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Summary

An asymptotically efficient selection of regression variables is con-
sidered in the situation where the statistician estimates regression
parameters by the maximum likelihood method but fails to choose a
likelihood function matching the true error distribution. The proposed
procedure is useful when a robust regression technique is applied but
the data in fact do not require that treatment. Examples and a Monte
Carlo study are presented and relationships to other selectors such as
Mallows’ C, are investigated.

1. Introduction and results

Suppose that Y=(Y;,---,Y,) is a random vector of n observations
with mean p=(g,,---, p.)’ and assume that each component g, is asso-
ciated with a covariate z,, such that u,=(x, ). Assume that the
parameter vector is infinite dimensional; then at most » elements of
B can be estimated on the basis of the observations. Suppose that a
certain likelihood function, not necessarily matching the true error dis-
tribution, has been selected by the statistician, and that parameter esti-
mates A(p) in a finite dimensional submodel p have been obtained by
the maximum likelihood principle. The regression curve p, at z, is
then estimated by /(p)=<(x,, A(p)> and a loss L.(p)=|p—g(®)|* is suf-
fered. We shall consider an efficient model selection procedure that
asymptotically minimizes the loss L,(p) over a certain class of finite
dimensional models of increasing dimension.

This paper completes earlier papers in various ways. Breiman and
Freedman [3], Shibata [12] considered the problem of selecting regres-
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sion variables when the true error distribution is known to be Gaussian
and derived selectors that are equivalent to ours in this case. In the
setting of least squares estimation Li ([8]) gave conditions for asymptotic
efficiency of model choice procedures based on cross validation, FPE
and other means.

Schrader and Hettmansperger ([11]) considered a robust analysis of
variance based on Huber’s M-estimates and propose a likelihood ratio
type of test for testing between finite dimensional submodels. This
viewpoint was also taken by Ronchetti ([10]) who derived a “robust
model selection ” procedure that is related to ours.

A mismatch of a chosen likelihood function and of a true error
distribution can happen in the case when the statistician applies a robust
regression estimation technique (Huber [6]) but the data is in fact
Gaussian. One may also think of the reverse situation that a Gaussian
maximum likelihood estimate (i.e., the least squares estimate) is com-
puted but the true error distribution is different, possibly a long tailed
outlier generating distribution.

The general idea of regression model selection procedures is to min-
imize a penalized form of the residual sum of squares. For instance
Akaike’s AIC ([1]) penalizes the dimensionality of the model with the
penalty constant 2. The AIC-score is asymptotically optimal in the case
of Gaussian errors and the least square estimation technique as was
shown by Shibata ([12]). In the case of a mismatch between the true
error distribution and the chosen likelihood function the proposed re-
gression model procedure has a similar structure but the penalty con-
stant is changed depending on the type of mismatch. This can be
heuristically described as follows. If there are outliers in the data
generated by a long tailed error distribution and AIC is applied based
on a Gaussian maximum likelihood estimate the data will be overfitted
since the model selection procedure will fit the outliers. The model
selection procedure to be presented below penalizes more a high dimen-
sional model since the penalty constant is bigger than 2. On the other
hand if the data is indeed Gaussian and a robust regression technique
is applied, the penalty constant will be less than 2. An example of
this kind is considered in Section 5 where a simulation study is pre-
sented.

In the simple case that the data is Gaussian and the statistician
chooses a Gaussian likelihood function, then our model selection pro-
cedure is equivalent to Mallows’ C, (see [9], Section 4). This entails
equivalence to many other selectors such as FPE, AIC, GCV, as was
shown by Li ([8]).

We will assume that the control variables x,=(x, Zs,---), =1,
--+,n and the parameter vector 8=(8,, B:---) are in l,. The model
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can then be written as
Y=XB+te=pu+te

where e=(e,,-- -, ¢,) is the vector of the independent observation errors
having distribution F' with density f and X’'=(x{;---2x.) is considered
as a linear operator from [, to R". By p=(p, Py -, D) We denote
a finite dimensional submodel with parameter

B’(p):(o,- %y .ley 0" * % sz’ 0" %y ﬁpk(p)’ Or' * ') .

