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Summary

Distribution of sum of 0-1 random variables is considered. No as-
sumption is made on the independence of the 0-1 variables. Using the
notion of “central binomial moments” we derive distributional proper-
ties and the conditions of convergence to standard distributions in a
clear and unified manner.

1. Introduction

Let X,,---, X, be 0-1 random variables and let S,=X,+---+X, be
the sum. In this article we discuss the distribution of S,. The main
point of this article is that we do not assume any condition on depend-
ence among X,’s. In usual discussions on sum of random variables X’s
are assumed to be independent or close to being independent. Clearly
some simplifying assumption is needed. Our simplifying assumption is
only on the marginal distribution of X.’s.

When X,’s are 0-1 random variables, S, only takes values 0, 1,---,
n. In this case there is an explicit relationship between the probability
distribution of S, and its factorial moments as shown in (2.3) and (2.7).
Therefore we can discuss the distribution of S, in terms of its factorial
moments. Actually we use a one-to-one function of factorial moments,
which we call “central binomial moments”. It will be shown that
central binomial moments are especially useful when the distribution
of S, is approximated by standard distributions, e.g., binomial, Poisson,
or normal distributions.

For discussing approximations by standard distributions we use ex-
pansions based on orthogonal polynomials associated with the standard
distributions. These are Krawtchouk polynomials for binomial, Charlier
polynomials for Poisson, and Hermite polynomials for normal distribu-
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tions. The approximation theory using these polynomials are fully dis-
cussed in Takeuchi [14]. Other useful references include Kendall and
Stuart [8], Ord [10], and Johnson and Kotz [6].

Our development here has a rather close connection with the liter-
ature on (finite) exchangeability. This is because we can assume the
exchangeability among X,’s without loss of generality as far as the
distribution of S, is concerned. This point is discussed in Galambos [4]
in detail. Although there is an extensive literature on infinite exchange-
ability, literature on finite exchangeability is rather scarce. Kendall [7]
is notable in this respect. In fact our development in Section 4 partly
overlaps with Kendall [7]. More recently Diaconis and Freedman [2]
gave a clear discussion on finite exchangeable sequences which can be
extended to longer (but finite) exchangeable sequences. In this article
we are not concerned about infinite exchangeability or extending finite
exchangeability. For our discussion therefore it would be more precise
to consider triangular array of 0-1 random variables X, and write S,
=X,,++++X,, Since this should be clear from the context, we do
not repeat this point later. Actually, limits of finite exchangeable se-
quences and infinite exchangeable sequence can be quite different. See
the discussion following Theorem 5.1 for example.

It is interesting to note that Watanabe [16] already gave a very
detailed discussion of the case where the sample mean S,/n has a limit-
ing distribution. In this article we do not discuss this type of conver-
gence in distribution.

In Section 2 we set up appropriate definitions and notations. In
Section 3 we discuss approximations by binomial distribution. Conver-
gence to Poisson distribution is discussed in Section 4 and convergence
to normal distribution is discussed in Section 5. Generalization to mul-
tivariate case is subjects of a subsequent paper.

2. Notations and definitions

In this section we prepare definitions and appropriate notations for
quantities used in this article. The key quantity for our discussion is
“ central binomial moment ” defined in (2.4). It can be interpreted to
indicate deviation from independence. We also discuss generating func-
tions useful in the subsequent analysis. Finally we state a lemma which
treats the convergence in distribution in terms of convergence of mo-
ments.

Let X;,---, X, be random variables taking either 0 or 1. No as-
sumption is made on the dependence among X,’s. Let

(2-1) PI‘ (th=1, crey X¢k=1)=pil...ik .
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Their “average” is denoted as

(2.2) P=— S Py, s
N\ <<ty
(%)
for k=1, and p,(0)=1 for all n. Note that p,(k)=Pr(X,=1,---, X,=1)
if Xs are exchangeable. <Z’)p,,(k) is called “binomial moment” by

Galambos [4] in view of Lemma 2.1 below. Because S,=X;+---+X,
is invariant under the random permutation of the indices, we could as-
sume the exchangeability among X’s, as far as the distribution of S,
is concerned. This point is already discussed in Introduction. For a
full discussion see Section 3.2 of Galambos [4]. For any nonnegative
integer k let a®=g(x—1)..-(®x—k+1). The k-th factorial moment of
S, is denoted as pu,=FE(S{). Then we have

LEMMA 2.1.
2.3) pa=np, (k) .
Proor. Lemma 1.4.1 of Galambos [4].

