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Summary

In this note some asymptotically optimum tests for testing hy-
potheses concerning parameters when the observations are dependent
are obtained. Test statistics based on the score functions, similar to
the one proposed by Rao in the case when the observations are i.i.d.
are proposed. Asymptotically UMP tests for one sided hypotheses
against one sided alternatives and asymptotically UMP unbiased test
for a simple hypothesis against two sided alternatives are derived. In
the multiparameter case tests for simple hypotheses that have asymp-
totically best constant power on some family of surfaces in the para-
meter space are derived.

1. Introduction

Rao [11] proposed a test statistic for testing hypotheses concerning
several parameters when the observations are independent and identi-
cally distributed. In the present note, some test statistics similar to
the one proposed by Rao are proposed and some asymptotic optimum
properties of these tests are established, by using the concepts of con-
tiguity of probability measures (Lecam [9]), when the observations are
from a discrete parameter stochastic process without any assumptions
about stationarity or independence. A similar test statistic was pro-
posed in Sarma [14], when the observations are from a discrete param-
eter stationary Markov process and some asymptotic properties were
established. Roussas [13] has studied the asymptotic properties of a
test statistic, obtained using the concepts of differentiability in quad-
ratic mean and contiguity of probability measures, when the observa-
tions are from a discrete parameter stationary Markov process. Basawa
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and Prakasa Rao [2] has given a statistic analogous to the one proposed
in [14], when the observations are from a discrete parameter stochastic
process without assumptions of stationarity or independence.

In the next section the preliminary notations, assumptions and some
basic results are presented. Section 2 consists of establishing some
asymptotic properties of the test for testing a single parameter while
Section 3 deals with some asymptotic properties of the tests in the
multiparameter case. It may be noted that proofs of some of the re-
sults appear to be similar to those in [13] and hence, some details are
omitted. However the statistics proposed here seem to be easier to
compute, are developed in a more general set up and the proofs are
considerably different. Some remarks about other statistics are made.
An example, where these results can be applied, is given very briefly.

2. Preliminaries

Let {X™}={(X,,---, X,)} be a sequence of random vectors defined
on a probability space (2, B, P(-:60)) and taking values in measure
spaces {X™, A™, p™}, n=1, p being a o-finite measure on {X, 1}. The
basic probability measure P( - : §) involves an unknown parameter 6 € 8.
In what follows X is taken to be R™ for some fixed m=1 and @ is
an open set in R® for some fixed k=1. Suppose X has the density
function P(x™: 8)=p(x,,---, X,: 8) with respect to the os-finite measure
#™. The functional form of p(x™: @) is assumed to be known for n=
1, except for the parameter value 8. In what follows, problems of
testing simple hypotheses concerning @ are considered and some test
statistics are proposed. In all that follows it is assumed that the sup-
port of X is independent of @ for all n=1. Further p(z™:@8) is as-
sumed to be jointly measurable A™ xC for each n=1, where C is the
Borel o-field on R* restricted to #. Denote p(x®: 8)=1 for all 8. The
following assumptions are made:

(A1) The conditional probability density of X™ given XV, de-
noted by 2,(0), exists for all n=1 and # €@ as a regular conditional
probability density.

(A2) Denote [,(8)=log p,(@) and assume that [,(8) is twice differ-
entiable with respect to @ for all x™[x™] and all n=1. Denote by Z,(8)
the (kx1) vector of first partial derivatives and by [,(8) the (kxk)

matrix of second partial derivatives. Assume that [,(#) is continuous
in @ uniformly in ™.

Further, it is assumed that p(z™:@) is twice differentiable with
respeéct to @ under the integral sign for all n=1. Let &, denote the
o-field generated by X, n=1 and &, denote the trivial o¢-field. Let
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@.1) Y,:(o)=( 2 log p(a:0),- -, % log p(z™: o)) =50i(6) .
1 k

Let ¢ be any arbitrary fixed vector and set
(2.2) S.0)=¢Y,0), Z,(0)=8,(6)—S,_.(6)=¢1,0) .

