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Abstract. Statistical system identification and its use for the optimal 
control of thermal power plants are discussed. The analysis of the plant 
dynamics and derivation of the state-space representation are performed by 
fitting a multivariate AR model to the plant data obtained by an 
experiment. The basic concept of the power plant control and the 
motivation that necessitated the statistical approach are explained in the 
introduction. Practical procedure for the implementation of the method is 
described in detail with examples obtained from actual plants. The main 
items discussed are the selection of system variables by means of relative 
power contribution analysis, determination of the state equation and 
adjustment of the optimal feedback gain by digital simulation technique. 
Finally, excellent performance of the proposed control system is demonstrat- 
ed by the operating records of 500 MW and 600 MW supercritical plants. 

Key words and phrases: Statistical method, AR model, system identifica- 
tion, thermal power plant, supercritical boiler, multivariable system, 
nonlinear system, steam temperature control, digital simulation. 

1. Introduction 

In a large capacity high-pressure high-temperature boiler for electric 
power generation, deviations from the set points of steam temperatures at the 
boiler outlet must be kept within one or two percent of their rated values in 
order to maintain the nominal operating efficiency and ensure the safety and 
the max imum equipment life of the plant. The main purpose of the boiler 
control is to allow the increase or decrease of steam generation as fast as 
possible in response to the load command  from the power system's dispatch 
center, while satisfying the above-mentioned operating conditions. 

However, since a modern thermal power plant usually includes many 
control loops with significant mutual  interactions within the boiler process,it 
is not easy for the conventional P ID controller to fully compensate for these 
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interactions and satisfy the required steam conditions for large and fast 
changes of plant load. This difficulty of controlling a mutually interacting 
multivariable system had been one of the principal factors that set the limit to 
the response of a thermal power plant to the load changes required for the 
load-frequency control (LFC) of an electric power system. 

More than twenty years ago, the first named author of this paper started 
an investigation for improving load following capability of thermal power 
plants. In the study, which was carried out under the collaboration with 
Kyushu University, several block diagrams representing boiler dynamics were 
obtained through a series of theoretical and experimental works. Based on 
these diagrams boiler simulation models for the study of controller tuning 
were composed with a large-scale analog computer, and later with a digital 
computer. However, in spite of the laborious investigation on these simulation 
models, no decisive conclusion was found on how to improve the control 
performance of the integrated system. 

This was due to the fact that parameters in the conventional PID 
controller had different influences on different controlled variables. This 
experience led the author to realize the difficulty of tuning a multivariable 
system, i.e., a multi-input and multi-output (MIMO) system, and consequent- 
ly to distrust the "optimal tuning" of conventional PID controllers in MIMO 
systems. 

The author then learned the theory of optimal control. Impressed deeply 
by its prominent design concept, he tried to apply the theory to the boiler 
control. However, the trial which continued for a couple of years finally 
failed, because of the difficulty of deriving a state space representation of the 
complex boiler process. This showed that, so long as we stuck to the 
conventional approach based on the simultaneous differential equations 
representing the energy and mass balances in the process, the derivation of the 
state equation for practical use would be almost impossible. 

In the mean time, Otomo et al. (1972) reported a successful implementa- 
tion of the optimal control system for a cement kiln process, where the method 
of statistical system analysis and controller design had been adopted. This led 
the author to the investigation of the optimal control of power plants by 
means of the statistical approach. Experimental studies were repeated using a 
digital computer, an analog-digital hybrid computer, and also an exact power 
plant model established on a power plant simulator in the Central Research 
Institute of Electric Power Industries of Japan. Finally an optimal control 
system to be called ADC (Advanced Digital Control, Nakamura and Akaike 
(1981)) was established. The first optimal control system was implemented in 
February 1978 at Buzen No. 1 plant, a 500 MW supercritical plant of Kyushu 
Electric Power Company. As anticipated in the stage of simulation studies,the 
improvement of the control performance realized by the optimal regulator 
was quite remarkable. As of 1987, five supereritical plants with the total 
capacity of 2,700 MW are in commercial operation in Kyushu Electric Power 
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Company. With their high load following capability, these plants are 
significantly contributing to the load-frequency control, LFC, of the 
company's power system. 

In this paper, we first give an outline of the thermal power plant control 
so as to provide the readers with the general idea of the difficulties and 
problems underlying the actual plant control. 

Practical aspects of the statistical system identification and controller 
design are explained with examples obtained from actual plants and 
simulation models. Finally, the effectiveness of the optimal control system 
based on the statistical approach is demonstrated with the results of field test 
and routine operation of the actual plants. Technical aspects of the analysis 
and controller design are summarized in Appendix. 

