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Summary

A class of bivariate distributions that generalize Marshall-Olkin’s
one is characterized through a functional equation which involves two
associative operations. The obtained distributions concentrate positive
mass on the line x=y when the two associative operations coincide;
otherwise a positive mass is concentrated on a continuous monotone
function.

1. Introduction

Marshall and Olkin [8] characterize a bivariate distribution, assum-
ing that it has exponential marginals and the following functional equa-
tion holds:

(1.1) F(s,+t, s,+t)=F(s,, 8,)F(t, t)

where F(s,t)=P(X>s, Y >t). Equation (1.1) represents a particular
type of the Lack of Memory Property. This distribution is a mixture
of an absolutely continuous and a singular component, that concentrates
its mass on the line x=y.

In this paper we generalize Marshall-Olkin’s results considering a
lack-of-memory-property-type functional equation which involves oper-
ations different than the addition:

1.2) F(s, xt, s, x t)=F(s,, s)F(¢, t)

and analogous equations for the marginals. In particular we shall con-
sider an associative, binary operation x. We obtain a class of bivariate
distributions whose marginals are not necessarily exponential; their
form depends on the associative operation. These distributions con-
* Work performed while the authors were members of CNR-GNAFA.
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centrate positive mass on the line x=y (like Marshall-Olkin’s one). If
we consider two different associative operations and we assume a par-
ticular relation between two variables in the functional equation, we
obtain a class of bivariate distributions each of whose marginals de-
pends on one of the associative operations. These distributions concen-
trate positive mass on a monotone continuous function y=¢(x).

Thus we provide a way of generating bivariate distributions of
nonindependent random variables. Dependence of these random vari-
ables is obtained by depositing positive mass on a set of null Lebesgue
measure (the graph of a continuous monotone function). The marginals
can be arbitrary obtained in the class of absolutely continuous distri-
butions, by choosing suitable associative operations in the functional
equation (1.2).

Furthermore, we shall show that all the distributions that we ob-
tain have a common structure. All of them have indeed the same
type of copula that does not depend on the chosen associative operations.

In Section 2 some univariate characterizations are considered. In
Section 3 bivariate distributions of independent random variables are
characterized. Section 4 is devoted to the characterization of Marshall-
Olkin type class of distributions. In Section 5 some properties of these
distributions are examined. In Section 6 the case of two different as-
sociative operations is considered. Copulae of these distributions are
presented in Section 7. In Section 8 a possible generalization to the
n-dimensional case is suggested.

2. Univariate characterization

Let X be a nonnegative random variable with distribution function
F(x)=P(X=<2z). Then X is said to have the Lack of Memory Property
if
2.1) P(X>s8+t| X>8)=P(X>t)

for all s,t>0. Now, if P(X>8)>0 for all >0, then (2.1) can be writ-
ten as

2.2) F(s+t)=F(s)F(t)

where F(z)=1—F(x) is the survival function and s, ¢>0 are arbitrary.
Equation (2.2) is one of the four types of equations that are called

Cauchy equations (see Aczél [1], Section 2.1.2). Standard techniques

(see Aczél [1], Theorem 1, p. 38) lead to the (continuous) solution:

F(s)=exp (—2s) , 1>0, >0

that is, F' is exponential (see Galambos and Kotz [5] for a complete
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bibliography and detailed proofs).
We shall extend the Lack of Memory Property assuming that the
following holds :

(2.3) P(X>sxt| X>s8)=P(X>1)
where the binary operation * is associative, i.e. such that
2.4) x*xy)*x2z=2*(Y*2).

The general reducible (i.e. z*xy=x*2 or y*xw=z*w only if z=y),
continuous solution of the functional equation (2.4) is

(2.5) x*y=9""(9(x)+9(¥))

with g continuous and strictly monotone, provided z, y, zx*y always
lie in a fixed (possible infinite) interval (see Aczél [1], p. 253 ff.).

The function g occurring in (2.5) is determined up to a multiplica-
tive constant, so that

97(9:(2) + 9:(¥)) =95 (9:(2) + 9:(¥))

for all z,y in a fixed interval when g,(z)=ag,(x) with a#0. This allows
us to consider the function g strictly increasing. From now on (unless
otherwise stated) the binary operation * will be assumed reducible and
associative, i.e. such that the representation (2.5) holds with g strictly

increasing. Furthermore we assume that an identity element e €eR
exists, such that

T*ke=qg .