As the distribution of S, is determined by its factorial moments,
the lemma shows that it is completely specified by the binomial mo-
ments as well.

Now we define the following key quantity, which we call “central
binomial moment ”.

DEFINITION 2.1.
@9 aO=1, a®=2 (5 )prk—i, k21,

where p=p,(1).
For example
0(2)=p2)—1P*,  q.(3)=pu(3)—3pp.(2)+2p.

The algebraic relation between p,(k) and q,(k) is the same as the rela-
tion between moments about the origin and moments about the mean,
if p,(k) is regarded as k-th moment about the origin and gq,(k) is re-
garded as k-th moment about the mean. Another justification of the
term “central binomial moments” can be given as follows.

LEMMA 2.2. Suppose that the distribution of X,,---, X, 18 a mix-
ture of independent Bernouwlli trials with random success probability P.
Then
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(2.5) v(k)=E[P*), q k)=EP-E®P))".
ProOF. The first relation follows from
p(k)=Pr (X;=1,..., X;=1)
=EPr(X;=1,.---, X;=1|P))=E(P*).

The second equation is obvious.

In any case the relation (2.4) can be readily inverted to yield

26) po=3 (% )ra.tc—3)
=p+ ( ’é )p"’zq,.(2)+ ( ’g )p"“’q,.(3)+ e

This relation can be interpreted as follows: (i) the first term on the
right hand side approximates the left hand side by the independent
Bernoulli trials, (ii) the second term takes care of the dependence be-

tween <126> pairs of X’s, (iii) the third term takes care of the depend-

ence among (g) triples of X’s, ete. Therefore g,(k) can be regarded

as representing k-th order dependence among X’s, when the lower or-
der dependence has been taken into consideration. Clearly g.(k)=0,
k=1 if and only if S, is binomial.

Now we discuss generating functions of factorial moments and the
central binomial moments. Let the probability generating function of
S, be

G.(6)= ,,2 6* Pr (S,=k) .
=0
Then M, (6)=G,(1+06) is the factorial moment generating function :
@) M(0)=3 (@ k)par=33 (7 )puioe"
k=0 k=0
See Kendall and Stuart [8], Section 3.11. Note that in our case there

is no question about the convergence because the series is finite. The
central binomial moment generating function @,(6) is defined as

(28) 0)=2 ()00
k=0
Then we have the following relation:

LEMMA 2.3.
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(2.9) M(0)=(1+p0yQu( s 0)

ProoOF. Using (2.6) we have

M=3 (3 )00
=3 <}’:>0" Py (’; )p""q,.(j)
=3 (%)0a) 2 (%) woy
=31 (% )o/(1-+ 90y a,(3)
=(1+pb )"Q(1+ 0)

Note that (1+pf)* is the factorial moment generating function of
the binomial distribution. Q,(6/(1+p6)) can be regarded as a correction
factor. As mentioned above @,=1 if and only if S, is binomial.

In Section 4 and Section 5 we discuss convergence of the distribu-
tion of S,. Since we do not assume any condition on independence,
we shall treat convergence in distribution in terms of convergence of
moments. - For our purposes we rely on the following fact.

LEMMA 2.4. Let {F,} be a sequence of distribution functions such
that moments of all orders p,.= Sx dF, are finite. Suppose that p, .,

converges to p, (finite) for each k as m—oo. Then p,’s are the mo-
ments of a distribution function F. If, moreover, p,'s determine F
uniquely, then F, converges to F.

Conversely if F,—F and p., are bounded in n for each k, then u,,,
converges to p, for each k.