2. Control of a power plant 

In this section, we will discuss the control of a power plant equipped with 
a supercritical once-through boiler. For convenience sake we provide the list 
of abbreviated notations of various variables in Table 1. 

When the change in load command (MWC) takes place, boiler input 
variables are manipulated through feedforward and feedback control loops. 
Of these control loops, the feedforward loops work to adjust the input 

FR 

GD 

MW 

MWC 

MWD 

RHT 

SHT 

SP 

TP 

WWT 

Table I. Nomenclature. 

Fuel flow rate 

Opening of the reheater flue gas damper in the rear 
path of the boiler shell 

Generator output power 

Megawatt command or load command issued from 
the system's dispatch center to the plant 

Megawatt or load demand measured at the load 
changing rate setter outlet 

Reheater outlet steam temperature 
(Deviation from the set-point value) 

Superheater outlet steam temperature 
(Deviation from the set-point value) 

Flow rate of the superheater spray water 

Main steam pressure 
(Deviation from the set-point value) 

Waterwall outlet fluid temperature 
(Transient deviation from the exponentially smooth- 
ed mean value) 
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variables, such as the governing valve opening, the flue gas damper opening 
(GD), fuel flow rate (FR), feedwater flow rate, etc., to the values correspond- 
ing to the new required load (MW). Since the manipulation of each input 
variable has influence on more than one output variables in different 
manners, controlled variables, such as main steam pressure (TP), superheater 
outlet steam temperature (SHT), reheater outlet steam temperature (RHT), 
etc., deviate from their set-points. 

To cancel such deviations, feedback loops connecting controlled variables 
with manipulated variables adjust boiler inputs so as to achieve final thermal- 
hydraulic balance in the boiler process. However, as these feedback control 
loops interact with each other within the boiler process, they form a typical 
mutually interacting multivariable system. This has been the principal factor 
that limited load changing rate of the thermal power plants and led to the 
introduction of the "Advanced Digital Control" system to be described in this 
paper. 

In the case of a supercritical variable-pressure boiler, which has been 
widely adopted recently, the above-mentioned situation becomes more 
serious, because in a variable-pressure boiler, its main steam pressure is 
controlled to vary in proportion to the boiler load. This causes changes of the 
temperature of working fluid within the evaporator tubes which is approxi- 
mately at the saturation temperature of the pressure and enhances the 
nonlinearity of the process. The above fact also means that for the load change 
of a variable-pressure boiler a larger amount of feedforward fuel control is 
necessary to complement the energy variation within the boiler. 

From the above discussion, it can be said that the key to the boiler control 
is to find optimal coordination of the feedforward and feedback loops and 
good compensation for the interactions within the boiler process. 

3. Fundamental requirements for the implementation of optimal 
control system 

The design of an optimal control system, or an optimal regulator, is 
performed based on the state equation, which is a state space representation of 
the system in the time domain. In this sense, the state equation is the only 
means that relates the actual system to the controller design. Thus, the basic 
problem in the implementation of an optimal regulator is how to obtain 
practically useful state equation. 

Here, by the term "practically useful" the authors mean the following 
fundamental requirements that the state equation should be endowed with. 

(1) The state equation must describe the system dynamics with a 
required accuracy; needless to say, this is a prerequisite for realizing a 
satisfactory performance of the control system. 

(2) The state equation must be a reduced order mathematical model 
which is compact enough to be handled by a process control computer; this 
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requirement comes from the aspect of on-line control, because our process 
control computer usually deals with many tasks on a time-sharing base, and 
although the highest priority is given to the computation for the on-line 
control, the state equation and state-feedback gain matrices with relatively 
small sizes are desirable from the viewpoint of lessening the computer load. 

(3) Derivation of the state equation and the controller design must be 
easy and simple enough to be carried out by a well-talented plant engineer 
rather than a specialist with expertise on the analysis of the process dynamics 
and modern control theory; this is important to make the adoption of the new 
sophisticated system as a common practice in the future. 

(4) The optimal regulator designed on the basis of the state equation 
must be robust enough; i.e., it must maintain the expected performance 
against possible changes in the process dynamics due to the fouling and 
slagging of boiler tubes or the change of the fuel mixing rate, etc. 

As a method satisfying the above requirements the statistical system 
identification and controller design procedure originally developed by Akaike 
(1971) and successfully applied to the cement kiln control (Otomo et al. 

(1972)) was adopted for the present power plant control. 

4. Optimal control system 

The control system is realized in the form 

Z(n) = F Z ( n  - 1) + Gu(n - 1) + W ( n ) ,  

x(n)  = H Z ( n ) ,  

u(n) = K Z ( n ) ,  

where Z(n)  denotes the state of the system, u(n) the control input to the 
manipulated variables, W(n) a white noise and x(n)  the system output or the 
controlled variables. The controller gain K is designed so as to minimize a 
performance criterion 

! 

