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Summary

In this paper we obtain asymptotic expansions for the distribution
function and the density function of a linear combination of the MLE
in a GMANOVA model, and for the density function of the MLE itself.
We also obtain certain error bounds for the asymptotic expansions.

1. Introduction

Let Y be an N Xp matrix whose rows have independent p-variate
normal distribution with unknown covariance matrix 3 and
(1.1) E(Y)=AEB

where A is a known N Xk matrix of rank k<N, B is a known ¢Xxp
matrix of rank ¢<p and £ is a pXq matrix of unknown parameters.
This is known as a generalized MANOVA (GMANOVA) model (see Pot-
thoff and Roy [9], Gleser and Olkin [56]). The MLE of £ is given by

(1.2) E=(A’A)'A'YS'B'(BS-'B)!

where S=Y'{[,—A(A’A)'A"}Y.
We consider the distribution of

(1.3) 6=(A'A)*E —E)(B3-'B')"

and

(1.4) b=a'(Z—E)b|o

where a=(a,, -+, a,) and b=(b, ---,b,) are fixed vectors and o'=

a'(A'A)'a-b'(B3'B’)'b. Gleser and Olkin [5] gave an expression for
the exact density of  which is an integral form. It seems that the
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exact distribution of ¢ would be complicated if it could be obtained,
since the distribution of @ itself is very complicated. In this paper we

study asymptotic distributions of @ and § when n=N—Fk is large and
p, ¢ and k are fixed. When k=1, the author [4] has obtained an

asymptotic expansion of the distribution function of 6 and an error
bound for its asymptotic expansion. It is shown that such asymptotic
expansion and error bound can be obtained for the case of k>1. A
new bound is given for the asymptotic expansion. The bound is not
sharp as the previous one, but is explicitely given for any higher order
asymptotic expansions. We also obtain an asymptotic expansion of the
density function of @ and an error bound for its asymptotic expansion.
The results on the density function of § are generalized for the den-

sity function of the matrix variates 6.

2. The distribution of 8
We can write 4 as
(2.1) 6= {b'(BZ-'B')~'b} ~"*b'(BS'B')'BS~'3
where 3= {a'(A’A)'a} "*(Y—AEB)YA(A’A)'a. 1t is easily seen that 3

and S are independently distributed as N, (0, ) and W, (2, n), respec-

tively. Therefore the distribution of é is essentially same as one of
the statistic ¢ in (1.1) of Fujikoshi [4], and we have the following
Theorem 1.

THEOREM 1. Let F(x) be the distribution fumction of 6 and let s
be a positive integer. Assume that n—r—23+1>0, where n=N—k and
r=p—q. Then it holds that

(2.2) |F(2)—F,_(@)|<c,

where

(2.3) F,_x(x)=@(x)+;2: (1/2/51)h,0¢"(x) ,
(2.4) ¢ =lyh,/ {21},

(2.5) = r(r+2)---(r+2(j—1))

hy= (n—r—1)n—r—38)---(n—r—2j+1) ’

l,=sup |0Y(x)|, and O(x) s the j-th derivative of the standard mormal
distribution function O(x).

It may be noted that F, ,(x) is an asymptotic expansion of F(x)
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up to the order O(n~“~?) and the order of ¢, is O(n~*). The values of
l,, for s=1,2,3 are

—_1 (A _1.38... _5.78...
26)  b=_o—, L=0 (V3—v6)= o b=

but those for s=4 have been not given explicitely. So, the bounds
are not feasible for s=4. In the following we shall derive a new

bound, based on the characteristic function of 4.

LEMMA 1. Under the same assumption “n—r—28+1>0” as in
Theorem 1 it holds that

(2.7 |F(x)—F,_(v)|<é, ,
(2.8) &, =h./(x3) .

ProOF. Using (2.9) in Fujikoshi [4] we can write the character-
istic function of 6 as follows:

(2.9) ()= ¢._s(t)+ R,(t)

where

(2.10) _i(t)=exp (—%ﬁ) g < ——;—t2> n, /j! ,

@11)  R()= {(——;—ﬁ)‘/s!} exp ( ——%t*)E,,[v‘ exp ( —%m)]

and 5 (0<7<1) is the constant that appeared in the remainder term of
Taylor’s expansion of e¢®. Here v is a nonnegative random variable,
satisfying

E@W)=h,, 7=1,2,...,s.