For a proof see Loeve [9], Section 11.4. Note that this lemma
can be also applied with other types of moments, e.g., factorial mo-
ments or cumulants.

3. Approximation by binomial distribution

Since S, takes the values 0,-..,n, it is natural to approximate its
distribution by binomial distribution. Let

(3.1) Pen(%; M, P)= < )’(1 /) it

be the probability function of binomial distribution with parameters n
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and p. Let
d? .
(3.2) i(@; p)= 7 Psn(@; 1, D)/Dsn(®; M, D), §=0,--, 1.
Then L? is a j-th degree polynomial in x and {Lj, j=0,-.-,n} forms a

set of orthogonal polynomials with respect to pzy(x;n, p). These are
often called Krawtchouk polynomials (see Appendix A of Ord [10], or
Section 11.12 of Johnson and Kotz [6]). Approximations using these
polynomials are discussed in Takeuchi [14] in detail. We note that Lj
can be expressed also as

(8.3) Li=(—4Yn®pyu(x; n—k, p)/psy(2; n, D) ,

where 4 is the difference operator: 4f(x)=f(x)—f(x—1). See Chapter
8 of Takeuchi [14].

Now from Lemma 2.1 applied to binomial distribution we see that
the k-th factorial moment is pq,=n®p*. Differentiating this relation
J times with respect to p we obtain:

LEMMA 3.1.
n 0, if k<J;
(3.4) > 2®Lj(x; P)Ps(®; My P)= , i
x=0 n(k)k(j)pk—j , 'Lf kzj .

Using this lemma we can prove the following theorem :

THEOREM 3.1.

M=

.

gl

(8.5) Pr(S,=2)=pass(®; 7, D) {1+ =9 Ly p)] -

J
(3.6) Pr (Snsx)=y§=_‘a Pn(y; 1y P)—nPpy(x; n—1, D) 12=2 3"3(.,’—) L3Zi(x; p) .

PROOF. Because the factorial moments p,: -+, gm determine the
distribution uniquely, it suffices to check that the right hand side of
(8.5) has the same factorial moments as the left hand side. Now by
Lemma 3.1 and Lemma 2.1

n

) a®p (e ; 1, P) {Hé 5"'—@,311/}(50; p)}
= gl

z=0
=n 3 (% )p ) =nopl)=EESP)
=0
This proves the first equality. The second equality follows from (3.3).

Remark 3.1. Using inclusion-exclusion principle Pr (S,=x) can also
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be expressed in terms of p,(k)’s in a simple manner. This is called
Jordan identity or Bonferroni identity. See Chapter 4 of Feller [3],
Galambos [5], or Takacs [12] for example.

This theorem can be also proved using the following explicit ex-
pression of L}

Ld k)
3.7 pk(l"p)"L"=J§o (f; )(_1)1 n”‘b"'” plr®=9

See formula (121), Section 11.12 of Johnson and Kotz [6]. Then by
Parseval’s identity

(3.8) a.y=2C22 iy

The following useful recurrence formula is used later in the proof of
Proposition 3.1. Define L}=p/(1—p)’L:. Then

(3.9 Lr,=(@—np—3i(1—2p)Li+{i(5 —1)p(1—p)—jnp(l—p)) L1, .

Initial conditions are Lr=1, L?=2z—np. See A2 of Appendix.

As an application of Theorem 3.1 consider Hypergeometric distri-
bution with parameters N, M, and n. Denote the probability function
of Hypergeometric distribution as

Pue(x; N, M, n)= <J‘;{) <§:¥>
()
Then

PrOPOSITION 3.1. Let n be fized. Let p=M|N and assume that p
18 bounded away from 0 and 1. Then as N— oo,
. — . . (In N(j) n .
(8.10) Pas(x; N, M, n)=pzy(2; n, D) 1+IZ‘.=2 —'T,—L;(w,p)

+O(N-tm+1)

where [ ] denotes the integer part and q, .(7) is the j-th central binomial
moment of pys(x; N, M, n).

