(4.30) I<u,  v>l 2 . 

This fact opens the possibility to describe the mechanism of association in 
perceptual processes. 

Two perceptual states are independent with each other if they are 
orthogonal, that is, their inner product vanishes. They cannot be a composite 
of each other. 

Infinite dimensionality and completeness of the Hilbert space 3/"claim 
the existence of infinitely many varieties of a set of infinitely many 
independent perceptual states of the nerve system. They are nothing else but 
complete normalized orthogonal systems in 3: .  Among them is the system of 
eigen states of the action operator, {h,},%1. Any perceptual state of the nerve 
system u in ~ c a n  be decomposed into a linear combination 

(4.31) u = E a, h , ,  
n=l 

where each complex coefficient a, is given by the inner product 

(4.32) a,, = (u, h,,). 

Let {g,},%1 be another complete normalized orthogonal system in o~. 
Then, the same perceptual state u can be decomposed into another linear 
combination 

o o  

(4.33) u = ~-1fl"gn' 
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with 

(4 .34)  ,8. = <u, g.>. 

Two ordered sets of infinitely many components (a~, a2, a3,...) and (fl~, f12, 
f13,...) are coordinate representations of the perceptual state u in two different 
"coordinate" systems {hn}n~:l and {g,}n~. Thus any perceptual state of the 
nerve system has infinitely many varieties of coordinate representation. They 
provide us with a mechanism of multiple association characteristic to the 
perceptual process as follows. 

Equation (4.31) asserts that the perceptual state u can be thought as a 
statistical composite of those given by h,'s with statistical weights I a,I 2,s. In 
other words, the perceptual state u resembles that of hi with probability l all 2, 
that of h2 with l a212, and so on. Each perceptual state h, associates the 
perceptual state u with probability of association given by l a~l 2. Similarly, 
equation (4.33) asserts that each perceptual state g~ associates also the same 
perceptual state u with probability of association 1'8.1 =. The choice of 
coordinate systems in the Hilbert space ~ is completely free, and the 
association manifests a wide variety. 

5. A simple example 

As an example of the analysis and interpretation of fundamental thought 
processes in the nerve system, we consider a simple model of nerve system 
arising from stochastic neurodynamics. We start with the neural wave 
equation (3.1) and look for a specific solution of the form 

(5.1) ~u(x, t) = u ( x ) h ( t )  . 

Substituting equation (5.1) into equation (3.1), we obtain 

d h ( t )  
(5.2) iv d-----~ - 2h(t) 

and 

( v2 ) 
(5.3) - --~ A + U ( x )  u ( x )  = 2u(x),  

where 2 is a constant of separation. The former equation (5.2) can be 
integrated immediately, obtaining 

(5.4) h,,, hoexp( ) - -  t , 

V 
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where h0 is a constant of integration. The latter equation (5.3) becomes an 
eigen value problem, and the constant of separation 2 is determined as the 
eigen value. We call equation (5.3) a stationary neural wave equation and its 
solution u(x) a stationary neural wave function. 

It is worthwhile to notice here that the normalization condition for the 
probability distribution density, 

(5.5) fj, p (x ,  t)dNx = fJr [~u(x, t) led~x = 1 , 

yields h0= 1 and 

(5.6) f l  lu(x)12 dNx = 1 . 

Given a solution u(x) of the eigen value problem (5.3) with respect to the 
eigen value ~., we find a neural wave function 

(5.7) ~u(x, t )=  u(x )exp(  - i  2-v t) . 

Equations (3.3) and (3.4) yield 

(5.8) R(x,  t) = loglu(x)l , 

and 

2 
(5.9) S(x,  t) = - -  t . 

v 

We find by equation (3.5) 

(5.10) a(x ,  t) = a (x)  ~ v - -  
v u(x)  

u(x) 

The stochastic differential equation of It6 type (1.11), therefore, becomes 

(5.11) dx(t)  = a(x( t))dt  + dw(t)  . 