Nothing that F_,(x) is obtained by inverting ¢, ,(f), and using the
fundamental inequality for error estimates (see, e.g., Feller [3], p. 538),
we obtain

212 |F@-Fo@Is= | 190)- ¢ i@)litidt
<h,(x2's])~ S‘” |t exp ( —-é-t’)dt:&, .
It may be noted that Kariya and Maekawa [7] have obtained cer-
tain bounds for approximations to the distribution function of a gen-

eralizes LSE, by the method as in the proof of Lemma 1. We shall
show that the bound ¢ can be replaced by a better bound ¢,=é,/2.
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LEMMA 2. It holds that
(2.13) c.§6.=%6, .

Proor. Using an integral representation to Hermite Polynomials
(see, e.g., Erdélyi and et al. [2], p. 194) we can write

¢‘2"(x)=(—1)‘§1—- gu+ S” -1 exp (— 29 sin (2t)dt .
JT 0
Therefore we obtain
l¢(28)(x)]§_1_220+1 Sw tzc—l exp (_ZtZ)dt
2r 0
=L o).
(4

This implies the disired result.
From Theorem 1 and Lemma 2 we obtain the following Theorem 2.

THEOREM 2. Under the same assumption “n—r—2s+1>0" as in
Theorem 1 it holds that

(2.14) | F(2)— F,_(%)| <€, =h,/(2n3) .

The bound ¢, is not sharp as the bound ¢, but is given explicitely
for any s. The sharpness of ¢, to ¢, may be measured by

(2.15) 6,=¢,[C,=nly,[{2'(s—1)!}.
For s=1, 2, 3,
¢,=0.76, ¢=0.86, e€=0091.
THEOREMA 3. Let s be a positive integer. Let f(x) be the density
Sfunction of 0, and let
(2.16) f._1(2)=¢(w)+§1(1/2’ﬂ)hj¢‘2”(-’v)

where ¢°(x) is the j-th derivative of the demsity function ¢(x) of N(O, 1).
Assume that n—r—2s+1>0. Then

|f (@) ~fo-r(®)|Sd,=h(26)!/{¥ 22 (2'8!)} .

ProoF. Since the Fourier transform of f,_,(x) is ¢,_,(t), from (2.9)
we have
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@ —Fira@l=o| | exp (tn)R(0)dt|

so- | IR®at

I

<[h./{2r2's!}] Sl t* exp (——21—t2>dt
=d, .

3. The distribution of &

We shall derive an asymptotic expansion of the density function
Sf(X) of & and an error bound for the asymptotic expansion. First we
give a reduction for the distribution of 6.

LEMMA 3. The random matriz 6 defined by (1.3) can be expressed as

A

(3.1) 6=2Z-U
where the random matrices Z: kxq and U: kxq are the following pro-
perties :

(i) the elements of Z are independently distributed as N(O, 1),

(ii) Z and U are independent,

(iii) U=MW'2L, where the elements of M: kxr and L: rXq are
independently distributed as N(0,1), W: rXxr is distributed as
W.(I,, n), and L, M and W are independent.

ProOOF. Gleser and Olkin [5] have essentially showed this result
in a canonical form of the GMANOVA model. Here we shall see how
the matrices L, M and W are defined in the terms of the original

model. We can write 6 as

6=(A'A)2A'YS-'B(BSB) (BB
where Y=(Y—AEB)3-'?, §=3"'2S3-'2 and B=B3-'*. Let H=[H,, H,)
be an orthogonal matrix such that H,=B'(BB’)"*. We define

[Z, M]=(A'A)"A'Y[H,, H,]
W=8,, L=8;"8,

where

~ - Su S 5

S=H’SH=[ o o] Suaxae
Then, we can see that §=Z—U, by using that H/S-'B'=—S;'S,S:}
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X (EEI)]/Z’ (ES-_IE,)_I = (EEI)—l/2§£.12(‘§§’)—1/2’ Where §11.2= S~11 - §12S~2;l§31-
Further, it is easily seen that Z, M, L and W satisfy the properties
(i), (ii) and (iii).

From Lemma 3 we can write the characteristic function of & as
(3.2) T(T)=E[etr (iT’é)]

=etr(-%TT)EL,W[etr(-%LT'TL'Wﬂ)]

where T is a kXq matrix and etr denotes the exponential of trace.
A Taylor’s expansion of etr(——;-LT’ TL’W“) yields

(3.3) ¥(T)="¥,.(T)+R(T)

where

3.4) T_(T)=etr (—-%-T’T) 5 T< —%)jE,,,W[(tr LT'TL' W~

8.5) R(T)= etr<-——T'T> L'< >

cElerr ey L)

and 7 satisfies 0<y<1l. This reduction holds under the assumption
that E, y[(tr LT'TL' W-')] exists. From the following Lemma 3 we
can see that the assumption is satisfied if n—r—2s+1>0.