The statistician chooses a likelihood function p of which he believes to
represent the true error distribution, and estimates the parameters in
a submodel p by maximizing the approximate likelihood function

11 o(¥i—i(p) B(2))

where z/(p)=(0,---, %y, 0,+ -, X4y, 0,---,x,pk@, 0,---). Call this maxi-
mum likelihood estimate A(p), and define ¢(u)=—(d/du)log p(u), r=
Er ¢*(e)/(EF ¢'(e))}, B,=X'X and let P, be a family of models p. A
possible selection rule for choosing a model p € P, could be defined by
WO (p)=—|| 4D+ 27k(P)+ || 2|, since

(1.1) W2 (p)— L. (p)= — || 4(D) I+ 2r k(D) + | p|I*— || 2(0) — e’
=2{rk(p) —B(®)—B8, B®))s,}

where <(u, v)5 denotes the bilinear form u'B,v for vectors u,vel,. It
will be shown that the last term in (1.1) is tending to a constant uni-
formly over the model class P,. Then minimizing W’(p) over P, will
be the same task, at least asymptotically, as minimizing L,(p). How-
ever, W cannot be computed directly from the data since it depends
on the unknown regression curve x. But note that the last term in
W.®(p) is independent of the model p. We will therefore define

W.(p)=—|l 2(p) |I*+2rk(p)

as the score function that is to be minimized over P,. The problem
of simultaneously estimating y from the data, in order to make W,
completely data driven is considered in Section 4.

Remark 1. If the statistician is in the happy situation of know-
ing f, then he will choose p=f. If f is symmetric, then by partial
integration

IF)=E, =\ ¢7= (7177=| ro={ 0'r=Er o

and therefore the constant y reduces to (Ep¢')'=I(F)"!, the Fisher-
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information number in a location family with density f.

We will use the concept of asymptotic efficiency as in Li [8], Shiba-
ta [12] and Stone [13]: A selected p is called asymptotically optimal
if, a8 n— oo

L, (p)
1.2 — ) ».q
2 inf L,(7)
pePn
The following condition on ¢ will be needed.

ConDITION 1. The function ¢ is centered i.e., E; ¢(e)=0 and twice
differentiable with bounded second derivative. We furthermore assume
that Ef[¢7'(¢'(€)—q)]*¥ < for some positive integer N and ¢=E; ¢’'(e)
>0.

The estimates ﬁ(p) will be compared with the Gauss-Markov esti-

mates in the model p based on the (unobservable) pseudodata Y,= potée,
é,=¢(e)/q. Define X(p) as the (m, p) matrix containing the nonzero
control variables in model p and assume that B,(p)=X'(p) X(p) has full
rank k(p). Then the Gauss-Markov estimate of g based on the pseudo-

data Y=(¥,,---,7,) is defined as A(p)=H,(p)Y, where H,(p)=X(p)-
B;'(p) X'(p) denotes the hat matrix in model p. The loss for the Gauss-

Markov estimate is I:,,(p)=||,&(p)—,ul|2 which will be approximately L, (p)
as will be seen later on. The speed at which the cardinality of P, is
allowed to grow is controlled by

CONDITION 2. There exists a positive integer N such that with

R.(0)=E L.(p)
3 R.(p)"—0, as m—oo.
PeP,
Let h(p) be the largest diagonal element of the hat matrix H,(p).
The speed of h(p) relative to R,(p) is controlled by

CONDITION 3.
sup Mp)B.(p)—0, as n—oo.
Remark 2. It foﬁows from Condition 3 that
k(p)/n—0, as m—oo,

since R, (p)=rk(p)+]|| pr—pr®|? p(p)=H,(p)p. This should be seen as
an analogue of the necessary condition, p*/n—0, that can be found in
Huber ([7], p. 166). Conditions 2 and 3 imply also

(1.3) 31 W(p)*—0 .

PEP,
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Remark 3. If ¢ is bounded, as is assumed in a robust regression
analysis, Condition 2 can be weakened. It is seen from the proofs that
in this case Bernstein’s inequality could be used instead of Whittle’s

([(14], Theorem 2). Condition 2 could be weakened to > exp (—CR,(p))
pe Pﬂ

—0, for some C>0. In the robust estimation of location so-called re-
descending ¢-functions have been introduced (see Andrews et al. [2]).
A direct application of such a ¢-function which is zero outside some
interval is not possible, since points close to infinity also solve the like-
lihood equation. The usual approach is to couple such estimators to
consistent estimators with monotone ¢-functions as is described for in-
stance in Hirdle [5], p. 178. A similar procedure seems possible in the
setting described here but we did not investigate it.