Then Z,(0) is a zero mean martingale. Let B,(8)=E (Y,(0)- Y,/(0): )
be positive definite for all @ and all n=1. Denote s2(6)=E (S2(0): )=
t'B,(0)t.

(A3) Assume that

2.3) 5(0) 2 E (Z}(0)/F,.: 0)—1

in P( - :0) probability and for any >0,
(2.4) 8:%(0) S E(Z}(0)[{|Z,(6)|>es.(0)}: 6)—0,

where I{-} is the indicator function of the set in the brackets. The
condition (2.4) can be replaced by a stronger but more easily verifiable
Liapunov condition.

(A4) Suppose that there exists a monotonic increasing function
K(n) which tends to c as » tends to c such that

(2.5) lim K~!(n)B,(6)=I"(0) ,

where I'(6) is positive definite for all 8. Let I",,(0)=£} E,(6)-1.(6)|
“,.,:60). Then B,(0)=E([,(8):6). Assume that K~'(n)I,(0) tends to
I'(@) in P( - :86) probability. This would imply (2.3).

(A5) Let Y,(8, 6) be the (kxk) matrix of the second derivatives

of log p(x™: @) with respect to & with rows possibly evaluated at dif-
ferent points on the line segment joining #, and #. Assume that

B;'(8,)-Y,(6,, 6,) tends to the identity matrix I, in P( - : ;) probabili-
ty. Further, given any >0, let there exist a 3(¢)>0 such that

(2.6) P(|Y,(6y, 8))Y,(6s, 6)—L|<e: 6} -1,

when |6—6,|<2.
The assumptions made here are similar to those made in [6]. Some
discussion on these assumptions can be found there.

THEOREM 2.1. Under the assumptions (Al) to (A3)

@2.7) I(%: 0>——>N(0, 1.

Here and in what follows L(X) denotes the probability distribution of
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the random variable X.

This theorem is a direct consequence of the central limit theorem
for martingales (see e.g., [2]) and the details are omitted. From this
theorem one has the

COROLLARY 2.1.

(2.8) (B:'%(6)Y,(8): 6)—N.(0, L) .
Under the additional assumption (A4) one has
THEOREM 2.2.

(1) L(Kz"Ya(0): 0)—N,(0, I'(6))
(ii) L(;'*(0)Y,(6): 6)—>N,(0, L) .

PROOF. These results are immediate consequences of Theorem 2.1
and assumption (A4).

COROLLARY 2.2. Let
QP (0)=Y,(6)B:'(6)Y.(6) ,
QP (0)=K™'(n)Y,(6)''(6)Y.(f) , and
QePO)=Y.(6)I'(6)Y.(0) .
Then
L(@QPG): 0)— (k)  for 1=1,2,3.

Slightly more generally, if A is any matriz such that AI'(@)A=A and
QA (O)=K'(n)Y,(0)AY,(6), then L(Q(0): 0)—x* (Rank A).

This corollary is a consequence of Theorem 2.2 and the results on
the asymptotic distributions of quadratic forms (Rao [12]).

For problems of testing a simple hypothesis H,: #=8,, one can use
any of the Q{(6,) as a test statistic as each of them is asymptotically
distributed as a y* variable under the hypothesis H,. In order to in-
vestigate the asymptotic power properties of the tests proposed above,
one needs to obtain their asymptotic distributions under the alternative
hypotheses.

Consider a sequence {#,} where 8,=6,+ K *(n)3, where 3, tends to
3, a vector of constants, as n tends to co. Then it is known that if
P,(- :8) denotes the restriction of P(-:6) to &,, then P,(-:6,) and
P,(- :0,) are contiguous (Roussas [13], Chapter II, Proposition 6.1).