We recall that every continuous, reducible, associative operation
defined on a real interval is commutative (see Aczél [1], p. 267). If
P(X>s)>0 for all s>e, then (2.3) can be written:

(2.6) F(sxt)=F(s)F(t) .

PROPOSITION 1. The (continuous) solution of (2.6) is
F(s)=exp (—1g(s))

with 2>0, e=g~(0)<s< g *(co).
PROOF. Combining (2.5) and (2.6) we have

2.7) F(g™(9(s)+ 9@ =F(s)F(t) .

If g(s)=u, g(t)=v, Fog'=H, then (2.7) becomes

H(u+v)=HWH(®) ,
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that is a Cauchy equation. Therefore H(u)=exp (—4u) with 1>0, and
F(s)=exp (—2g(s)) .

From now on, unless otherwise stated, the support of the random
variables will be assumed (e, g~'(c0)).

Remark 1. If we particularize the operation * we can obtain dif-
ferent classes of distributions.

Example 1. When zxy=x+y, g()=2; therefore F(x)=exp (— ix)
(>0, >0), this is the usual lack of memory characterization of the
exponential distribution.

Example 2. When x xy=xy, g(x)=log z; therefore F(z)=2"* (A>
0, z>1). F is the distribution function of the Pareto distribution with
parameters 1 and 1.

Example 3. When & * y=(z*+y°)"*, g(x)=2"; therefore F(x)=exp
(—42%) (@>0, 2>0, 2>0). This characterizes the Weibull distribution
(see Wang [14]).

Related results may be found in Castagnoli [3], Muliere [10] and
Castagnoli and Muliere [4].

3. Bivariate characterizations

If we write F(x, y)=P(X>x, Y>y), then a direct extension of (2.2)
might be

(3-1) F(31+t1r 32+t2)=ﬁ(31: 32)F'(t1, t;)

where sy, s, t;, £,>0.

Setting s,=%,=0 and then s,=f,=0, we obtain that both X and Y
are exponential. Then, taking ¢,=s,=0 leads to the independence of
X and Y.

Consequently, the only solution of equation (3.1) is

F(s, ty=exp (— 28— A,t)

for some 2,>0, 2,>0 (see Marshall and Olkin [8], Galambos and Kotz
[5D).

We consider an analogous equation for the associative binary oper-
ation *:

(3.2) F—'(sl * t1, 8 * t2)=F_'(81, s;)ﬁ(tl, tz)
for all s, s,, t;, t,>e.
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PROPOSITION 2. The (continuous) solution of (3.2) is:

(8.3) F(s, t)=exp (— 2,9(s) — 2,9(t))
for some 2,>0, 2;,>0.

PROOF. Combining (2.5) and (3.2) we have:

3-4) F(g'(g(s) +9()), g"(g(s,)+g(tz)))=F' (81 32)1;—; (0 t) .

If g(s)=wu; g(t)=v, i=1, 2 and F(g~'(-), g7'(-))=H(-,-), then (3.4) be-
comes

H(uy+ vy, uy+v,)=H(uy, us)H(vy, vg) «

Whose solution is H(u, v)=exp (—2,u—24,v). Hence F(s, t)=exp (—2,9(s)
—2:9()).

Remark 2. If (X,Y) has joint survival function like in (3.3), then
X and Y are independent with marginal survival functions Fy(8)=exp
(—2.9(3)), Fy(t)=exp (—2,9(¢))-

4. A Marshall-Olkin type class of distributions

A more fruitful way of extending the Lack of Memory Property
to the bivariate case is to investigate the equation (see Marshall and
Olkin [8])

4.1) F(si+t, 8, +t)=F(s, ) F(t, t)

where s, 8;, t>0. If we assume that the marginals are exponential,
then the unique solution of (4.1) among survival functions is

4.2) F(s, t)=exp (— A;8— At — 4;, max (s, t))

where 1,, 2;, 2:,>0.
This family has properties which have proved useful for reliability
applications (see Basu and Block [2], Galambos and Kotz [5], Chap. 5).
Our main purpose is to consider (4.1) with the operation *. Let
F be a bivariate survival function such that:

(4.3) a) F(s,e)=F() and b) Fle 8)=Fys)

where F, and F, are the marginal univariate survival function, and e
is the identity element w.r.t. the operation x*.