The Markovian diffusion process of relative membrane potentials x= 
{x(t)lO<t<oo} generated by equation (5.11) is a stationary process in the 
configuration space ~ with the (time-independent) equilibrium probability 
distribution density 
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(5.12) p(x) = l u ( x ) l  u 

The physical meaning of the eigen value 2 is the mean total energy (i.e., kinetic 
energy plus potential energy) of relative membrane potentials x,.(t)'s, that is, 

(5.13) 1 I 1 v(xo))] 

: f j r { 2 ( ~ l a ( x , t ) l  2 ~[a,(x,  + 

1 U(x))p(x)dNx " = f~, ( ~ la(x)12 + 

Let us suppose a restricted case of dynamics of the nerve system in which 
the relative membrane potentials xi(t)'s take small values around 0. Then we 
can approximate the total electrostatic energy of the nerve system U(x) by the 
second order expansion in the coordinates xi's around 0. Namely, we may 
write down 

N OU 1 ~ 02U 
(5.14) U(x) ~- Uo + Y~ (O)x~ + - -  (O)x~xj 

1 n 
= -~ i.~oo(x,- 6)(xj - Cj), 

where tr0's and ~,'s are certain constants such that (a0) is a positive definite 
symmetric N by N matrix. For such a quadratic function U(x) as (5.14), the 
eigen value problem (5.3) can be solved explicitly, obtaining an infinite series 
of eigen values {2,},~o and eigen functions {u,(x)}~0. The eigen function uo(x) 
belonging to the lowest (i.e., smallest) eigen value ,;to has a Gaussian form 

(5.15) u0(x)=Aexp(  - 1 ~r - ~ i ) ) ,  i,~j=l (-Dij( Xi -- ¢i)( Xj 

where (cog) is a positive definite symmetric N by N matrix and A a 
normalization constant. 

The neural wave function ~u(x, t)=Uo(x)exp(-i(2o/V)t) determines a 
stationary Markovian diffusion process xo={xo(t)lO<t<oo} with the equi- 
librium distribution density 

(5.16) po(x) = exp( - 1  ~°o(x)), 

where 
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(5.17) 
1 N N 

Jro(x) =- ~ ,,z ,oox~xj + Z ~,xi , 

for certain constants fl,.'s. This means that the total action of the nerve system 
in this restricted case can be approximated by relative membrane potentials 
xi's manifesting a time-independent statistical configuration governed by the 
equilibrium distribution density (5.16). Such a statistical configuration of 
relative membrane potentials is formally equivalent to the well-known 
continuous model of Ising spin system in statistical mechanics. Namely, if we 
suppose each random configuration variable x~ to be the z-component of a 
spinning top, the ordered set x=(xl, x2,..., xN) may be considered as 
configuration variables of N classical spin system. The equilibrium distribu- 
tion density (5.16) is nothing else but the Gibbs state (i.e., the Boltzmann 
distribution) of this classical spin system 

(5.18) 1 ~0(x)) pc(x) = exp - ksT 

with temperature T=-v/ks, where kB denotes the Boltzmann constant. 
Thus, classical statistical mechanics of spinning tops deserves to be a 

simple model of the action of a nerve system. The Hop field model of neural 
network, that is, the so-called Boltzmann engine now becomes a simple case of 
stochastic neurodynamics (Hopfield (1982)). Let us introduce discrete 
random variables s~'s by 

(5.19) s~ = sgn(xi) . 

If the i-th neuron is active (i.e., firing)s~= 1, and s i= -  I otherwise. The random 
variables s,-'s well characterize the total action of nerve system from the point 
of view of neuron activity, and called action variables. We rewrite equation 
(5.17) in terms of the action variables, obtaining 

1 N N 
(5.20) ~e0(s) -- 5~,~1 r0s,sj + ~/ ,s , ,  

for s=(sl, s2,..., s~,). Here, T,j's and/~'s may take random values absorbing 
redundant random variables I xixA's and I xd's. Equation (5.20) can be thought 
to define the Hamiltonian (i.e., the energy function) of a spin glass system of N 
random bonding spins. The equilibrium distribution density (5.16) defines a 
Gibbs state of the spin glass system with temperature T=v/kB. For further 
analysis of the Hopfield model, see Hopfield and Tank (1985). 
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