Condition 1 could be weakened to piecewise twice differentiable ¢-
functions, but as Huber [7] we decided to state a stronger condition
in order to have a simpler outline of the proof.

Denote by » a model pe P, that minimizes W,(p) over P,. The
main result is as follows.

THEOREM. Under Conditions 1-3, p is asymptotically optimal.

The rest of the paper is organized in five sections. In Section 2
the theorem above is shown, in Section 3 we give a variety of exam-
ples that satisfy our Conditions 1-3, and in Section 4 the estimation of
y and the relation to other model selection procedures is investigated.
In Section 5 a Monte Carlo example of the lemmas that are needed in
showing the asymptotic optimality.

2. Proof of Theorem
In the proof of Theorem, the following lemmas will be used.
LEMMA 2.1. Under the conditions of Theorem, for all ¢>0
P {sup | o)~ A@)IY/B.() >} =0,  as m—oo.
LEMMA 2.2. Under the conditions of Theorem, for all ¢>0
P{sup |L,(A)—R.0)IE.(0)> €} =0, as m—co.
LEMMA 2.3. Under the conditions of Theorem, for all €>0

P {sup |rk(p)— (D) — ) D)+ €|/ R (0) > 6} —0
’ as MN—oo.

Recall that the Gauss-Markov estimate based on the pseudodata ¥
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is f(p)=B;'(p)X'(p)Y. The crossterm in (1.1) will be approximated by
a corresponding crossterm based on the linearized estimates J(p).

2.1)  B®)—B B®)>s,—<B(D)—B, (D)5,
=|| i(0)— (D) 1>+ <B(0)—B(p), B®)—B(D))s,
+<B(0)—B(D), (D)) 5,+ <B(D)—B, B®)—B(D))s, -
By Lemma 2.1, the first term is of lower order than Iﬁ,(p) uniformly
over P,, the second term is bounded by the Cauchy-Schwarz inequality
and then Lemmas 2.1 and 2.2 are applied. The third term is handled
by formula (6.2), given in the proof of Lemma 2.1, by setting a=43(p),

n=A(P). The fourth term is handled as the second term. Suppose
that

(Wa(0)— W, (0) — (La(0) — L. (0)) | _
2.2 pi}ign L.(0)+L.(0) 0,(1),

and let p* denote a minimizer of L,(p) over P,. Then by (2.2) with
probability greater than 1—c¢,

Wa(®)— W, (0*) —(La (D) — L (p¥)) 5, _ c.
L, (p)+ L, (p*) N

By the definition of », W,(p)— W,(p*)<0, therefore,
— (L2 (®)— L (p*)) = — &(Lo (p) + L. (p*))
L,(»*)(1+¢)=L.(d)(1—¢)

1> L,,(pA*) > 1—e¢
L,®) — 1+«
which shows that (1.2) holds, i.e., p is asymptotically optimal. Formula
(2.2) follows by observing that

(Wi (p)+p'é—L,(p))
L.(p)
_ 2rk(p)—<B(@0) =B, b®Y) 5, +1'%)  L.(p) . Rulp)
R.(p) L.(v) L. (p)

The first factor is tending to zero in probability, uniformly over P, by
Lemma 2.3 and formula (2.1). The two other factors tend to one in
probability, uniformly over P,, by Lemmas 2.1 and 2.2.

3. Examples

We start with a reformulation of Condition 2 in the case of hier-
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archical model sequences, i.e., P,={(1), (1, 2),---,(1,2,:-+, p,)} with p,
tending to infinity. In this case Condition 2 follows for N=2 from

CONDITION 2.
inf R,,(p)—»oo , as n— oo .
PE Pn

We slightly abuse notation by writing 5 for (1,---, 7). Then Condition
2 follows from R,(j)=rj+]x(p)— p|* and

-~ Jﬂ ~ Pﬂ -~
5 R =3 R.0)*+ 3 R.()
1::51"n Jj=1 j=Jn+1
<J,{inf R,@)}*+1* 3 j*—0,
PEP, j=Jn+l

if J, tends to infinity slowly enough. In the following examples we
assume that P, represents a hierarchical model sequence. The follow-
ing lemma, which is due to Shibata [12], is useful in checking Condi-
tion 2.