THEOREM 1. Let

(4.4) F(s, * t, 3, x t)=F(s,, ) F(t, t)
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and
(4.5) F(sxt)=F(s)F(t), =1,2

where sy, 8, 8, t>e. Then the (continuous) solution of the equations (4.4)
and (4.5) is

(4.6) F(s, ty=exp (— 4,9(s) — 2:9(t) — Az g(max (s, t)))
with 2y, 5, 22>0.
PrROOF. Let in (4.4) be s;=s,=s. Then
F(s«t, sxt)=F(s, s)F(t, t) .
Hence, Fi(s, s)=exp (—3g(s)) (3>0). Therefore (4.3) yields
F(sxt, ext)=F(s)F(t, t)=exp (—0,9(s)—3g(t))
by Proposition 1. Setting s*t=wu (hence g(s)=g(u)—g(t)) we have
F(u, t)=exp (—0,(g(w)—g() —3g(t)) , u=t.
Analogously,
F(u, t)=exp (—0,(g(t)—g(w)) —dg(w)) ,  wu=t.
If A,=08—0,, ,=08—0,, 2,,=0,+6,—38, this may be written as
F(u, t)=exp (— A, g(u) — A, 9(t) — A, g(max (u, 1)) .

In order that it be a bivariate survival function,  must be nonincreas-

ing in each variable. This implies 1,>0, 2,>0. Moreover F must
satisfy the following:

F’(ul’ tl)+F(u27 tz)"ﬁ(uu tz)_F'(uzy t1);0
this implies 1,,>0.

Remark 3. In the proof of Proposition 2 and Theorem 1 we have
assumed that the associative binary operation * is always represented
as g (g(x)+9(y)). Actually as we said, any function h=ag (a#0) re-
presents the same operation, and even if we choose two different re-
presentations for the operation * in the same functional equation, the
result does not change.

Different particularizations of operation * lead to different bivariate
survival functions.

Example 4. When z xy=x+v, g(x)=x; then
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F(z, y)=exp (— ,£— 2,y — 2, max (z, ¥)) -
This is the Marshall-Olkin distribution (4.2).
Example 5. When z « y=xy, g(x)=Ilog x; then
F(z, y)="1y ™ (max (, y)) ™.
This is a bivariate Pareto distribution over the set (1, 4o0)X (1, + o).
Example 6. When  x y=(x"+y*)"*, g(x)=2"; then
F(z, y)=exp (— 4, &°— 2, 2" — A, max (z°, ¥°)) .

This is a bivariate Weibull distribution (bivariate Weibull distribution
was introduced briefly by Marshall and Olkin [8] and was studied in
detail by Moeschberger [9]).

5. Some properties

The class of distributions defined in Section 4 inherits some prop-
erties of the Marshall-Olkin distribution. The survival function (4.6)
is a mixture of two components:

F'(w' y):aF',,(x, y)+(1—a)17‘:(xr Y) 0<exl

where F, is absolutely continuous w.r.t. Lebesgue measure and F, con-
centrates its mass on the line x=y. The weights of the mixture de-
pend on the parameters A, 4; 45

a=(2+22)/(A+ A+ A1)
and
F,=exp (— (A4 + A+ A)g(max (2, ¥))) -

If g is differentiable, then the density of the absolutely continuous part
has the following form :

fu®, ¥)=(1/a)(0F (z, y)[oxdy) _
[ 22+ 212) /(24 2)) (A4 2) 29’ (@) W) F (2, y) , 2>y

[(A+ A+ )/ (A + )] (A + A g @) W F(z, y) . o<y,
It is of interest to note that
Fi(#)=F(z, e)=exp (— (1 +u)o(%))
Fyy)="F(e, y)=exp (—(+u)9(y)) -

Also it can be seen from (4.6) that a necessary and sufficient condition
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for X and Y to be independent is that 1,,=0.

Remark 4. 1If (X, X;) is distributed as in (4.6), then the survival
function of min (X, X;) has the following form:

P(min (X;, X;)>8)=P(X;>8, X;>8)=exp (—(2+ A+ 212)9(5))

therefore the distribution of min (X, X;) has the same form (with dif-
ferent parameter) as the marginal distributions of X, and X;.

Next theorem provides a different characterization of distribution
(4.6).

