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Summary

This paper investigates locally resistant balanced incomplete block
(LRBIB) designs of degree one. A new necessary condition for the
existence of such an LRBIB design is presented. This condition yields
a complete characterization of affine a-resolvable LRBIB designs of de-
gree one. Furthermore, regarding construction methods of LRBIB
designs of degree one, it is shown that Shah and Gujarathi’s method
(1977, Sankhya, B39, 406-408) yields the same parameters as Hedayat
and John’s method (1974, Ann. Statist., 2, 148-158), but their block
structures are different and interesting.

1. Introduction

Let T be a set of v treatments. Let D be a block design with
the vxb incidence matrix N=((n,)) consisting of b blocks of size k,
(7=1,2,..-,b) such that the i-th treatment occurs »; times (¢=1, 2,
-++,v) and the i-th treatment occurs in the j-th block n,, times, where

v b
n,;=0 or 1. Let n=§ 7'i=j§_‘,=1 k;. Under the standard homoscedastic

linear additive model, it is known that the coefficient matrix of the
least square normal equations for treatment effects adjusted for block
effects is C=R—NK™'N', where R=diag {ry, 1s,:--, r,} and K=diag {k,,
ks, - -+, k). We shall deal only with connected designs (i.e., rank of C
is v—1) throughout this paper.

We shall mention definitions of several designs used here. A design
D is said to be variance-balanced (Rao [11]) if C is of the form C=
o{I—(Q/v)J} where p=(n—b)/(v—1), I the identity matrix and J a ma-
trix of all ones. Let D be a block design on a set of v treatments,
T. Let L be a subset of T consisting of m (Zv—2) treatments. We
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denote by D the remaining design upon the loss of all experimental
units in D assigned to the treatments in L. In this case,

(i) D is said to be globally resistant of degree m (GR (m)) if D
is variance-balanced with respect to the loss of any subset L of cardi-
nality m;

(ii) D is said to be locally resistant of degree m (LR (m)) if D is
variance-balanced with respect to the loss of some subsets (but not all)
L of cardinality m.

Thus, resistant designs may be useful in a robustness problem
when some or all of the experimental units assigned to one or more
treatments are lost. As other applications, see Hedayat and John [3].

An incomplete block design D with parameters v, b, r (=r,=7,=---
=r,), k (=ki=k,=---=k,) (<v) is called an s-(v, k, 1,) design if every
s-subset of T is contained in exactly A, blocks of ‘D. It is well known
(cf. Hedayat and Kageyama [4]) that for each 0<u<s every s-(v, k, 4,)

design is a u-(v, k, 2,) design with 2.:2,(2:3) / (ﬁ:;") Note that a

2-(v, k, 4;) design is well known as a balanced incomplete block (BIB)
design with parameters v, b (=2), r (=2,), k¥ and 2 (=2;), denoted by
BIBD (v, b, 7, k, 2). A BIB design is said to be a-resolvable if the blocks
can be separated into ¢t sets of 8 blocks each (b=4t) such that each set
contains every treatment exactly a times (r=at). An a-resolvable BIB
design is further said to be affine a-resolvable if any pair of blocks
belonging to the same set contain ¢, treatments in common, whereas
any pair of blocks belonging to different sets contain ¢, treatments in
common. In this case, we have (cf. Kageyama [6]) ¢;=(a—1)k/(8—1)
=k+21—r, q;=ak/8=K'[v and

1.1) b=v+t—1.

An (affine) 1-resolvable design is simply called (affine) resolvable in the
usual sense.

Chandak [1], Hedayat and John [3], Most [10], Shah and Gujarathi
[12] have discussed several problems on resistant BIB designs. It is
known that the property of being resistant depends not only on the
parameters of the design, but also depends on the way the design has
been constructed. Hedayat and John [3] gave some necessary condi-
tions on parameters for a BIB design to be LR (1). The purpose of this
paper is further to investigate LRBIB designs of degree one. By in-
troducing a new necessary condition, we shall characterize affine a-
resolvable LRBIB designs of degree one. Finally, we make a useful
comment on a construction method of LRBIB designs of degree one
which are not 3-designs, with illustrations.
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2. Necessary condition and characterization

At first, we present a trivial result worth writing. From the
method of construction by taking as blocks all possible combinations
of k out of v treatments, the following is immediately given.