To prove this theorem we investigate g, (7). An explicit expres-
sion can be given as follows.

LEMMA 3.2.

(3.11) 00 =202 Lt )
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where p=M|N. Hence

(3.12) o, n(k+1)= — k(1 —2p)§,, »(k)
+{k(k—1)p(1—p)—kNDP(1—D)}g, v(k—1) ,
where G, y(h)=N%®q, y(h).

PrROOF. For Hypergeometric distribution, k-th binomial moment is
given as p, y(k)=M*®/N®, Hence

_ 3 k ey M <£>k—j

@un@)=33 (5 )(— 1y 2L (2
But this is equal to (8.7) divided by N® if x is replaced by M and p
is replaced by M/N. This proves (3.11). Now (3.12) follows from (3.9)
with_ the same substitutions.

PrROOF OF PROPOSITION 3.1. Since the summation is finite, it suf-
fices to show that g, ,=O(N~*+>2),  This follows from (3.12) since by
recursion N®gq, ,(k)=4g, y(k)=O(N% ™).

For example up to the order Nt

__ »(1—p)
qn,IV(z) h _‘—“"——‘N_ 1 )
_ 2p(1—p)(1—2p)
(3.13) 0., n(3)= N—H(N=2) '

g, (4)=3NP(L—p)'—6p(1—p)(1—3p+3p")
" (N—1)(N—2)(N—3)

Therefore using these quantities we obtain an approximation of Hyper-
geometric distribution up to the order N2

4. Convergence to Poisson distribution

In this section we discuss the case, where n— oo and the distribu-
tion of S, approaches Poisson. We also discuss (i) asymptotic expan-
sion around Poisson, (ii) convergence to a distribution which can be
expanded around Poisson distribution, (iii) nonregular case, where nor-
malized moments are not bounded as n— co.

Applying Lemma 2.4 with factorial moments, convergence to Poisson
distribution can be easily discussed. The k-th factorial moment of Pois-
son distribution with parameter 2 is given as gq,=4*. Therefore not-
ing n®[n*—1 as n—oo we obtain from Lemma 2.4:

THEOREM 4.1. The distribution of S, converges to Poisson with pa-
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rameter 2 if n*p,(k)—2* (a8 n— o) for each k. Converse is true if
n*p,(k) is bounded in n for each k.

The first part of this theorem was already proved by Kendall [7]
(see his Theorem II). In terms of ¢.(k) we have

COROLLARY 4.1. The distribution of S, converges to Poisson with
parameter 2 if np,(1)— 1 and n*q,(k)—0 (as n— o) for each k=2. Con-
verse 18 true if np,(1), and n*q (k) are bounded in n for each k.

If q.(k) is interpreted as indicating deviation from independence,
this corollary shows that if S, approaches Poisson and n*q,(k) are bounded
in n then the 0-1 variables X,’s must approach the independence in a
certain manner.

A more detailed treatment of this convergence can be given by an
asymptotic Charlier Type B expansion around the Poisson distribution
(see Chap. 1 of Takeuchi [14] or Kendall and Stuart [8]). Let p(x; 2)
=(4%/x!)e~* be the probability function of Poisson distribution with pa-
rameter A. Then the j-th degree Charlier polynomial Lxz; 1) is de-
fined as

5
(4.1) Lw; )=— (@ )ip(a: )
{L(x; 4), 5=0,1,---} forms a complete set of orthogonal polynomials
with respect to p(x; 2). See Section 11.12 of Johnson and Kotz [6].
Now we consider the factorial moment generating function (2.9). Let
A=mnp,(1). Taking the logarithm of (2.9) we have

42) log G,(1+0)=log M,(6)=n log (1+% o) +log Qn<ﬁ%0—/77) .

Now assume that up to the order »~?% logQ,(r) can be expressed as

(4.3) log Q.(r)= <_1_ bt _1?’62)ﬁ+i2bsr=+0(n—8),

n " "
where .as a regularity condition we assume that the remainder term is
of order »~* uniformly for |r|<1+e. Substituting (4.3) into (4.2) we

obtain

H P 8
4.4) log Mn(0)=10+02<——2%-+%+_3§_>+03< 3’;2 — 2;5’2+%>+0(n-‘) .