• 11 = E E [Z ' (n)QZ(n)  + u'(n - 1)Ru(n - 1)]. 
n=l 

Procedures for the analysis and identification of the power plant system 
characteristics and for the design of an optimal controller are described in 
Appendix. 

Figure 1 shows the configuration of the ADC (Advanced Digital 
Control) system proposed by the authors. As shown in the figure, the plant, 
consisting of the boiler-turbine process and the conventional PID controller, 
is regarded as the object system of the computer control. Variables such as 
steam temperatures along the boiler tube, and other necessary process 
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Conventional 
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Fig. 1. Conceptual diagram of ADC system. 

variables define the output x(n) and are taken into the computer. The vector 
u(n) of control signals to the manipulated variables, such as the fuel flow rate, 
spray flow rate, RH flue gas damper opening, is computed, together with the 
state variable Z(n), by the algorithm prepared in the computer and added via 
the D/A converters to the control signals from the PID controller at the 
summing amplifiers at every control period. It should be noted that the 
exogenous variable MWD is included as a "controlled" variable. 

5. Procedure for the design of ADC system 

In this section we will discuss details of the procedure for the design of the 
optimal regulator ADC of thermal power plants by using examples taken 
from actual plants. 

5. I Preliminary experiment 
Selection of system variables 

Selection of proper system variables is important to obtain a suitable 
state equation. It should be avoided to include in the model more than one 
state variables that show similar responses to the change of a certain 
manipulated variable, because such variables can cause an ill-conditioned 
property of the coefficient matrices of the AR model. In the selection of the 
system variables, the knowledge of the process is indispensable. The relative 
power contribution analysis to be described under the heading MULNOS is 
also helpful for this purpose. 
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Rough estimate of plant dynamics 
Prior to the implementation of the ADC system it is desirable to make a 

rough estimate of the response of the controlled variables to the stepwise 
change in each of the manipulated variables and MWD. Such step response 
curves are converted into frequency response function curves to determine the 
approximate frequency ranges of the test signals to be employed in the system 
identification experiment. 

Figure 2 shows an example of the amplitude gains of the frequency 
response function curves (MWD to SHT and MWD to RHT) which were 
obtained in this manner in a 600 MW supercritical variable-pressure plant. 

5.2 Data acquisition for system identification 
Statistical properties of the test signals 

The vector time series data for AR-model fitting are obtained in the 
system identification experiment. As the test signal to stimulate the system a 
pseudo-random binary time series (maximum period sequence or m-sequence) 
produced in the computer is used for each manipulated variable and MWD 
after being modified by a two-stage digital low-pass filter. 

The amplitude and the fundamental period of the m-sequence and the 
parameters of the digital low-pass filter are determined for each test signal to 
cover the required frequency range which is roughly estimated from the 
frequency response function curves obtained from the preliminary experiment. 

0.3 C/MIN . 0.025 C/MIN. 

1.0 

RHT 

o5  o I i  

0.1  0. 5 o.350 o'.1 o.2 

freq.  (C/MIN.) f req.  (0 /MIN. )  

Fig. 2. Frequency response function of SlIT and RlIT obtained by conversion from step 
response function. 
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Figure 3 is an example of the power spectra of SHT, RHT and test signals 
computed from the record of the system identification experiment of a 600 
MW plant. In this experiment a filter consisting of two cascaded first-order- 
lag digital filters was used with the exponential smoothing factor a. The 
sampling period was 30 seconds. The unit period of m-sequence A and the 
smoothing coefficients of the digital filter a were chosen to the values 
indicated in Fig. 3 so that the power of the test signals was concentrated in the 
frequency ranges where the power spectra of SHT and RHT were significant. 
Data acquisition 

In the system identification experiment, test signals produced in the 
computer are simultaneously applied to the actuators of the MWD and other 
manipulated variables via D/A converters. The data of the system variables 
are recorded in the computer for several hours at every equi-spaced time 
interval, At. Figure 4 shows a portion of the record obtained at a 600 MW 
plant. The sampling period At and the data length differ depending upon the 
dynamics of the plant. Generally speaking, sampling period of 20 to 40 
seconds and data length of 5 to 8 hours give satisfactory results. Usually, 
system identification experiments are performed at two or three load levels for 
the purpose of nonlinearity compensation, which will be explained in the later 
section. 

5.3 System analysis and controller design 
The off-line computation programs for system analysis and controller 

design are stored in the plant computer. They consist of programs taken from 
the package TIMSAC (Akaike and Nakagawa (1972)) and some of their 
modifications. The functions of these programs are described below: for 
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Power spectra of controlled variables and test signals. 
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Fig. 4. Records of system identification experiment. 

further details readers are referred to the book by Akaike and Nakagawa 
(1972). 