LEMMA 2.1. Any BIBD (m:(}é), r=(z:]1‘), k, z=(z:§>) of the
unreduced type (i.e., all combination type) is GR (m) with m<k.

Note that a GRBIB design is also LR. From Lemma 2.1 and the
present purpose of investigation of LRBIB designs of degree one, we
shall deal only with BIB designs satisfying k=3 throughout this paper.

Let D be a BIBD (v, b, 7, k (=8), 2) on T and let L={z}cT. Divide
D into two parts, D, and D¥. D, consists of all the blocks which do
not contain the treatment x; D} is the set of blocks which contain
z. Next, let D, be the design obtained by deleting x from the blocks
of D¥. Hedayat and John [3] proved the following.

PROPOSITION 2.1. D is LR (1) ¢f and only i+f D, 18 a BIB design
(¢f and only if D, is a BIB design).

This proposition yields

COROLLARY 2.1. If D %8 LR (1), then its parameters satisfy the
Sollowing conditions:

(i) rz2v—1 (¢f and only if 21=2k-1),

(i) A(k—2)/(v—2)=positive integer,

(iii) b=v+r-—1.

PrOOF. (i) and (ii) are already given by Hedayat and John ([3],
Corollary 4.2). From Proposition 2.1 and an assumption, D, is a BIBD
(v, =v-1, b,=b—r, ri=r—2, k,=k, ,,=2—2(k—2)/(v—2)). The Fisher in-
equality for D, requires b,=v,, i.e., b=v+7r—1 which completes the
proof.

Remark 2.1. Hedayat and John [3] gave another necessary condi-
tion, 1>1. However, by using the Fisher inequality for parameters
of D,, we obtain A=k—1 (which is equivalent to (i)). Therefore, their
condition A>1 is superfluous. The condition (iii) is new. It is known
(cf. Kageyama [5]) that each of the following conditions is sufficient
for the validity of b=v+r—1; (a) D is resolvable, (b) k|v, (¢) D has
disjoint blocks.

In the light of the sufficient condition (a) presented in Remark 2.1,
we next consider a BIB design with the property of affine a-resolv-
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ability to characterize a family of affine a-resolvable LRBIB designs of
degree one. In this case as an example of validating a condition (iii)
in Corollary 2.1, we have the following.

THEOREM 2.1. Any affine a-resolvable BIB design is for a=2 not
LR (1).

Proof is obvious from (1.1) and Corollary 2.1 (iii) with r=at if «=2.
From now on, we shall characterize affine resolvable BIB designs
as the remaining case.

THEOREM 2.2. Amny affine resolvable BIB design ts not LR (1) except
for a series of parameters

Q1) wv=4t, b=2(4t—1), r=4t—1, k=2, 1=2t—1, t=1.

ProoF. It is known (cf. Shrikhande [13]) that the parameters of
an affine resolvable BIB design can be expressed in terms of only two
integral parameters » and t as v=n*[(n—1)t+1], b=n(n’t+n+1), r=
nt+n+1, k=n[(n—1)t+1], i=nt+1, n=2, t=1. In this case, from
(i) in Corollary 2.1, it holds that »=v—1 being equivalent to 0=(n—
2)(n*t+m+1) which implies that when n=3 there does not exist an
affine resolvable LRBIB design of degree one. As the remaining case
of possibility of LR (1), we have n=2 which yields that for t=1, v=
4t, b=2(4t—1), r=4t—1, k=2t, 2=2t—1. This completes the proof.