Therefore up to the order n?

(4.5) M (0)=€e"[1+c,0*+ 0 +¢,0']+O0(n™?) ,
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where
A b, b A 22, , b
=Tt TR e T
(4.6) 2
4 2
N I ¥

8n 2 2n'
From this we obtain

THEOREM 4.2. Assume that log Q.(r) can be expanded as in (4.3).
Then

4.7 Pr (S"=x)=%d:—e“[1+chz(x; D+ Lyz; A)+eLx; A)]+0(n7?),

where ¢, ¢, ¢, are given as (4.6).

Since derivation of (4.7) from (4.6) is given in Chapter 1 of Take-
uchi [14] we omit the proof. Higher order expansions can be derived
in a similar manner.

Charlier Type B series expansion can be also applied to the first
order convergence to a limiting distribution which can be expanded
around Poisson distribution in L?. Consider the formal limit of (3.5)
as n—oo. As n—oo and np—2, n/Lj(x; p)— L,(x; 2) (see Al of Ap-
pendix for a proof). Therefore if n'q,(j)—q¢*(j) as n— o, as a formal
limit we obtain lim Pr (S,=2)=p(x; x)<1+ (WG L e x)). In fact

n—oc0

this can be made rigorous as follows.

THEOREM 4.3. Suppose that np,(1)— 2 and n'q,(7)—q*(j) as n— oo
such that jﬁ: a*(G)§13 < co. Then
=2

(4.8) 1"1_12 Pr(S,=x)=p(x; 1){1—!—% l}(!ilL,(x; 2)} .

Remark 4.1. The regularity condition on the square summability
of ¢*(j) guarantees that the series within the parentheses on the right
hand side converges in L? with respect to p(x; ). However since the
sample space is discrete convergence in L? implies pointwise conver-
gence. Actually this regularity condition can be weakened substantially.
See Takemura [13].

PROOF. The right hand side of (4.8) defines a signed measure P*
over nonnegative integers. From the assumption the factorial moments
of S, converge to those of P*. Now from Lemma 2.4 it follows that
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P* ig a distribution and the distribution of S, converges to P* if P*
is uniquely determined by its moments. This is the case because as
shown in Lemma 4.1 below P* has moment generating function. This
proves the theorem.

The following lemma completes the above proof.

LEMMA 4.1. Let P* be a distribution over nonnegative integers such
that i‘, (P*(x)/p(x; ))p(x; A)<co. Then P* has moment generating
=0
Sunction defined everywhere.

ProoF. Let
M= i PX@)p(x; )=¢' S PH(x)z!j17< oo .
Then by Schwarz for any positive a,
SePH@s| el 5 Preslr] et <o

Finally we consider nonregular case, where the distribution con-
verges but the moments do not converge. Applying the continuity
theorem for the probability generating function we obtain the follow-
ing theorem.

THEOREM 4.4. Suppose that np,(1)—2. Then S, converges to the
Poisson distribution with parameter 2, if and only if Q.(r)—1 for every
z n the interval —1<7<0.

ProoOF. Consider the factorial moment generating function of S,
given by (2.9). As m— oo and nmp—2 the first term on the right hand
side converges to the factorial moment generating function of the Pois-
son distribution. Therefore the distribution of S, converges to the
Poisson, if and only if @, converges to 1. Note that from the relation
between probability generating function and the factorial moment gen-
erating function it suffices to consider ¢ in the range —1<6<0. Be-
cause for every ¢ the convergence is uniform for —1<0<—¢<0, the
difference between 6 and r=60/(1+7p0) does not matter asymptotically.
This proves the theorem.