THEOREM 2.3.
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2.9) L(K(n) Y, (6,): 8,)— N.(I'(6:)3, I'(6y))
(2.10) L(B;'*(6)) Y, (60): 6,)—> N, (I"*(6:)3, I,) and
(2.11) LI57(60) Yo (60): 6,) = Ni(I77(6:)9, 1)

ProOOF. (2.9) is a consequence of Theorem 7.2 and Corollary 7.8 of
Chapter I in [13].

(2.10) follows from (2.9) and the fact that K(n)™!-B,(6,) tends to
I'(6,) as n tends to co. Finally, (2.11) follows from (2.9) and Slutsky’s
Theorem.

As an immediate consequence of this theorem one has

COROLLARY 2.3.

L@QP@By): 6,)— x%(k, %wrwoa) for i=1,2,3 and
4) . 2 1 1]
L@QPB,): 6,)— <Ra/nk (4), 59 Aa)
where y*(m, c) denotes the moncentral y* distribution on m degrees of free-

dom and noncentrality parameter c.

Consider the log likelihood ratio

A,(8,, 8,)=log PE":0s)
(6., 0,)=log @™ 0,)

Expanding this in Taylor’s series around &,, one has
@12)  4.(8, 0,)=K(n)", Y”(oo)+—K(’2‘—)_lam(oo, 6.2, .

From the assumptions, one can conclude that the second term on the
right hand side of (2.12) converges in P( - : 8,) probability to —a'I"(6,)d/2.
Further, K(n)™'*(3,—9)'Y,(8,) converges to 0 in P(-:8, probability.
Thus one has 4,(6,, 8,)—K(n)"'*3'Y,(6,) converges to —ad'I'(6,)d/2 in
P(-.:8,) probability. Hence one has

THEOREM 2.4.

(i) L(4,(6,80,):6,)—>N (—%J’F(ﬁo)d, d'l"(ﬁo)d> )

(i) (4,6, 8, 0,,)->N<% aT(6,)2, a'r(oo)a> .

To prove (ii), it 18 enough to mnotice that, since P(-:60,) and P(-:86,)
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are contiguous, it follows that A,(6, 0,)—K(n)'d'Y,(8,) converges to
—08'T'(6,)3/2 in P(-:0,) probability. Consequently, from Theorem 2.2
above, Lemma 7.1 and Corollary 7.2 in Chapter 1 of [13], one has the
stated result.

Finally, the following proposition proved in Hajek [8] is used in the
sequel.

PROPOSITION 2.1. Let {4,) be a sequence of random wvectors such that
L(4,)—>N(0, X). Then, there exists a truncated version 47 of 4, such that
|4,— 4%| converges to 0 in probability and sup |E {exp <h’A,1€—-%-h’Z‘h>}

|h|<e
—1| tends to 0 as n tends to oo for any fixed ¢>0.

In what follows let 4,(8,)=B;%(8,)Y,(6,) and exp (C,(d))=E {exp (&’
-4X(6,)): 6,}, where 4¥(6,) is a suitable truncation of 4,(8,) satisfying
the conditions of the above proposition and 8 € R®. Define the prob-
ability measures

(2.13) Ru0(A)=exp (—C,(@)) |  exp (2'42(00)dPno, -

Then it can be shown that
(2.14) | Pa(- 2 6,)—Ra,8||—0,

where 3 is a bounded sequence and 6,=8,+ K(n)™?8. In fact, one can
show that sup|||P.(- : 6,)—Rn,ol: 8¢ B, 8,=0,+K(n)"*3|—0, where B
is a bounded subset of R*® (see Roussas [13]).

3. Asymptotic properties of tests in one parameter case

In this section the parameter space is taken to be @ ¢ R, i.e., k=1;
B.(0), I,(0) and I'(d) are denoted more conveniently by b3(6), ¢2(6) and
(), respectively. The following additional assumptions are made.

(A6) (1) For any sequence 6, converging to 0, E (I.(6,): 6)—0
uniformly in m as n tends to oo and conversely.