LEMMA 3.1. Assume that with a positive divergent sequence {c,} the
linear operator c;'B, converges weakly to a nonsingular operator B: l,—l,,
such that every pXp principal submatriz B(p) has full rank p for all
p>0. If B has infinitely many nonzero coordinates, then Condition 2’
holds and p* diverges to infinity, as n— oo.

Are the conditions of Theorem fulfilled for typical examples? We
check conditions in examples given by Shibata [12].

Example 1. Consider the polynomial regression on the interval
[0,1). Here

and

1—1
n

Y=3 (

s-1 )
p=| ) ,Bj+ei ’ 1=1,---,m

are observed.

Condition 1 is model independent and is an assumption about the
error distribution. Condition 2’ is satisfied via Lemma 3.1 (set c,=mn).
It remains to check Condition 3. The symmetric matrix B;!(p) has a
spectral decomposition

B'(p)=r,4,T,
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where A,,::diag ('zl(p)’ tt zp(p)) and Fn=(7’1, cety Tp)! rj=(le9 ety ij)' the
i-th normalized eigenvector of B;!(p). Lemma 3.1 insures that 1. (p)
the smallest eigenvalue of n~'B,(p) is bounded above zero by a constant
C. Therefore each diagonal element k; of H,(p) can be estimated by

p ? ? » o, o,
h=> > Ly xik(E Yig 7w 2;(1))) => 21(?)(2 xii) (E Tlf>
J=1 k=1 =1 =1 Jj=1 Jj=1

?
=Pmax (P) 23 L =P e (p)'SC7' P 0 .

So Condition 3 is fulfilled if we ask for
(8.1) sup p*R,(p)/n—0 .

1spsp,
A necessary condition is p*/n—0 which is slightly stronger than Huber’s
conditions ([7]).

Example 2. Consider the following representation of the regres-
sion curve

o= ;: B, cos (x(j —1)(i—1)/nj) .

Here the observations are taken at =0,n7!,--.,((n—1)/n). As in the
example above Condition 2 is satisfied by Lemma 3.1, setting c,=n/2.
Condition 3 is satisfied by similar arguments as above if we assume
that (3.1) holds.

Example 3. Consider the robust M-estimation of location at differ-
ent units #,. Observations are taken repeatedly at p, different units and
n/p, observations are taken at the point z,, j=1,-.-,p,. Assume that
Er ¢(e)=0, then Condition 1 is satisfied if ¢, ¢’ are bounded. Shibata
([12], p. 51) shows that Condition 2 is satisfied if the vectors of the
control-variables (z,---, x,) are linearly independent. Condition 3 can
be checked as above.

4. Other methods and estimation of 7

There are a variety of other model selection methods, most of
which were shown to be equivalent to Mallows’ C,. We therefore com-
pare our method with C, only. For simplicity, we work with the linear-

ized estimate /i(p) based on the pseudodata ¥. Mallows’ score function
([9]) reads

Cy(0)=I1Y— () |+ 2rk(p)
=|\é|]*+ L, (p)+2¢' (I,— H,(p)) ¢+ 2{rk(p)—€ H, (p)&} .
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The first term is independent of p, the third and the last term vanish
uniformly over model classes P,, as can be seen in the next section.
This shows that a model selected by C, is asymptotically optimal.

It can now be seen that W,(p) has a similar structure.

W.(p)=—|| &(0)|I*+27k(p)
—ll2@)— I = ' —2( — 1) (e — ) — 2(fi — )’ 1+ 27k(p)
= L, (p)+2rk(p)—2¢'H,(p)é+2¢'(I— H,(p)) p+2p'¢— || p|I* -

Here the last two terms are independent of the model. The remaining
terms are identical to those in Mallows’ C,, which shows that W,(p) is
equivalent to C,.

It could be argued that the score function that is proposed here is
not so reasonable in a practical application since the constant y is un-
known to the statistician. However, if the constant y can be consist-
ently estimated (independent of p) then the score function based on
an estimated 7 is also asymptotically optimal. A consistent estimate 7,
of 7 is provided, for instance, by

w7t 31 @) (7 31 06

where &,(p,) denote residuals from a fit with a deterministic model p,,
increasing in magnitude as n—oo. A Taylor expansion and the Cauchy-

Schwarz inequality show that y,-Z»7, as n—oo.