MULCOR: This program calculates the covariance matrices of the 
system variables from the data obtained in the system identification 
experiment. 

MFPE: Using the covariance matrices, this program computes the 
coefficient matrices of the multi-variate AR model by solving the Yule- 
Walker equation by Levinson-Whittle type fast algorithm. The model order is 
automatically determined by a criterion function MFPE. 

MULRSP: Rational spectral density functions of the multivariable 
system are computed by equation (A.5) in Appendix. 
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MULNOS: Assuming the orthogonality between the elements of the 
innovation vector W(n) in equation (A.2) in Appendix, MULNOS computes 
contribution of the elements of W(n) to the system variables. Figure 5 shows 
an example of the relative power contribution (solid lines) of W(n) to the 
variance of WWT, SHT and RHT, which were obtained at three different 
loads of a 600 MW plant. In the figure, power spectral density function of 

3 ~ o ~ w  4 5 0 ~ v  5 ~ 0 ~  

C 

1.o 

.j sP 
0.5 :.:. k.h 

RH~ 

~ ~ D  
i I I I I I 

1.0~ GI:~" 

0.5 

0.1 0.2 0.3 0.1 0.2 0.3 

freq. ( C / M I N  .) freq .( C /MI  N.) 

0 

MWD 
I 

0 0,1 0.2 013 

freq, ( C / M I  N. ) 

power spectrum of each variable  

Fig. 5. Relative power contribution of a 600 MW supercritical plant. 
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WWT, SHT and RHT are also shown in dotted lines. 
The figure tells that in the variation of WWT and SHT at 550 MW and 

450 MW, contributions from FR are dominant in the low frequency range 
below 0.1 cycle/min, while in the frequency range above 0.05 or 0.1 cycle/min 
contributions of SP, GD, to SHT are significant. It is also observed that GD 
and MWD have significant contributions to the variance of RHT. 

As for the differences between the different loads, relatively significant 
contribution from GD to RHT at the load 550 MW reduces at the plant load 
decreases, and at 350 MW, GD has minor contribution to the process 
variables compared with MWD and other manipulated variables. This fact 
indicates that in the low load region, where the opening of the flue gas damper 
is large, the manipulation of GD has only small control capability. Such 
observation is quite helpful in determining proper controller gain for each 
manipulated variable in accordance with load levels. 

FPEC: By this program, the state equation is derived through AR 
model fitting in the way described in Section A.3 in Appendix. As the result of 
the computation the elements of the state transition matrix F and the 
manipulation matrix G in equation (A.I1) are obtained. Here a criterion 
FPEC is used for the model order determination in place of MFPE in AR 
model fitting. 

OPTDES: In accordance with the procedure described in Section A.4, 
this program computes the optimal state-feedback gain matrix using Dynamic 
Programming (D.P.) under the quadratic criterion function. As the result of 
the D.P. computation the gain matrix K~ in equation (A. 13) is obtained. 

DIGITAL SIMULATION: By this program, validity of the state 
equation and appropriateness of the state-feedback gain matrix are checked 
by digital simulation as follows: 

Checking the state equation: By comparing the responses of the actual 
plant with the simulation results obtained by using the state equation, the 
validity of the state equation can be verified. Figure 6 shows a comparison 
between the plant dynamics and the results of digital simulations which were 
obtained for a 500 MW plant. In this checking the actual record of the system 
identification experiment is compared with the record of digital simulation, in 
which the signals of MWD, FR, SP, GD having the same magnitudes and 
patterns as those of the actual plant record were used in the state equation. 

Estimation of control performance: The above-mentioned digital 
simulation is also used for the adjustment of the state-feedback gain matrix. 
In this case, in addition to the MWD changes the control signals computed 
from u(n)= KzZ(n) are provided to the state equation at each step of the state 
transition. The weighting matrices Q and R are adjusted by observing both the 
behavior of the state variables and the amplitudes of the manipulated 
variables. 

In the optimal controller design procedure, D.P. computation and digital 
simulation are repeatedly performed with revised Q and R at each iteration 
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Conven t iona l  PID C o n t r o l  ( exper iment )  

I J F R  r 
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Conven t iona l  PID C o n t r o l  (s i rrmlat ion)  

3 'uc / I t  

~S.,DI .... ~ 0 t  I . . . . .  i . . . . . .  ,,t J 

• I i i , 
o 30 60 9o lz, o MIN. 

Fig. 6. Comparison of the plant data and digital simulation results. 

step, until several candidates of the gain matrix for the field test are finally 
obtained. 