To illustrate this theorem, consider the following mixture of bi-
nomial distributions. Let the success probability P be random with
Pr(P=1/n)=1—1/n and Pr (P=1/n+1/2)=1/n. In this case clearly the
limiting distribution of S, is Poisson with parameter 1. Now from
Lemma 2.2, ¢, (k)=E(P—1/n)*=1/2*n. Hence n*q,(k) diverges. On the
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other hand Q,(z)= kf‘_, ( Z’ )r"/2"n+ 1—-1/n=(1+7/2)"/n+1—1/n which con-

verges to 1 for —1<7<0. Note that the coefficients in the expansion
of (1+7/2)* diverge.

5. Convergence to normal distribution

In this section we discuss central limit theorem. We obtain condi-
tions on moments such that Z,=(S,—np)/¥/n converges to normal in
distribution. The development of this section closely follows that of the
previous section. We discuss (i) ordinary convergence to a normal dis-
tribution, (ii) asymptotic Edgeworth expansion, (iii) convergence to a
distribution which can be expanded around the normal distribution, and
finally, (iv) nonregular case.

Corresponding to Theorem 4.1 we have the following result.

THEOREM 5.1. Assume that lim p,(1)=p exists and let Z,=(S,—np)/

n—o0

Jn. If for some real c=—p(l1—p)
lim n*?q,(k)=0 , k: odd,

(5.1)
lim n**q,(k)=c**1-3. - -(k—1), k: even,

then Z, converges to N(0, ¢*) in distribution, where ¢*=p(1—p)+c. Con-
verse of this holds if m*’q (k) is bounded in n for each k.

ProOF. We apply Lemma 2.4 with cumulants. Letting 0=e"—1
in (2.9) and taking logarithm, the cumulant generating function of Z,
is written as

(5.2) log E(exp (itZ,)) = —itv' n p+mn log (1+p(exp (it/v n)—1))

exp (itj[vn)—1
+log Q"(1+p(exp (it/ﬁ)—n) '

The first two terms constitute the binomial part and k-th order cumu-
lant coming from these terms converges to 0 if k=3 and to p(1—p) if
k=2. Therefore if the k-th order cumulant from the third term con-
verges to 0 for k=3 and converges to ¢ for k=2 the conclusion of the
theorem holds. Let a,, denote the k-th cumulant from the third term,
ie., let

| exp(itiVm)—1 \_ G}, (&),
logQ"<1+p(exp(it/x/W)—1)>—a"’z 2 Hns 3! L

Note that since @, is a finite series for a finite n, log @, can be always
expanded around the origin. Now let
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(5.3) logQ,.(f%_> 2 Ll st

Since r=1it+O0(n""%) we have a,,=@,,+0(n"") for each k. Therefore
if @,, converges to 0 for k=3 and to ¢ for k=2 the conclusion of the
theorem holds. But exponentiating (5.8) we see that this is equiva-
lent to

n*?q.(k)—0, k: odd,
n*2q,(k)—c*1-8. - -(k—1) , k: even.

This proves the first part of the theorem. The converse part is a di-
rect consequence of the converse part of Lemma 2.4.

The condition of the theorem requires that the normalized central
binomial moments approach the central moments of the normal distri-
bution with variance ¢. An interesting fact here is that ¢ can be neg-
ative. When ¢ is negative the asymptotic variance ¢* is smaller than
the asymptotic variance p(1—p) of the binomial distribution and there-
fore the asymptotic distribution is more concentrated toward origin
than the binomial case. This contrasts with the case where S, is a
mixture of binomial distributions and hence ¢ is nonnegative. Here are
examples of this phenemenon.

Example 5.1. Consider the Hypergeometric distribution of Proposi-
tion 3.1. This time let n approach c with the same order as N ap-
proaches co. Letting n=aN, M=pN, it is easy to see that Var (Z,)—
P(1-p)(1—a)=p(1—p)—ap(l—p). Therefore ¢=—ap(1—p) in this case.

Ezample 5.2. Let the 0-1 variables X, be independent with Pr (X,
=1)=p. Then Var(Z,)=p(1-p)—3 (»—p)/n, where p=3 p,/n.
Therefore ¢=—lim X (p,—p)}/n if this limit exists.