5. A simulation study

A small Monte Carlo study was carried out to study the behavior
of W,(p) when applied to some real data. The data were generated
according to Example 1 (Section 3) with g,=sin (2,), 2,= —r+2((i—1)/n)r,
n=100, 200 and normal Gaussian error. The original data for n=100
is shown in Figure 1. The data do not directly suggest a certain type
of model, to a model selection procedure seems to be appropriate. Some
of the observations (around x=1) look a little bit isolated so that an
applied statistician might want to apply a robust regression technique.
In this example we have chosen a ¢-function that is linear in [—2, 2]
and a constant outside. Such a ¢-function does not satisfy Condition 2
as it stands but as it was argued in Remark 3 the results also hold for
this specific choice of a nondifferentiable ¢-function. Straightforward
calculations show that y=1.274. The values of L,(p) and W, (p)=|u(p)|*
+2-1.274-p (in the hierarchical model case) are presented in Table 1
for n=100 and 7=200. For both sample sizes the p that minimizes
L,(p) is 4. The selected p for n=100 was p=4 and for n=200 it was
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Fig. 1. Original data, »=100.
Table 1.
n=100 n=200
P La(p) W (D) P Lx(p) Wa(p)
2 20.5891 —24.715 2 43.0369 —71.85
3 22.6782 —24.977 3 43.0157 —69.34
4 3.0268 —37.416 4 5.3095 —-122.71
5 3.1176 —35.006 5 6.1518 —120.93
6 3.8345 —32.620 6 6.9489 —123.51
7 3.9246 —30.165 7 7.4540 —121.48
8 5.0409 —28.835 8 8.6594 —120.01
9 5.0816 —26.327 9 12.2348 —121.03
10 11.3078 —30.014 10 12.7236 —118.97
11 11.3094 —27.467 11 12.7411 —116.44
12 11.4650 —25.075 12 12.8033 —113.95
13 14.2398 —25.302 13 12.9057 —111.51
14 14.9177 —23.432 14 12.9229 —108.98
15 15.4464 —21.412 15 18.3032 —111.81
16 15.4861 —18.904 16 18.3735 —109.33
17 15.5287 —16.399 17 20.0331 —108.44
18 15.5287 —13.851 18 20.0331 —105.89
19 15.5287 —11.303 19 20.0331 —103.35
20 15.5288 —8.755 20 24.0869 —104.85

p=6. The shape of the functions L,(p) and W,(p) are given in Fig-
ures 2 and 3. The parameters for n=100 were §,()=0.1017, 3, ()=
0.9979, As(p)=—0.0006, B,(p)=—0.1108 and thus quite close to the true
parameters B, =p,=0, 8,=1, 8,=1/6. Although for n=200 score W,(p)
misses the order of the model that minimizes L,(p) the fit will not be
too bad as the difference of L,(4) and L,(6) suggested. In Figure 4 the
true curve g, and the fitted model curve B.(p), p=4 are shown. The
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Predicted value

2.0E+00 Estimated regression curves
n=100, p=4 Gaussian errors
1.0E+00
2i(p)
3.3E—-04 Hi
—1.0E+00! — -
—4 -3 -2 -1 0 1 2 3 4

X
Fig. 4. u: and fj(P).

fit was constructed for =100 and with the parameters ﬁ,(z‘)), j=1,
.-+, 4 as given above. We also studied the case »=100, the minimum
p for L, was 6 and this 9 was also selected by W,. This supports the
theory that suggests an increasing p as » tends to infinity.

6. Proofs

In this section we give the proofs of Lemmas 2.1-2.3. The proof
of Lemma 2.1 follows a related proof in Huber [7], Section 7.4. Similar
ideas were used by Cox ([4]) who considered M-type smoothing splines.
In order to simplify notation we will consider the hierarchical case only,
i.e., the model “p” is identified with “(1, 2,-- -, k(p)), k(p)=p”. Fur-
thermore we assume without loss of generality that the coordinate sys-
tem in the p-dimensional subspace of the first p components has been
chosen so that X'(p)X(p)=1I,. Consider the mapping @: R?— R?, @,(3)

=0 2 ¢(Vem Do Joar k=l p where n=(neoon) <R% A
zero (with respect to 5) of @ will be compared with a zero of ¢.()=
’71:—?_:.: (pit+€)x,, where é,=¢(e)/q, g=Er ¢'(e). The zero of ¢,(y) is the

least squares estimate B(p)=X(p)Y based on the pseudodata ¥. Con-
sider an arbitrary normalized vector a € R?, ||a||=1. A Taylor expan-
sion of @, using Condition 1, leads to