An example of this kind of simulation study is shown in Fig. 7. As can be 
seen in the figure the fluctuations of WWT, SHT and RHT operating under 
the same MWD changes are remarkably reduced by the ADC optimal control 
compared with those by the conventional PID controller. It is also observed 
that the amplitudes of FR, SP, GD, the control signals from the computer, are 
well within allowable ranges. 

Compensation for plant nonlinearity: In order to compensate for the 
significant output-power dependence of the characteristics of the boiler 
process, system identification is performed at two or three load levels. In the 
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PID Control 

MWD 

W W T  

S l i t  

RHT 

Fig. 7. 

Opt imal  Control : ADC 

MWD 

W W T  
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RHT 
- 

. . . . .  . . . . . . .  

FR 
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s P  

aR 

; ' ' 30 " ' ~ ' " ~ M i N .  

Pre l iminary  ad jus tment  of  op t ima l  feedback gain  by means  of  digi ta l  s imula t ion .  

actual operation, the parameters in the state equation and the state-feedback 
gain matrix are adjusted at each control time by taking linear interpolation of 
these identified models with weights determined by the magnitude of MWD. 

Experiments using an elaborate power plant model of Central Research 
Institute of Electric Power Industries of Japan revealed that for a large 
rampwise load change the load-adaptive adjustment of control parameters 
considerably reduces the amplitudes of the responses of both steam tempera- 
tures and manipulated variables compared with the results obtained by the 
system with parameters fixed (Nakamura and Akaike (1981)). 

The validity of the parameter adjustment can be checked by digital 
simulation. Figure 8 shows a comparison of actual 500 MW plant records 
and digital simulation results under a large amount of rampwise load changes 
at the rate of 25 MW per minute. As shown in the figure the results of the 
simulation show practically sufficient agreement to the records of the actual 
plant. 

Importance of including MWD in the state-variable vector: In our 
system MWD, the largest disturbance to the plant, is included in the state- 
variable vector as illustrated in Fig. 9. MWD is effective for the prediction of 
the behavior of S HT and R HT, and consequently for a better control of these 
variables. 
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Fig. 8. 
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Block diagram explaining the effectiveness of including MWD as a pseudo state 
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The importance of including MWD signal in the state-variable vector is 
also confirmed by an experiment. Figure 10 is a result obtained with a 
large-scale simulation model of a 500 MW variable-pressure plant which was 
used in the preliminary study for the implementation of the optimal regulator. 
In the figure, are shown response curves of steam temperatures and control 
signals from the computer against a 25 MW stepwise load change. In Fig. 10, 
(a) is the case when seven system variables, MWD, WWT, SHT, RHT, FR, 
SP, GD, are used, while (b) is the case when six system variables are used with 
MWD excluded. Symbols with suffix FF such as FR-FF,  indicate feed- 

Fig. 10. 
vector. 
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forward signals determined by the MWD change, and symbols with suffix FB 
such as FR-FB, denote feedback signals composed from the deviations of 
WWT, SHT and RHT. 

It is clearly seen that in the seven-variable system the feedforward signals 
determined on the basis of prediction act quite timely to reduce not only the 
steam-temperature deviations, but also the amplitudes of the control signals. 

Further consideration on the elements of the state-variable vector: The 
importance of including MWD in the state-variable vector can be evaluated 
from the relative power contribution analysis. Figure 11 is an example, in 
which the relative power contributions of system variables to SHT and RHT 
are analysed. 

It is observed that the hatched portions, which express the power 

Fig. 11. 
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Selection of system variables by means of relative power contribution analysis. 
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inherent to the variation of SHT or RHT themselves i.e., the power not 
relevant to other system variables, are quite large for the model (c) with MWD 
excluded, especially in RHT. It is also seen in (b) that the contribution from 
WWT to SHT is relatively large in the low frequency range. 

From the above observation the seven system variables including MWD 
and WWT are used in the final model building. 

5.4 Adjustment of the weighting matrix Q and R 
The most elaborate part in the optimal controller design is the proper 

choice of the coefficients in the weighting matrices Q and R in equation 
(A. 13). The following is an approach to this problem: 

(1) The coefficient corresponding to MWD in Q is put to zero to permit 
the free movement of MWD, because MWD is non-manipulable. 

(2) The state-feedback gain matrix is obtained by the D.P. computation 
with proper initial choice of the elements in Q and R, which can be easily 
revised by observing the results of the following steps, (3) and (4). 

(3) Digital simulation of the optimal control using specified random 
input of MWD is performed and the behavior of the system variables is 
recorded. 

(4) From the record of the simulation data, compute the power spectra 
of the controlled variables and the variances of the manipulated variables are 
computed and evaluated. In our plant computer the time required for the 
computation of steps (2) through (4) is less than 10 minutes. 