THEOREM 2. Let (X, X;) be distributed according to F. Then F
18 as in (4.6) iff there exist independent random variables U, U,, Uy,
whose marginal distributions satisfy (2.7), such that X,=min (U, Uy),
X;=min (U, Uy).

PROOF.

P(X, >z, X;>9)=P(U, >z, Uy>z, U;>y, Us>y)
=P(U,>x)P(U,>y)P(U;;>max (2, ¥))

by independence of U, U,, U,
=exp (—24,9(%) — 2:9(¥) — A g(max (z, ¥)))

by Proposition 1. The “only if” part is obvious.

6. Characterization with two different associative operations

Equation (8.2) can be generalized considering two different asso-
ciative operations * and o.

PROPOSITION 3- Let F(sl * tl’ 8 o t2)=F(81, 82)F'(t1, tz). Then
F(s, ty=exp (— g(s)— 2:h(t)) -

ProOF. The proof is obvious and descendes immediately from the
representations z x y=g7"(9(x)+9(¥)), 2 ° y=h"'(h(x)+h(y)).

Now we investigate the possibility of generalizing also (4.4) by us-
ing two different associative operations. In order to solve this prob-
lem, we need the following:

LEMMA. Let
(6.1) a) F(zx*t, ¢ *t)=F(x, @) F(t, o)

with ¢ continuous and strictly increasing
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b) Fi(z +t)=Fy(2)F(t)
with F(x)=F(z, ¢(¢))
c) Fygyxt)=Fp@)Fp®)
with Fy(y)=F(e, ).
Then
(6:2) F(z, y)=exp (—19(x)— 9(¢™'¥)) — A max (9(z), 9(4~'®)))) -
ProOF. Combining (2.5) and (6.1) we have
F(g(9(@)+9(t)), (07 (9) +9®)) =F(x, () F(t, ¢(2)) -
Setting g(x)=v, g(t)=u, g(y)=w, we have
F(g'(w+u), $(g™ (w+u)=F(g7'(v), $(g7 W) F(g7'(w), ¢(g7'(w))) -
When v=w, then
F(g'(v+u), ¢(g7'(0+w)=F(g™'(v), ¢(g @NF(g™'(w), $(g™"(w))) .
This is a Cauchy equation, whose solution is
F(g™'(v), ¢(g~"(v))) =exp (—0v) .
Since
Fyz)=exp (—019()),  Fi(y)=exp (—0,9(¢~'®))
then, when v=0
F(g'(w), ¢(97 (w+w))=F(g7(0), $(g7"(w))) exp (—3u) .
Whence

F(t, ¢y + 1) =Fe, ¢(u)) exp (—29(2))
=Fy(¢(y)) exp (—ag(?))
=exp (—0:9()) exp (—a9(?)) .

This implies

F(t, ¢(2)=exp (—0:(0(2)—9(®)—29(t)) , 22t
that is
(6.3) F(t, s)=exp (—6:(g(¢ () —9E)—39() ,  ¢7'()=t.
By applying the same argument, when w=0 we obtain

(6.4) F(t, s)=exp (—0(9t)—9(¢7' ) —39(¢7'@)) ,  ¢T(B)st.

437
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If we combine (6.3) and (6.4) we obtain (6.2).
Remark 5. The survival function (6.2) is a mixture
F(x, yy=aF,(x, ) +(1—a)F(2z,y), 0Zasl

where F, is absolutely continuous w.r.t. Lebesgue measure, and F, con-
centrates its mass on the curve y=¢(x).

The survival function (6.2) can be characterized by a lack-of-mem-
ory-property-type functional equation, with two different associative
operations.

THEOREM 3. Let

(6.5) a) F(xx*tyo2)=F(zx, y)F( 2), e, <&, t< g Y(co)
€,<y, 2<h™(0)

with @ * t=g7"(g(x)+9(t)), ¥y > 2=h"'(h(y)+h(2)), h(z)=9(¢)
b) Fyx * t)=Fy(x)F\(t)
with Fy(x)=F(x, e,) where y o e,=y
¢) Fyy - 2)=Fiu)F)
with Fy(y)=F(e,, y) where x xe,=uw.
Then
(6.6) F(w, y)=exp (— 49(%) — 2h(y) — A max (g(=), h(¥))) -
Proor. Put y=h"'(g(v))=¢(v). Then (6.5) becomes
F(x xt, (g7 @00) +9@))=F(z, p@)F(t, ¢(t))

this is just (6.1). It is very easy to verify that conditions b) and c)
of Theorem 3 are equivalent to conditions b) and ¢) of Lemma. The
equivalence of (6.2) and (6.6) is immediate.