B @@ —h)=—1" a3 (¢'(e,>—q)(1 2 1 “’uﬂ:)‘”ﬂc
—q! fi a; g (¢'(e)—q) ,221 T Ta(Bs—1y)
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1 _ ? n o D
—3 0 Ba g (e (s em))
-] 2
. (El Ly BJ“% iy ’71> Tox
=T1,a@)+ Ton @)+ Tsa(p), ve(—1,1).

We will now show that each of these terms uniformly vanishes over
P,, in the sense that

(6.1) sup T..(p)/RY"(9)2-0,  a=1,2,3
peP,
for all (5, @) in the set
F,= c (s ‘<KR —1
=0 {00 3 (500 —) SER@), lall=1} .

Define for i=1,.--,n

Vi=q"'(¢'(e)—q) ,

B, .(p)= i % By »

J=p+1

?
$=2] Ay »
k=1

At,n(p)':é %y (By—7y) -

Note that

n n P 2
lslP=3 s1=31 (3 ar2a) =1 XPali=llal=1.

i=1 \k=1
The first term T ,(p) is estimated as follows.
P {sup |T,u (/R (9)> ¢}
< 3 e E{T. oM RI®)
PETn n 2N | ~
=51 v E{|JaB.0V| [Bo).

PeEP,

Applying Condition 1 and Whittle’s inequality ([14], Theorem 2), this
term is bounded by

3 G (S 2BL0) [Rw)
n N/mn N |~
sGe 53 (mixst) (53 B.0) [Biw),  G>o0.

Recall that B,(p)=7p+|(L—H,(e)ul'Z3] Bla(p). Conditions 2, 3 (see
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formula (1.3) in Remark 2) and the simple inequality sigﬁ x2; i‘, al=
j=1 k=1

h.(p), where h;(p) denotes the i-th diagonal element of the hat matrix
H,(p), imply that (6.1) holds for a=1.

The second term is estimated similarly. We omit some details. If
(, a) € F,, then as above

P {sup | T3 (n)/ B (P) > <)
<Ce™ 33 Wp)" (3 4.0) [Ba@)”
<Cr"K"e™ 51 hp)".
pEPn

Now apply Conditions 2 and 8 as described in formula (1.3) in Remark 2.
The third term, involving the second derivative of ¢ is bounded by

507 sup ¢ max|sd 3} (Boa(®)+ 41, (0))

If (3, a) € F, we obtain that with a constant C,
| T, (D) RY (9) < Ca (0} "R, (0)"*

which tends to zero by Condition 3.
Altogether we have shown that

6.2) sup | $1 0,01~ ()| /B ()20

for all (,a)e &F,. This entails that for all 5 in the set

G,= {n € R*: sup ; (Ep (m—h)&)z/ﬁn(p)éK} ’

(6.3) o
sup |0()— T ()[R (9) 20 .

Condition 2 and bounds on higher moments as above imply that with
probability greater than 1-—3,

(6.4 sup ||®)— u() | Bu(p) <7+ .
This shows that 3(p) € G, with high probability. Note that

(6.5) 10(2)—7ll=19(2)—T(2) +(B(®)—B(2))+B(D)|
=[0()—Z@+118@)—BDI+1A@)I -

From formula (6.3) we know that the first term vanishes asymptotically.
From (6.4) we conclude that for K big enough
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sup [|A(p)— B/ R (0) S 5 K.

Certainly the third term can be made less than K'*p'?/2. Thus the
function »—7—®&(5) has a fixed point »* in the compact, convex set &,.
Since this fixed point is necessarily a zero of @, it is seen that 3(p) is
in G, with probability greater than 1—4. Substituting 3(p) into equa-
tion (6.3) shows that Lemma 2.1 holds.

Lemma 2.2 is seen by the following equation.

L.(p)—R.(p)=¢H, (p)é— k(D) .
Condition 2 implies that
sup | ||, (p)a]* — rk(p) /B, (p) -0

which shows Lemma 2.2.
Lemma 2.3 follows similarly observing that

<B—B(®), B(p))5,=¥(I,— H,(0))p—& H,(p)e—&pt .
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