(2) E(.(6):06) is a continuous function of 4 and 6, for all m=1.
(8) E(%(6):6) is a bounded continuous function of ¢ and 6, for all
mz1.

(4) K(n)=0mi*) for some 0<e<1/2.

Under the above assumptions, it can be shown in the first place
that, given any 8>0,

(3.1) P{K(n)™"2|Y,(6%)|>3:0}—>1 as m—oo
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for any ¢ and 6* such that |§—6*|=8>0, for an arbitrary constant g.
It also follows that

(3.2) P;1(0%)|Y,(0%)]>0:0)>1 as m—oo.

THEOREM 3.1. For testing the hypothesis H,: 6 =0, against H,: 6>6,,
consider the tests given by

1 if 4.000)>C,
(3.3) e(XP)=1 4 if  4.(0)=C,

0 otherwise

1 if K(n)™'2Y,(6,) >CP
(3.4) WED)=1 1 if K@) Y,0)=CP
0 otherwise

where C,, 2, or CP, AP are determined for each m such that E (p,: 6))=
E(¢’: 0))=a, the preassigned size of the test. Then {p,} or {¢P} are
asymptotically uniformly most powerful for testing H, against H,.

PROOF. At the outset, it may be noted that {p,} and {¢°} are
asymptotically equivalent. So the proof will be given for {¢,} and the
same goes through with obvious modifications for {¢} also.

Suppose {p,} is not asymptotically uniformly most powerful. Then
there exists a sequence of tests, say {¢,} of size @, such that

(3.5) limsup [%uap E(¢,: 6)—E (p,: o)] —e>0.

Thus there exists a subsequence {m} of {n} and a sequence {6,} of pa-
rameter values 4,,>6, such that

(8.6) im {E (¢n: 0,)—E (¢n: 0a)}=c¢ .
Let 0,=0,+K(m) "3,

Case 1. Suppose {3,} is bounded. Without loss of generality let
0,—3=0. Otherwise, a subsequence for which the limit exists can be
considered and the arguments be made for this subsequence. By
Theorem 2.3, L(4,(6,): 6,)— N(a(6,)3, 1) and consequently

E (¢a: 0,)—1—0(Z.—30(d,)) where m(z¢)=gf“ dN(@©, 1)=q.

Consider the sequence of tests given by
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1 if A(6,, 6,)>Cx
(8.7 W.(X™)=4 aF it A6, 0,)=CF
0 otherwise

where C* and 1* are determined such that E(W,:0)=avnr=1l. It is
known from Theorem 2.4 that E(W,:0,)—1—90 (Z,—34(6,)).
(a) Suppose 6>0. Since E(W,:0,)—E (¢,: 6,)—0, E(¢,:60,)—E(W,:86,)

—e>0o0r E(W,: 0,)<E (¢,: 0,,)——;-5 for all n>mn,(¢) for a suitable n,(¢).

However W, is a most powerful test for testing =46, against §=46, for
any n and this leads to a contradiction.

(b) Suppose d=0. It follows that A(6,, 6,)—0 in P(- :6,) probability
and in this case E (¢,: 0,)—a and E (W,: 6,)—a, as n— oo which leads
to a contradiction.

Case 2. Suppose 8, is unbounded. Without loss of generality let
On 1 0, as m— oo,
(a) Suppose K(m)™'"23,=8>0 for some 3 and sufficiently large m. Then,
P{4,(6)>C: 6,}—1, as m— oo for any C>0. However this contradicts
(3.6).
(b) Suppose 38, K(m)*—0, as m—oo. This also leads to a contradic-
tion as in Case 1-(b).

Remark. By exactly similar arguments, the corresponding result
for testing H,: 0=6, against H,:6<0, can be obtained.

In the case where the alternative is H,: 0+#6,, asymptotically uni-
formly most powerful unbiased tests are obtained in Theorem 3.2 below.
Before giving the details, it may be pointed out that the following re-
sults can be obtained as in [13] and hence their details are omitted.