Power spectra of the controlled variables SHT and RHT, and variances 
of the manipulated variables FR, SP, GD, corresponding to several choices of 
the weighting matrices Q, R, allow us to estimate the influence of the elements 
of Q and R. By combining this observation with that of relative power 
contributions of FR, SP, GD to SHT and RHT, we can find proper choice of 
Q and R. For further fine adjustment of Q and R, the method suggested by 
Nakamura and Uchida (1984) is also helpful, in which the elements of Q and R 
that provide specified variances of manipulated variables under an assumed 
MWD variations are obtained automatically by the iteration procedure 
through (2) to (4) described above. 

6. Field test results 

The ADC system can be applied to both the constant-pressure and 
variable-pressure boilers. As a rule, finer tuning of the PID controller is 
required in variable-pressure boilers than in constant-pressure boilers to 
compensate for the system non-linearities. Results obtained with actual plants 
will be presented in this section. 

6.1 600 M W  supercritical constant-pressure plant 
Figure 12 shows a comparison of the behavior of the manipulated 
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360 
/ 
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2° I % 
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4° I T,/H 

Fig. 12. Comparison of the response of the identical rampwise load change. 

variables in the ADC system and that in the PID controller under the identical 
rampwise change in MWD shown at the top of the figure of a 600 MW plant. 
As can be seen manipulated variables FR, SP, GD, respond more quickly to 
the MWD change in the ADC system than in the PID controller. Cross 
correlation functions between MWD and the manipulated variables for each 
system under stationary operating conditions are shown in Fig. 13. The time 
differences between the zero axis and the peak points of the cross correlation 
curves show approximately the delays of the manipulated variables to the 
MWD changes. 

By observing these figures, it may be said that the manipulated variables 
respond faster in the ADC system than in the PID controller. This quicker 
response of the manipulated variables in the ADC system is apparently 
realized by the use of the predicted state variables for the control signal 
synthesis. 

Similar analysis with a power plant simulator showed faster response of 
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Fig. 13. 
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Comparison of the correlation functions between MWD and manipulated variables. 

the seven-variable ADC system with MWD in the state-variable than the 
six-variable ADC system without MWD. This result also verified the 
appropriateness of including MWD in the state vector. 

In Fig. 14 the control performance of the ADC system in routine 
operation is compared with that of the conventional PID controller under 
similar operating conditions. Considerable improvement of SHT and RHT 
control can be seen by the figure. 

Fig. 14. 

Conventional ~ ~ Optimal  c o n t r o l  
PID Control ( A D C )  

C o:, :o9 - - -  

( SHT ) 

( RHT ) 

~--- 1 o ----~ 

minutes 

Comparison of control performance during routine operation. 
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In general it is said that in the well-tuned optimal control not only the 
fluctuations of the controlled variables SHT and RHT, but the amplitudes of 
manipulated variables such as FR, SP, GD are smaller than those of the PID 
control. 

6.2 500 M W  supercritical plants 
Figures 15 and 16 show the records obtained in the routine operation of 

two supercritical constant-pressure plants. In the figures the plant control was 
respectively switched from ADC to PID control and from PID to ADC in the 
midst of the record to demonstrate the excellent control performance of the 
ADC system. In Fig. 16 feedforward control signals computed by applying 
Linear Programming procedure developed by Uchida et al. (1981) were added 
to those of the original ADC system. 

The ADC system was also applied to a 500 MW supercritical variable- 
pressure plant, which is a typical process with strong non-linearity and mutual 
interactions within the boiler (Uchida et al. (1986)). Although some difficulties 
were experienced in the case of the variable-pressure plant, it was concluded 
that, if deliberately planned preliminary studies were carried out on a plant 
simulator in advance, the improvement of the control performance produced 
by the introduction of ADC system is considerable even for this case. Figure 
17 is a comparison of the records obtained under the ADC and PID control 
systems in the field test of the variable-pressure plant. The reduction of 
deviations are particularly significant with RHT. 

7. Conclusion 

The optimal control system ADC discussed in this paper has been in 
routine operation since 1978. Since its first implementation at a 500 MW 
supercritical plant, the ADC system has practically experienced no trouble. 
Operating experiences during these nine years have revealed outstanding 
features of the system as described below. 

By the adoption of the ADC system, the behavior of the plant becomes 
quite calm even under the LFC (Load-Frequency Control) operation of the 
power system where the plant is often subjected to large, quick, frequent load 
changes. This result suggests that the ADC controllers have sufficient 
stabilities to allow their performances under severe operating conditions. 
Such performance is realized by the LQ (Linear Quadratic) controller which 
quickly brings the deviations of the process variables back to their specified 
values by properly eliminating mutual interferences between the process 
variables. 