LEmMMA 3. (Constantine [1], Khatri [8]). Let C(f2) be a zonal poly-
nomial of the pXp symmetric matrixz 2 corresponding to a partition
k=, -, k), k=ki+---+k, ky=---=k,20 of the integer k. Suppose
that S s distributed as W3, n), and k is a positive integer satisfing
n—p—2k+1>0. Then

(3.6) EJC(28 )] =e.C(237)
where e.=1/[(—2)’°<—%+—2ﬂzi>‘} (a),=ﬁ(a—-;-(i—1)>k_ and ()=
a(a+1). - (a+m—1). l

Now we consider the Fourier inverse transform f,_,(X) of &,_(T),
which is given by

@GN  fu®=(o)" | [ercx DB (YT
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1 )kq/Z ( 1 )l—l 1 1 J
=(— etr( —=X'X |3 = (—=) 94X
(27: 2 o\ 2 AX)

where
3.8) 9,(X)= (_21”_)"“” etr (%X'X) S o S etr (i X'T)
X etr <—%T’T)EL,W[(tr LT'TL'W-)dT .

By the same method as in Lemma 3 we can obtain an error bound
when f(X) is approximated by f,.,(X), which is given in the following
Theorem 4.

THEOREM 4. Let f(X) be the density fumction of 6, and let s be
a positive integer satisfying n—r—28+1>0. Then it holds that

3.9) |f(X)—fid(X)|=D,
where f,_(X) is given by (3.7) and

_ 1 1 \* 1y 1T AT -1
(3.10) D,—W<E;> S : -Setr( iT T)xEL,W[(tr LT'TL' W-yldT .

ProoF. Using (3.3) we have
X = fua D)= | (=) |-+ [ etr GTDOR(TIT
(&) fmcovar

Since letr (—%nLT'TL’ W“)

<1, the last expression in the above in-

equality is bounded by

<_1.—)'"’_1_ S . S etr <——1-T’T> % By wl(tr LT'TL' W-)1dT
2r/ 23! 2 ’
which is equal to D,.

We shall reduce the formula (3.9) to a practically useful form for
s=1,2. We use the following Lemma 4.

LEMMA 4. Let L: rXq and W: rXr be independently distributed
as a rg-variate normal distribution with mean vector 0 and covariance
matriz I,, and a Wishart distribution W.(I,, n), respectively. Then

(i) EL,W[trLT’TL’W“]=n—:——1-trT’T, if n—r—1>0,



160 YASUNORI FUJIKOSHI

(i) Egw[(tr LT'TL'W-]

—_ r . .
-(n—r)(n—r—l)(n—r-—3)[{(n r—2)r+2}(tr T'T)

+2(n—1) tr (T'TY], if n—r—3>0.

ProoF. Considering the expectation with respect to L, we have
E tr LT'TL'W N=¢r T'T)tr W,
E.[(tr LT'TL' WY =(tr T'TY(tr W42 tr (T'T)* tr W-* .

The expectations of the above expressions with respect to W are
evaluated by Lemma 2 and the following identities (see, James [6]):

tr W-l=C(1)( W-l)
[(tr W1y }_l[ 2 2 :l{ Co( W) ]
tr W2 - 2 1 -1 C(l.l)( W_!) )

THEOREM 5. Let f(X) be the density function of 6. Then it holds
that

(i) of n—r—1>0,
(3.11) | f(X)—f(X)|=D,

(i) if n—r—8>0,

3.12) |rE)—fx) {1 +—2—(n+r_1—)~(tr X'X—kq)} |

D, [{(n—7r—2)r+2} (kg +2) +2(n—1)k+q+1)] ,

= 4(n—r)(n—r—38)

where f,(X)=(20)™" etr (XX ) and D,=(rka)/{2(n—r—1)2x)"").

ProoF. The formulas (3.9) with s=1 and s=2 are reduced to
(3.11) and (3.12), respectively. This reduction can be obtained by using
Lemma 4 and the following identities:

( 1 )"“S...Seu (iT’X—-é-T'T)tr T'TAT = f(X)(kg—tr X'X),

2r

(.217>"“” S . S etr (—-%T’T) tr T'TAT =k,

.(_2%""” S : -Setr ( —%T'T)(tr T'TYdT =kq(kg+2)
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(%)""’” S . S etr <—_%.T'T> tr (T'TYdT =kq(e+q+1) .
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