7. Copulae of the bivariate distributions functions

It is well known that any bivariate distribution function can be
written as a function of its marginals, i.e. for any bivariate distribu-
tion function F, having marginals F; and F;, there exists a function
Cr such that:

(7.1) F(=z, y)=Cr(Fi(x), Fi(y)) .

If F'is continuous, then C; is unique. In such case
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(7.2) Cr(u, v)=P(F(X)=u, F(Y)=v) .

Therefore C, is a bivariate distribution on the unit square with uni-
form marginals. Cj, is called copula (some references for the repre-
sentation (7.1) are Sklar [13], Schweizer and Sklar [12], Chap. 6,
Kimeldorf and Sampson [7] and Genest and MacKay [6]).

If we make use of (7.2), it is not difficult to see that the copula
of the distribution characterized in (6.6) is the following:

Cr(t, V) =u-+v—14[(1 —w)r/Gr+ad(1 — p)/Cathp
- min (L0, (L)l i)]

As well as the distribution function in (6.6), this copula is a mixture
of an absolutely continuous and a singular distributions. The singular
part concentrates its mass on the curve:

u=1— (1 — 1;)(‘1“12)/(13“12) ( AnF 0) .

It is interesting to note that this copula depends only on the param-
eters A, A;, 4y, and not on the functions g and h that characterize the
associative operations in (6.5).

If 2,=0 then Cg(u,v)=wuv; this is the case of independence. If
A,=2,=0 then Cz(u, v)=min (u, v), this is the maximum of the Fréchet
class, when the whole mass is concentrated on the segment u=wv, that
is, the concordance of the two variables is maximum (see Scarsini [11]).
All the other cases are intermediate, between independence and maxi-
mum concordance.

For the family of distributions (6.2) concordance is never negative.
As usual in the literature, we have considered the copula of the dis-
tribution functions, that is the function that relates a distribution fune-

tion to its marginals.
Obviously it is possible to show that there exists an analogous func-
tion for the survival function. Therefore

F(z, y)=Cs(Fi(@), F)) -
If F is continuous, then
Crlu, v)=Pr (F(X)Su, F(Y)=<v) .
We call Cr survival copula. The survival copula of the (6.6) is:

Cr(u, 'v)=u‘lf(‘l"’lz)fu‘z/(‘z“la) min (u‘u/(‘l“u), pha/Gathp) |

8. Multivariate characterizations

The characterization provided in Section 4 can be generalized to
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the multivariate case.

THEOREM 4. Let N={1,2,---, n} be the set of the first m integers,
and let J, be a subset of N with cardinality k. Let

8.1) F‘N(xl *8, Ly ke v oy Ly * t)=F_’N(:v,, Lgy+ oo, a;,,)F’N(t, teeo,t)
and
Flk(‘vtl * t’ M) xtn * t)=FJ,‘(xtl’ R xik)ﬁ.f,‘(tr t;' ) t)

for all subsets J, of N, and all k=1, 2,---, n, where F,_is the k-dimen-
sional marginal of Fy relative to the variables with indices in Ji. Then

8.2) F’N(xl, Xgy+  +y £,)=€XP {—; R,g(xi)—% Ay 9(max (x,, x,))
—i<;<k thkg(max (xtr wj: xk))v Tt
—A1,3,8,... n9(MAX (21, Xz, -+ -, )}
where all the 2’s are positive.

PrOOF. The proof may be obtained by mathematical induction.
Assume that the representation (8.2) holds for (n—1)-dimensional case.
Then put in (8.1) #;=2,=--.=x,=2. This gives

Fyw, @,- -+, 2)=exp (—3yg(x))
and
Fy(w v t,mpx t, -, e % )= Fonu(@1, Tay+ -+, %,1) €XP (— 3 9(t)) -
Hence, setting z,xt=z2, 1=1,2,---,n
Fzy, 2+, 1)
=exp {—g 0:9(2)— -+ —04s,....n-19(maAX (24, 25, - -, ﬂ_l))—aNg(t)}

when t<z2, 25, ++,2,.;. By repeating the same argument for the other
variables we obtain the result.
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