PROPOSITION 3.1. Let {Z,} be a sequence of random variables such
that |Z,|<1 for all n=l and let Z,(6)=E(Z,|4.(6:): 6)) a.s. Then
sup|E (Z,: 0,)—E (Z,: 6,)|—>0 where 6,=06,+K(n)™*h and for each n the
supremum 1is taken over all random variables Z, such that |Z,|<1 and
over all h in any bounded subset B of R.

PROPOSITION 3.2. Let {Z,} be any sequence of test funmctioms. Let
4%(6,) be a suitable truncation of 4,(6,) as described in Proposition 2.1
and let 0,=0,+K(n)"*h. Then for any bounded subset B of R

%ug IE (Zn(dn(ﬁo)): 0,,)—‘E (Zn(A:(eo)): 01»)!_)0 y A8 M—o0.

Define a sequence of tests
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1 ’l:f A,. (00) < Cln or > Czu
(3_8) ‘Pn(dn(ﬂo)): Ain ’l:f A,,(ﬂo)=C;,. ’ 1= 1,2,
0 otherwise

where C,, and A,,, i=1,2 are so chosen that E (¢,: 0,)=a and E (¢,(6,)
<4,(0,))=a E (4,(6,): 6,) .

THEOREM 3.2. The sequence of tests {p,} defined by (3.8) is asymp-
totically uniformly most powerful unbiased of size a for testing H,: 0=
0, against H,: 0+40,.

Proor. At the outset it may be observed that C,— —Z,, and

Cyn— Z,;, where S dN(0, 1)=% . It can also be seen that {¢,} is asymp-

zn/2
totically unbiased. This can be done by a contradiction argument.

Suppose liminf {inf E (¢.: 0)} =y<a. There exists a sequence {6,} such
n—oo 0

that E(¢,:0,)—75, as m—o. Let 0,=60,+K(m)*.3,. Suppose 3, is
unbounded and without loss of generality 3, increases to oo (or de-
creases to —oo). Then it can be seen that E (¢,:60,)—1, as m— oo,
which is a contradiction. Suppose {38,} is bounded and without loss of
generality d,—43, as m—oo. Then P,(-:6,) and P,(-:0,) are con-
tiguous so that _L£(4,.(6,): 0,.)— N(3a(6,),1) by Theorem 2.3. If 3=0,
then E (¢,:0,)—a which is a contradiction. If 0+#0, E(¢.: 0,.) tends
to a quantity larger than « which is again a contradiction.

Let {W,} be a sequence of asymptotically unbiased tests of size a.
It will be shown that

(3.9) limsup {sgp [E (W,: 0)—FE (p,: 0)]} <0.

This is also done by a contradiction argument. Suppose there exists a
sequence {0,} such that

(3.10) lim [E (Wo: 0)—E (g 0a)]=6>0 .

Let 0,=0,4+0,K(m)**. (a) Let 8, be unbounded. Without loss of
generality let d,— +c. Then E(¢,:0,)—1, as m— oo which con-
tradicts (3.10). (b) Suppose 8, is bounded and 3,—3, as m—oco.
Now P,(-:6,) and P,(-:0,) are contiguous. By Proposition 3.1, the

sequence of tests {W,} can be replaced by W(4,(6,)) where W(4,(6,)=
E (W,|4.(6,): 6;) by noting that {4,(6,)} is asymptotically sufficient for
{P,(:-:0), 66} at 6,. Hence for convenience in notation, it is as-
sumed that W, itself is based on 4,(6,). Moreover one can determine
4%(6,) such that 4%(6,)—4,(6,)—0 in P,( - :40,) probability, |E(W,: 6,)
—E(Wm(drt) : 0m)l_"0’ and lE(SDm(Am) : 0m)_E (Som(A:) : 0,,)'-’0, by con-
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tiguity.