The implementation of the ADC system is usually performed at the final 
stage of the plant construction. By our experience, in spite of the gradual 
change in process dynamics due to the seasoning effect of the boiler, the 
deterioration of the actuators, etc., no plant has ever necessitated readjust- 
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Fig. 16. Control performance of the ADC system and PID control system (500 MW 
supercritical constant pressure plant, Buzen No. 2), 

"(3 

MW 

PID Control 

3 7 5 ~  MWD (MW) 

250'  

1 . 0 ~ . ~ - -  SHT ( pu ) 

Optimal Control 

I SHT - ~ . . _ . ~  - 

R H T  

375 

25( 
1.0 

O 

-1.0 

~rWD CMW) 
/ 

SHT (pu )  

/ RHT (pu)  

[ ] I I I I 
o i0 20 MIN. 

MWD 

V/ 
f ~ . . f N . ~  SHT 

RHT 

I I I I I I 
0 10 20 MIN. 

Fig. 17. Control performance of the ADC system and PID control system (500 MW 
supercritical variable pressure plant). 
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ment of the control parameters since its inauguration. This fact clearly 
demonstrates the robustness of the ADC system. 

Another feature of the ADC system that should be emphasized is the 
simplicity of the design and maintenances. Since all the programs required for 
the system identification and controller design are stored in the plant 
computer, even a plant engineer with some knowledge of the system can easily 
perform the design and maintenance work with the help of the instruction 
manual. This is an important aspect for a technique to survive for generations. 
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Appendix 

For the convenience of readers, we provide here a brief review of the 
theory and method developed in a series of papers by Akaike (1968, 1971) for 
the statistical analysis and identification of a system and the optimal regulator 
design. The book by Akaike and Nakagawa (1972) discusses the method in 
detail with the cement kiln process as an example of its application. Akaike 
(1978) also provides a convenient introduction. 

Consider a time series of k-dimensional vector X(n), consisting of the 
data sampled at every time interval of A t (henceforth referred to as the system 
variable vector), whose elements are the variables describing the behavior of 
the system. Now, we denote by u(n) an/-dimensional subvector consisting of 
manipulated variables, and by x(n) an r-dimensional subvector composed of 
the rest of the components of X(n). Then, we get 

(A.1) k .  
"('0 ( 

The vector x(n) is composed of the variables expressing process dynamics and 
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non-controllable "exogenous" variables which will be useful for predicting the 
behavior of the system. 

A.1. Expression of the system by AR model 

First, we fit an AR (autoregressive) model to X(n) in the following way: 
(1) Subtract from the system variables' data their mean values to 

produce a data series X(n), n= 1, 2,..., N. 
(2) Compute sample auto- and cross-covariance matrices of X(n). 
(3) Fit an AR model to X(n), n= 1, 2,..., N to obtain 

(A.2) 
M 

X(n) = ~ A(m)X(n  - m) + W(n) , 

where A(m), m = 1, 2,..., M are the coefficient matrices, M is the order of the 
model, and W(n), the innovation, is a vector white noise. The A(m)'s that 
minimize variances of the components of W(n) are obtained by solving a 
multivariate Yule-Waker equation. 

(4) The model order M is determined through the minimum AIC 
procedure, where the AIC is defined by 

(A.3) AIC = (-2) log(maximum likelihood) 
+ 2 (number of free parameters). 

The minimum AIC procedure selects the model with the minimum value 
of AIC from a set of models defined with the parameters determined by the 
method of maximum likelihood. Under the Gaussian assumption the 
criterion FPE (Final Prediction Error) which was formerly introduced by 
Akaike (1971) for the order determination of an AR model satisfies the 
asymptotic equality 

(A.4) AIC = NlogFPE.  

In our analysis, particular types of FPE, the MFPE and FPEC, were used for 
model order determination; see TIMSAC in Akaike and Nakagawa (1972). 

A.2. System analysis by means of relative power contribution 

Once the AR model expression is obtained in the form of equation (A.2), 
we can reproduce a time series which is statistically equivalent to the original 
time series X(n) by using the coefficient matrices A(m), m = 1, 2,..., M. Here, 
the innovation vector W(n), a white Gaussian noise vector with variances of 
specified values, is used as the input signal to produce the autoregressive 
process. The relative power contribution analysis to be described below is 
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introduced based on this concept. 
From the autoregressive model equation (A.2) we can get the following 

relationship 

(A.5) P ( f )  = (A(f))- '  S(A(f)*)- '  , 

where P( f )  denotes the spectral density matrix, S denotes the innovation 
variance matrix E[ W(n) W(n)'], 

M 

A ( f )  = I - mE=1A(m) exp ( - i  2~zfm) 

and * denotes conjugate transpose. The (i,j) element of P ( f )  and S will be 
denoted by Po(f) and 6~, respectively. Assuming the orthogonality between 
the components of W(n), we get S=diag (&l, ~22,..., 6kk), which denotes the 
diagonal matrix with its i-th diagonal element di;. With this assumption we get 
the decomposition 

k 

(A.6) P.{f)  = ~ bjdf)2 6o , 

where bo(f) denotes the (i, j) element of A ( f )  -1. The relative power 
contribution of wl(n) to x,{n) is defined by 

(A.7) ro{f) - - -  
bo{f)2 dii 

Pi,{f) 

The cumulative relative power contribution from wffn), w2(n),..., wj{n) 
to xdn) is defined by 

J 
(A.8) Ro(f) = Zlrjh(f) j = 1, 2,..., k . 