Remark 2.2. From Chandak [1], Hedayat and John [3], it fol-
lows that if a Hadamard matrix of order 4t exists, then an affine re-
solvable BIB design with (2.1) exists. Furthermore, this design is also
GR (1) (i.e., the design is also a 3-design) and further is LR (k). Inci-
dentally, it is conjectured (cf. Shrikhande [13]) that an affine resolvable
BIB design with (2.1) exists for every positive integer ¢. Sprott [14]
gave a difference set for an affine resolvable BIB design with (2.1) when
4t—1 is a prime or a prime power. Finally, it is easily shown that a
BIB design with v=2k and k=3 satisfying A(k—2)/(v—2) being an in-
teger is completely characterized by the following two series: For [,
rzl,

v=2k, b=2l(2k—1), r=l2k—1), k (being even), 2A=lk—1);
v=2k, b=4l'(2k—1), r=2I'(2k-1), k, 1=2U'(k—1).

Some practical examples in the above series will be seen in Section 3.
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3. Comments on constructions

There are some construction methods of LR (or GR) BIB designs.
Shah and Gujarathi [12] gave a construction theorem of an LRBIB
design of degree one. But the parameters of designs constructed by
their method are here characterized to be the same as those in a con-
struction theorem (Theorem 5.1) by Hedayat and John [3] who present-
ed the following.

PROPOSITION 3.1. The existence of a BIBD (v, b, 7, k, 1) satisfying
b=3r—221 implies the existence of a GRBIBD (v+1, 2b, b, (v+1)/2, 7) of
degree ome.

On the other hand, Shah and Gujarathi [12] presented the following.

ProposITION 3.2. If a BIBD (v, b, r, k, 1) satisfying r=221 exists,
then there exists an LRBIBD (v'=v+1, b'=2b, v'=b, k'=k, A'=b—7r) of
degree ome with respect to two given treatments.

We now show that Propositions 3.1 and 3.2 produce the same family
of parameters each other, but their block structures are different.

We shall characterize a BIB design in Proposition 3.2 by using
necessary conditions (i), (ii) and (iii) in Corollary 2.1. It is obvious
from the Fisher inequality for the BIB design that »'=v'—1 and b=
v'4+7'—1 hold. For (ii) we get

F('—2) _ a—2)_,_ 21
V-2 k k

which should be an integer. Hence we can let 21=Ilk for a positive
integer I. In this case, a BIB design satisfying »=21 can be express-
ed as

(3.1) v=2%—1, b=U2k—1), r=lk, k, i=lk/2 for I=1.

Thus, Proposition 3.2 shows that the existence of a BIB design with
parameters (3.1) implies the existence of an LRBIBD (2k, 2l(2k—1), I(2k
—1), k, l(k—1)) of degree one. But, since v<2k in (3.1), the comple-
ment of the design should be generally considered as '
(3.2) v'=2k—1, b'=Il2k—1), r'=l(k-—1),

kK=k—1, 2=lk2—1 for I=1.

Therefore, Proposition 3.2 is equivalent to the following.

PROPOSITION 3.3. If a BIBD (v'=2k—1, b'=U2k—1), r'=I(k—1), ¥’
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=k—1, ’=1k[2—1) exists for 1=1, then there exists an LRBIBD (v'+1,
20, o', (v'+1)/2, ') of degree one with respect to two given treatments.

Since a BIB design satisfying b=38r—221 in Proposition 3.1 can easily
be characterized as (3.2) (cf. Hedayat and John [3]), it follows that
Propositions 3.1 and 3.2 produce the same family in the sense of con-
structing LRBIB designs of degree one. However, their methods pro-
duce designs having different remarkable block structures. This is
explained as follows.

When N is the incidence matrix of a started BIB design, Proposi-
tion 3.1 yields the following structure, in an incidence form as

N Ne
(3.3) [1...1 0-.-0]

where N° is the complement of N. On the other hand, since N is gen-

erally partitioned as
1...1 0...0
N= ,
N N,
Proposition 3.2 shows the following structure, in an incidence form as

(3.4) NN N N N

{1...1 0.---0 0---0 1...1}
0--.0 0---0 1---1 1...1

The structure (3.3) always yields a 3-design (i.e., the resultant design
is GR), whereas the structure (3.4) does not yield a 3-design. It ap-
pears that most of available LRBIB designs of degree one have a block
structure of a 3-design. Thus, Proposition 8.3 is very useful and inter-
esting in the sense that we can get systematically an LRBIB design
which is not a 3-design. Shah and Gujarathi [12] do not point out
such a property.