Consider the one parameter exponential family of measures R,
given by (2.13). For each m, consider the problem of testing H,:d,=
0 against the alternative H,:43,+0 at level E (W,(4%): 6))=e, for this
exponential family. The UMPUT of size «, is given by

1 if  4%<C¥ or >Cf,
(3.11) or=< At if  4%(=Cf, 1=1,2,
0 otherwise
where the constants are determined such that
E (¢%:3,=0)=a, and E (4}g}:8,.=0)=a,E(4%:9,=0).
It may be noted that C},— —Z,, and C¥,—Z,,. Further

8.12) E(W,:0,)—E (¢n: 0,)=[E(W,: 0,)—E (W,(4%): 6.)]
+[E (Wa(43): 02)—E (Wa(43): B )
+[E (Wa(43): Rus,)—E (@5 Ras,)]
+[E (o7 : Bu,s,)—E (07 02)]
H[E (@7 0n)—E (¢n(47): 0.)]
+E (¢n(47): 0n)—E (¢n: On)] -
All the terms except E (W, (4%): Ry, )—E (p%: Rn; ), on the right hand
side of (3.12) tends to 0 and hence one has that E(W,(4%): R, )—

E (@%: R,,,)—¢>0, as m—oo which is a contradiction. This proves
the stated result.

Remark 1. The exponential approximation used above can be used
to obtain asymptotically UMP Tests for

(a) Hy:0<60, against H,:0>6,,
(b) H,:0=0, against H;:0<6,.

Remark 2. In the above discussion sequences of tests of size «
for each n are considered. However tests of asymptotic size a can
also be considered as in [13] as the determination of the constants is
much simpler and it can be shown that these tests will also be AUMP
or AUMU in the class of sequences of tests of asymptotic size a.

Remark 3. In view of Remark 2, since it is not practical to de-
termine the constants defining the tests above for each n and since
only asymptotic properties of tests are considered, the constant C, in
(8.3) can .be replaced by Z, and C,, and C,, in (3.11) can be replaced
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by —Z., and Z,, respectively, with the sign of equality incorporated
in the defining inequalities there by omitting i’s. The resulting tests
will be asymptotically equivalent to the tests considered in (3.3) and
(3.11).

Remark 4. The test statistics used in the above results are based
on 4,(6,). Same results can also be proved taking test statistics based
on K(n)™2Y,(6,) and a(0,)"'Y,(6,).

4. Multiparameter case

In this section it is assumed that 6'=(6,,---, 6;), k>1. In order
to test the simple hypothesis H,: =80, any of the Q{”(8,)’s defined in
Corollary 2.2 can be used as a test statistic. Some asymptotic proper-
ties of the test using Q{(8,) are obtained below. As remarked above,
one can restrict the attention to tests with asymptotic level of signi-
ficance 0<a<1. The sequence of tests can be shown to be consistent
against non local alternatives under the assumptions of the type made
in the one parameter case. Thus in what follows sequences of local
alternatives are considered.

Consider the sequence of measures {R,, s} as defined in (2.18). Since
P, 9,=Rau0, one has 8=40, iff d=0. For any sequence of bounded func-
tions {¢.,},

SUp [E (¢4(4:(60)): 6,)—E (¢(47(6)): En,5)] and

4.1)
Sup [E (¢.(45(60)): 0.)—E (¢ (4.(6) : 6,)]

both tend to zero as n tends to oo for any bounded subset B e R* and
6,=6,+3K(n)""., Thus the problem of testing H,:6=60, can be re-
placed by the equivalent problem of testing H,: =0 in the family R, s
and the tests can be based on 4}(6,). From the earlier discussion, it
can be seen that each of _£(4,(8,): 8,), -L(4}(6,): 8,) and _L(4¥(6,): Rn,a),
denoted by Lx.4,, -Ln 6, and L5 respectively, converges to N, (I"/2(6,)3,
I,), denoted by Ls. Let p,(Z;8)=exp (8’Z—C,(d)). Consider the se-
quence of regions

(4.2) Wik={4(60): 47 (6.) 4% (6:)>d.,} ,

where the constants d, are so chosen that P(W}: R, 0)—a, as n— oo.
Consider the family of concentric circles

(4.3) S.c:(0—6,)(0—60,)=K(n)*-C for C>0.