For more detailed discussion of these examples see Chapter 2 of
Takeuchi [14].

Closer approximation can be given by asymptotic Edgeworth ex-
pansion. Edgeworth expansion for discrete random variable is fully
discussed in Chapter 2 of Takeuchi [14]. Here we derive the expan-
sion up to the order »~'. Suppose that

(5.4) logQ,,( }%) (’;)2 (c2+ 02>+0 éf/’)_ Yo, (ZT +R(7).

A possible regularity condition on the remainder term R,(r) is given
in A3 of Appendix. Now
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5.5 - ( exp (it/vn )—1 >
(5:5) fr=vn 1+ plexp (itjV 1 )—1)

1-2p 2, 1—6p46p* ..\ -1
=1t - 2T F @t .
@+2~/—(t)+ o (@)’ +o(n™)

From (5.4) and (5.5) we obtain

(56) log Qi ;%) @O o+ OO fe, 1+ (3—6p)es)+ +4k )

Gty
+%{c4+(6—12p)c,.+(7—36p+36p2)cz}+o(n-l) :

Similar expansion for the binomial part is given in Chapter 2 of Take-
uchi [14]. Combining these two parts we can obtain the following re-
sult.

THEOREM 5.2. Let x be an integer and let z=(x—np+1/2)/Vn e
where p=p,(1) is fized and *=p(l—p)+c,.. Suppose that log Qir/v n)
can be expanded as (5.4). Then wunder suitable regularity conditions
(such as those given in A3 of Appendix)

67 Pr(S,5m)=00)—40) A @)+ 2 k)
a2 1— 1202 -1
+ B - L2 hl(z)}+o(n ),

where ¢=0' is the standard normal density, h, is the k-th Hermite poly-
nomial, and

a=p(1—p)(1—2p)+(3—6p)c;t+cs ,
a,=p(1—p)(1—6p+6p’)+c,+(6—12p)c;+(7—36p+36p%)c; .

We omit detail of the proof.
As in the Poisson case S, can converge to a distribution which can
be expanded around normal distribution in L®. As n—oo

(5.8 n~ 2 Li(np+2v/np(l—p); p)— [p(1—p)]* k() .
See A4 of Appendix. Now suppose that
n*?q,(k)/[p(L—p)I** — g*(k) .

Then as in the Poisson case we can take the formal limit in (3.6).
More precisely we can prove

THEOREM 5.3. Let p=p,(1) be fixred. Suppose that g*(k)=lim n*/*.
a,(k)/[p(1—D)]** exists for each k with 3] g*(k)}/k!<oo. Then
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(59)  lim Pr (S, <np+ovmpI—P)=0()—4(2) {5} LE 1, ,(x)} .

PrOOF. As in the Poisson case it suffices to show that the distri-
bution defined by the right hand side of (5.8) is uniquely determined
by its moments. This follows from Lemma 5.1 below because the dis-
tribution on the right hand side of (5.9) has the density

F@)=9(@) {1+ 5 ¢* (o)

which satisfies the condition of Lemma 5.1 and hence has the moment
generating function.

LEMMA 5.1. Let F be a distribution function over the real line with
a density function f such that S( fl¢)pde<oo. Then F has moment
generating function defined everywhere.

PrROOF. By Schwarz
S F@)eda< [S -y S e”/’f(:c)’dx] " oo

Remark 5.1. Theorem 5.3 is stated in terms of the distribution
function. If we take the formal limit of (8.5) instead of (8.6) we may
obtain the local central limit theorem. However it seems somewhat
difficult to state the condition for the convergence in a precise manner.
For example let S, be a binomial random variable and consider the
conditional distribution of S, given that S, be even: Pr(S,=2k|S, is
even). Clearly central limit theorem holds for this conditional distri-
bution, but local central limit theorem does not.