Finally, we can present all the parameter sets (which are exhaus-
tive) of existent LRBIB designs with <30 of degree one, constructed
by their method, as:

(1) »=6, b=20, r=10, k=3, 1=4;
(2) v»=6, b=40, r=20, k=3, 1=8;
(3) v=6, b=60, r=30, k=3, 1=12;
(4) v=8, b=14, r=T7, k=4, 1=3;
(5) »=8, b=28, r=14, k=4, 21=6;
(6) v=8, b=42, r=21, k=4, 1=9;
(7) v=8, b=56, r=28, k=4, 21=12;
(8) v=10, b=36, r=18, k=5, 1=8;
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(9) v=12, b=22, r=11, k=6, 1=5;
(10) v=12, b=44, r=22, k=6, 1=10;
(11) v=14, b=52, r=26, k=7, 1=12;
(12) v=16, b=30, r=15, k=8, 1=T;
(13) v=16, b=60, r=30, k=8, 1=14;
(14) v=20, b=38, r=19, k=10, 1=9;
(15) v=24, b=46, r=23, k=12, 1=11;

(16) v=28, b=>54, r=27, k=14, 2=13.
Note that each parameter set has two designs with different block
structures (i.e., one is a 3-design, but another is not a 3-design), and
that (4), (9), (12) and (14) belong to series (2.1) of affine resolvable BIB
designs (cf. Kageyama [8]). Further note that for a 3-(v, k, 2,;) design,
A(k—2)/(v—2) (=14;) is necessarily an integer. Furthermore, as examples
of parameters of other existing LRBIB designs of degree one, we can
present for the range of <20,

17 +=10, b=30, r=12, k=4, 21=4;

(18) »=11, b=33, r=15, k=5, 1=6;

19) »=17, b=68, r=20, k=5, A=5.
In fact, there exist 3-designs with parameters (17) to (19) (see Hedayat
and Kageyama [4]).

There are not so many sets of parameters in a practical range for
D. Hedayat and John [3] showed that D is GR (1) if and only if it
is a 8-design, and that any t-design, t=3, is at least GR (1). Since
there are a number of families of ¢-designs, there exist a number of
families of LRBIB designs of degree one. However, these designs
mostly have large values of the design parameters.

4. Additional remark

The concept of resistance for BIB designs can be similarly extended
to a case of variance-balanced block (VBB) designs. The definition is
still valid from replacing only a term “a BIB design” as a started
design by “a VBB design”. However, in this case it is difficult to
characterize resistant VBB designs completely. This is due to the fol-
lowing grounds :

(i) Any equi-blocksized VBB design is a BIB design.

(ii) Any equi-replicated VBB design with b=v is a symmetrical
BIB design.

(ili) Any equi-replicated VBB design with b=v+1 does not exist.
Therefore, there is no need to consider further such a characterization
problem for these three cases. Thus, it is in general sufficient to con-
sider such a problem for unequal-blocksized VBB designs. In this case
we have some observations from Kageyama [9]: For what forms of
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N, and &, can a VBB design N, with v treatments and b blocks be ex-
tended to a VBB design N=[a': N/]’ with v+1 treatments for a row
vector a=(ay, @y, -+, a,) with @;=0 or 1? For this problem, it is known
that when &=0,,,, N, is a disconnected VBB design with k,=--.-=k,
=1; when a=J,,,, N,=dJ,x;; when @a=[J,,: Oixe-»], corresponding to
the partition of @ the incidence matrix N, can be decomposed into [N;:
N;] as follows.

In this case, if the block sizes of N, are constant, then both N, and
N, are VBB designs (in fact, N; is a BIB design). However, if the
block sizes of N, are not necessarily constant, we have an example in
which both N,=[N;: N,] and N'=[a': N/] are VBB designs and further
N, and N, are not VBB designs. In this sense, it is not easy to char-
acterize resistant VBB designs, similar to the characterization of LRBIB
designs of degree one. In spite of such a situation, there are a num-
ber of families of LRVBB designs of degree one. For construction
methods of those designs, refer to Hedayat and Federer [2] and Kage-
yama [7] and [9].
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