For sufficiently large n, S, c6. It can be seen that for any =, there
exists a constant a,(C) such that
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(4.4) M(Z)=SS P.(Z: 9)dA=a,(C) for ZeWr* and

n,C

<a,(0) for Ze¢Wr,

where the integral is the surface integral over S, .. This is done by
showing that M(Z) is a function depending on Z only through r,=
(2Z?)'* and then showing that M is a monotonic increasing function
of rz.

From this discussion it can be concluded that ¢*=I(W}), the indi-
cator function of W}, is a most powerful test of size a,=E (¢¥: 0) for
testing the hypothesis H, that the p.d.f. is »,(Z:0) against the alter-
native H, that it is const. S 2.(Z, 3)A.

sn,C’
The following proposition is proved in [13].

PROPOSITION 4.1. Let T be an open set in R* and V a k-dimensional
random vector with probability measure Q(- : &) which is absolutely con-
tinuous with respect to Q(- : &) for some fixed & € T and dQ(- : 8)/dQ(- : &)
=C(&) exp (§'2v), where 2 is a symmetric positive definite matrix. For
testing the hypothesis §=§,, the class 9 of tests of the form ¢(v)=1 if
veD° and 0 ¢f ve D° (interior of D) and i3 defined in an arbitrarily
measurable way on the boundary of D, where D is a closed convex set
of R*, is essentially complete.

In view of the earlier discussion and Proposition 4.1, it suffices to
consider tests belonging to the class 4 for the problem under consid-
eration.

THEOREM 4.1. For testing the hypothesis H,: 0=8,, consider the se-
quence of tests given by

(4' 5) Pn (An (00)) = I( Wn) ’

where W,={X™:QP(0,)=d,}, d, being chosen such that E (¢,: 8,)—a, as
n— oo, Consider the family of surfaces

(4.6) S* 1 (6—8,)'T'(6,)(6—8,)=K(n)C,

where C>0 18 a constant. The surfaces S¥.CO for sufficiently large n.
The sequences of tests {¢,} defined by (4.5) has asymptotically best con-
stant power (Wald [16]) on the family of surfaces S¥., Ce€ B where B
18 any bounded set.

Proor. Consider W={Z: Z'I'(6,)Z=d} where Z is N,(3, I'"'(6,))
and P(W:8=0)=a. Then it is known that P(W:@d) is constant for
any & on the surface S**(C):d71'(6,)0=C and C>0 is arbitrary. This
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is immediate since Z'I'(,)Z has the noncentral y* with k degrees of
freedom and noncentrality parameter h(3)=9'I"(6,)0. Let 3¢ S**(C)
and 0,=6,+K(n)""?8 so that 6,€S¥,. Thus 4,¢€Sk,&>d¢cS**(C).
Let W* be as defined by (4.1) and go,’f I(W*) Then

E (¢: Rn0)=P(W¥: Ln%
Thus in view of (4.1), it suffices to show that the sequence {¢}} has
asymptotically best constant power on the surface S**(C) for Ce B.
Since _L3%—_L,, the asymptotic distribution of 4%'(8,)4%(6,) will be

noncentral »*(k, h(3)). Thus, P(W}k:_L1%) is asymptotically constant
for 3 € S**(C). To be more precise, suffices to show that

@D lm{ sup POF: LE— | int POVE: L3 =
n—>oo (3eS5**(C) eS**(C)
This is seen by noting that
l sup P(Wr: L3%)— inf POWE: L%
3S*(C) eS**(C)

<2 sup |P(W}k: Lns)—P(Wk:L,)|,
2S*(C)

and the right hand side expression goes to zero, as n—oo. Now it
will be shown that for any sequence of tests {¢,} for which (1) E (¢,:

6)—a, as n—oo, (2) lim [sup{ sup E(¢,:80)— inf E (¢,: 0)”:0, one

CeB 0SSk ¢ 0Sic
has
(4.8) liminf[inf{ inf [E (¢”:0)—E(¢,,:0)]”20
ceBloess ¢

In view of Proposition 4.1, it is enough to consider ¢,=I(V,) where
Ve is a convex set in R*. In view of (4.1) it is sufficient to prove
that

(4.9) liminf[ inf (P(V*: LE5)—P(Va: L3 )}]
for all Ce B. Consider
liminf [ sup (P(W: LX5)~P(V: LA

3&S5**(C)

with C ¢ B and suppose it is €e<0. Then for sufficiently large n and
all 8 € S**(C)

P(W* .fn,d) P(V .Cn,O)S%<0.
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Thus
(4.10) Ss._w) P(Wn*:.C,T,*a)dA—S ey PV L35)A<0

or
[ 0, o3P (24280~ C@)AAGP,
W;1 S*(C)

_S S sy EXP (942 (6) —C(9))dAdP,, <0,

which contradicts (4.4) for a suitable choice of C. Finally
inf [P(W*: L7%)— P(Va: L75)]

me P(Wik: _La%)— sup P(V,: L%

—[sup PWx: L% 1nf P(V,: L3%)]
—[sup P(V,: Lx%)—inf P(V,: .L1%)]
—[sup P(W¥: Lx%)—inf P(W}k: L3%)]

=sup [P(W¥: Lr%)—P(V,: LnH)]
—[sup P(V,: Li%)—inf P(V,: L}%)]
—[sup P(W,¥: L2%5)—inf P(Wk: L35)]

and consequently

@.11) liminf L inf  P(W: L15)—P(V,: .fn,a] :

which proves the stated result.

Remark 1. As was done in [13] or in [16] it can be shown that
the sequence of tests given by (4.5) has asymptotically best average
power on the surfaces given by (4.6) under suitable weignt function.
Theorem 4.1 can also be derived from this result. It can also be shown
that the sequence of tests is asymptotically most stringent in the sense
of Wald [16].

Remark 2. It can be shown that the sequence of tests based on
QP (6,) also have the same asymptotic properties as Q(6,). It may
also be seen that Q°(8,) has similar asymptotic properties. The statis-
tics Q(8,) in the case of i.i.d. observations were considered in [11].
Finally, the likelihood ratio statistic or Wald’s type statistic ([16]) can
also be considered as the maximum likelihood estimators exist as roots
of corresponding equations under suitable regularity conditions and are
asymptotically normal (see Sarma [14]).

Remark 3. The sequences of tests considered above and mentioned
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in Remark 2 above, can be shown to be consistent against non-local
alternatives under assumptions of the type made in the one parameter
case.

Remark 4. Since all the tests mentioned above have the same
asymptotic properties, it is desirable to examine the asymptotic pro-
perties of the tests further by considering their rates of convergence
or probabilities of large deviations and Bahadur efficiencies, at least in
some special cases on the lines of [7]. These aspects are being investi-
gated and will be reported separately.

Remark 5. Tests for some composite hypotheses are considered
and their asymptotic properties are derived in the above set up and
they will be reported separately.

Remark 6. In [3] the authors have considered the case where the
log likelihood function converges to a mixture of normal distributions
under local alternatives and have derived some properties of minimax
tests.

Application. The above procedure can be applied to tests of hypoth-
eses for exponential families of stochastic processes. In this case the
likelihood function will be of the form

P 0)=0, () exp {31040 (6) — 3 £.(6) Bun(a™)]

where 8 e BC R* and f,(0) are twice differentiable functions from & to
R. An account of such processes indicating special cases can be found
in [15] and in references given there. Markov process in discrete time,
some birth and death processes, possibly with immigration can have
likelihood function of this type.
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