Finally we briefly look at the nonregular case, where the distribu-
tion of Z, approaches the normal but the moments of Z, diverge. Con-
sider the cumulant generating function (5.2) of Z, again. We only
need to consider real t. The sum of the first two terms of (5.2) con-
verges to the cumulant generating function of the normal distribution.
Therefore Z, converges to N(0, p(1—p)) in distribution if and only if
the third term converge to 0 for every real t. For the particular case
of p=1/2, it is easy to show that if ¢ is real then r of (5.5) is also
real and we have

(5.10) t=2v7 tan™! (z/2Vm) .

Therefore Z, converges to N(0, 1/4) in distribution if and only if Q,(iz/
Vn)—0 for every real r.
The following example illustrates this. Let the distribution of S,
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be the following mixture: with probability 1—1/n S, is distributed ac-
cording to the binomial distribution with parameters n and p=1/2 and
with probability 1/2n S, takes 0 or ». If the parameter P of the bi-
nomial distribution is considered as random, this corresponds to

Pr(P=0)=Pr(P=1)=__, Pr(P 2) 1->.

Therefore

1, k=0

(5.11)  qJk)=E(P—1/2)*= 0, k is odd
1

_ k is even and k=2.
2kn,

Hence n*’q,(k)— . However obviously S, converges to N(0, p(1—p))
in distribution. Now from (5.11) we obtain

[»/2]

It is not easy to see from this whether this Q, converges to 1. Another
expression of €, can be given as follows. Because Z, is a mixture of
binomial and two-point distributions

E(exp (0Z,)=(1—-) exp (— v p6)(1+p(exp (0/¥7) ~ 1))
+ (XD (VR [2)+exp (— 04T [2) -

Using (2.9) and (5.10) it is now straightforward to show that Q,(iz/vn)
can be written as

y n/2
Qn( }% ) =1——11;+%<1—%) * cos <2ﬁ arctan 2‘;%) .

Therefore Q,(iz/¥n ) converges to 1 for every real .
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Appendix

Al.
LEMMA Al. As m— oo and np—2

n~Ly(x; p)—Lyx; 2) .
PROOF. From the definition of the Krawtchouk polynomials
p(x;n, p+t)=p(x; n, p)(1+jz}; v L(x; :o)/j!) .

Therefore the generating function of the Krawtchouk polynomials is
given as

(A1) Gaﬂ(w;t)=%%ﬂ=(1+}f_)’( —Tj_p)

Hence the generating function of n~/L(x;n, p) is given as

G, t)= (1+;t§>’(1—_m_t_7))"" .

Similarly for Charlier polynomials the generating function is given by
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G x,t =_pﬂ;_1i'_t)_=e_g(1+i>z.
#(®, ?) oz; 1) 3

Now as n— oo and np— 1, G* converges to G,. Since G* and G, are
analytie, this proves the lemma.

A2.
LEMMA A2. Let Li(x; p)=p’(1—p)YLi(x; p). Then
(A2) Lj.=(@—np—jl—2p)L3+{i(G—1)p(1—p)—jnp(l—p) L7, .
PROOF. Let t=p(1—p)w in (Al) and differentiate G with respect
to w. Then
(1+(1—2p)0 —p(1—P)o) 22 = (@ —np—np(l~p)o)CG -

Equating the coefficient of «* we obtain (A2).

A3.

A possible regularity condition on the remainder term in (5.4) can
be given as follows:
(C1): There exist constants 0<c¢<z and M such that

|B(7)|= M|zf/n**

for all ||V ne.
The following additional condition covers the region v c<|z|<

v

(C2): There exists a nonnegative continuous function b(f) such that
b(t)<1 and

| E(e*“n)|<b(t/vn )"

for 0<|t|<V n x.
For discussion on these regularity conditions, see Chapter 2 of
Takeuchi [14] and Chapter 6 of Shimizu [11].

Ad.
LEMMA A4. As n—oo
(A3) 1 Li(np+avnp(1—p); p)— [p(1—p)] ™" hu() .
ProorF. For Hermite polynomials the generating function is given by
Gu(x, t)=e="1"",

The rest of the proof is entirely analogous to Lemma Al and we omit
the detail.