The vertical distance between the graphs [Ro(f); O<_f<_l/2At] and 
[Ri,j-t(f); O<_f<_l/2Jt] shows the relative power contribution to(f). 

A.3. State space representation of the system dynamics 

From the multivariate AR model expressed by equation (A.2) we get 

M M 
(A.9) x(n) = E amx(n - m) + E bmu(n - m) + w(n) 

m=l m=l ' 

where w(n) is the vector composed of the first r components of w(n) and a,, 
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and bm are defined by the relation 

A ( m )  = 

" - - - r ~ l ~  
1 

If we define r-dimensional vectors xo(n) ,  xl(n),. . . ,  XM-ffn)  by 

xo(n) : x(n) 
M 

xk(n)  = m~+l [amx(n  + k - m )  + bmu(n  + k - m)] 

k =  1, 2,..., M -  1 , 

then we get 

(A.10) 

xo(n)  = a lxo(n  - 1) + b l u ( n  - 1) + x l ( n  - 1) + w ( n )  , 

x l ( n )  = a2xo(n - 1) + b2u(n  - 1) + x z ( n  - 1), 

xM-t(n) = a i x o ( n  - 1) + b M u ( n  -- 1) , 

which will be expressed in the matrix form as 

(A.11) 
Z(n )  = F Z ( n  - 1) + G u ( n  - 1) + W ( n ) ,  

x ( n )  : H Z ( n ) ,  

where 

Z(n )  = 

xo(n) 
x,(n) 

xM-z(n) 
xM-l(n) 

hi 
b2 

G = bM-i 

bM 

, F =  

W ( n )  = 

al I 0 . . . 0  

a2 0 I - - - 0  

aM-lO 0 . - . I  

aMO 0 " " 0  

w ( n )  

0 

' 

0 

H = [ I O . . . O ] .  

Equat ion (A. 11) is the state space representation or the state equation,  
which is commonly  called "observable canonical  form",  or "observable 
companion  form". 
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A.4. Design of LQ (Linear Quadratic) optimal regulator 

For the system given in the previous section 

Z(n) = FZ(n - 1) + Gu(n - 1) + W(n) , 

(A. 12) x(n)  = HZ(n)  , 

the optimal control system under a quadratic criterion function, or the Linear 
Quadratic optimal regulator, is realized by choosing such u(n)'s which 
minimize 

(A.13) 
1 

Jl = EZ1[Z ' (n)QZ(n)  + u ' ( n -  l ) R u ( n -  1)], 

where/ is  a properly chosen integer and the matrix Q is non-negative definite 
and R is positive definite and ' denotes transpose. 

We have 

• 11 = E [ Z ' ( I ) Q Z ( I )  + u ' ( l -  1 ) R u ( I -  1)] + Ji-1, 

where, from (A.12), we have 

E[Z'(/) Qz(I)] = E [ F Z ( I -  1) + G u ( I -  1)]' 
• Q [ F Z ( I -  1) + G u ( I -  1)] 
+ E W ' ( I )  Q W ( I ) .  

Thus u ( l - l )  that minimized Jz must minimize [ Z ' ( I - 1 ) F ' + u ' ( I - 1 ) G ' ]  
Q [ F Z ( I -  1)+ G u ( I -  1)]+u'(I- 1 ) R u ( I -  1) and is given by 

u ( I -  1 ) = - ( R  + G'QG) -~ G ' Q F Z ( I -  1). 

Proceeding successively to the next stage we get the following computation 
scheme: 

e o = a  
Mi = P i - l -  Pi-lG(R + G'Pi-IG)-I G'Pi-1 
P1 = F 'MiF  + Q i =  1, 2,..., I -  1 , 

and 

u ( / -  0 = K,Z(I-  0 
Ki = - ( R  + G'Pi-IG) -l G'Pi-IF i = 1, 2,..., I .  

To realize a stationary control we increase I until K, stabilizes and put 
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(A. 14) u ( n )  = K i Z ( n )  . 

This defines our feedback control. A proper choice of the matrices Q and R 
can be made with the aid of the digital simulation experiments as described in 
the text. 
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