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Summary

A random coefficient model in which means of random coefficients
are subject to a set of linear stochastic constraints is considered and
estimators for the means of coefficients are proposed. Their asymptotic
properties are presented and some remarks on efficiency are placed.

1. Introduction

This paper examines the problem of estimation in a random coef-
ficient model when means of random coefficients are subject to a set
of linear stochastic constraints. The proposed estimators may be use-
ful, for instance, in estimating the heritability coefficient encountered
in animal biology. The regression model commonly used for the pur-
pose of estimating the heritability coefficient assumes that the response
coefficient is fixed. Given the complex nature of biological mechanism,
the assumption of a fixed response coefficient appears both restrictive
and unreasonable. A more reasonable assumption would be to treat
the regression coefficient as randomly varying instead of fixed constant.
Also, since the heritability coefficient is expected to have a range of
zero to one half of one, an appropriate procedure in estimating this
coefficient would be to impose a linear stochastic restriction on the mean
of randomly varying response coefficient, (see Nigam, Srivastava, Jain
and Gopalan [2]). This framework may also have other applications in
medical, agriculture and social sciences.

The paper is organized as follows. In the following section the ran-
dom coefficient model under linear stochastic constraints is formulated.
Section 3 presents its estimators and properties. The final section con-
tains a brief summary and suggestion for further research.
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2. The random coefficient model under linear stochastic constraints

Following Hildreth and Houck [1], we may write the random co-
efficient model as

K

2.1) ﬂt=ﬂu+§a ZBix

such that

(2'2) ﬁik:ﬂk—*_wik (’i:l! 2:"', N; k=1) 2;“';K)

where y, is the ith observation on the variable to be explained, z, is
the ith observation on the kth explanatory variables and B, is the ran-
dom regression coefficient associated with it. The usual disturbance
term is assumed to be subsumed in the random intercept term 8,. We
shall assume that z’s are linearly independent fixed numbers. Further,
we shall assume that the random coefficient 8,’s are independently and
identically distributed with means 8,’s and variance ¢}’s such that:

E(0,)=0 for all < and &
2.3) o
gl for i=5 and k=FkK
E (wuc wjk')= L.
0 for 1% 7 andjfor k+Fk .

The random coefficient model under these specifications can be com-
pactly written as:

(2.4) y=Xp+u

where y is an Nx1 vector of observations on the variable to be ex-
plained, Xis an NXxK matrix of observations on K explanatory vari-
ables including the intercept term, 8 is a Kx1 vector of fixed means
for the randomly varying coefficients and » is an Nx1 vector of dis-
turbances.

It is easily verified that:

E (u)=0
E (uu')=6=diag. (011, 0z, -, Onw)

(2.5)

where
x 2 2
0u=0';+’§2 LixOx «

The problem of estimation in the random coefficient model (2.4)
when o¢?’s are unknown is well known and is documented, among other
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places, in the econometrics book by Raj and Ullah [6]. However, the
problem to be analysed in this paper is different since the mean regres-
sion vector B is subject to a set of linear stochastic constraints spe-
cified by

(2.6) r=RB+v

where r is a GX1 vector of known elements, R is a G X K matrix of full
row rank whose elements are known and » is a Gx1 vector of dis-
turbance terms reflecting the uncertainty about the prior restrictions.
The disturbance vector v is assumed to have mean vector 0 and vari-
ance-covariance matrix ¥, We shall further assume that disturbances
in (2.4) and (2.6) are uncorrelated. Specifically, we have assumed that:

@.7) E(w)=0, E@@)=¥, E®@uw)=0.

Once again, the problem of estimation in a fixed coefficient model
under linear stochastic constraints is well known and is documented in
Theil and Goldberger [10] among other places. See Srivastava and
Singh [9] and Srivastava [7], respectively, for a useful extension and
annotated bibliography on the mixed estimation procedure. The object
of this paper is to extend Theil and Goldberger’s mixed estimation
method to a situation where regression coefficients are randomly vary-
ing and the variances of random coefficients are not known.

3. Alternative estimation procedures and their properties

The random coefficient model (2.4) under the linear stochastic con-
straint (2.6) can be written as:

HEHANI

The mixed estimator (ME) of 8 in (8.1), which accounts for the
linear stochastic constraint (2.6) but ignores the randomness of regres-
sion coefficients in (2.4) is given as:

(3.2) f=(X'X+RT'R)(X'y+RT'r) .
The estimator § is unbiased and its variance-covariance matrix is
given by :
33)  E(@-HE-8Y=(X'X+RT'R)"
X(X'6X+RUTR)(X'X+RU'R)!.

The random mixed estimator (RME) of 8 in (3.1), which accounts for
randomness of coefficients and linear stochastic constraints, is given as:
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(3.4) B=(X'60"'X+RT 'Ry (X'6'y+RT 'r)

which is unbiased and its variance-covariance matrix is given below,
(3.5) E(F—B)(B—B)=(X'0"'X+RT'R)™.

From (3.3) and (3.5), it is easy to verify that § is more efficient

than 1§ Furthermore, we may note that the RME estimator (3.4) is
non-operational because the elements of diagonal matrix @ involve un-
known parameters, o¢i’s (k=1,2,--., K). An operational estimator of
B, which has the same distribution as the RME estimator 3 may be
obtained by replacing 6 in (8.4) by its consistent estimator. Below we
shall derive a number of consistent estimators of @, and corresponding
to each estimator of @ an operational RME estimator of 8 can be de-
fined. For this purpose, we observe that the ME estimator of the dis-
turbance vector % in model (3.1) is given as:

w=My— X(X'X+RT'R)"'RT'r
where
M=I,—-X(X'X+RYV'R)"'X'.
It is easily verified that
(3.6) E (@#)=0, E (aa")=MOM+D

where D=X(X'X+RT'R)'RT'R(X'X+R'T'R)"'X'. Now collecting
the diagonal terms from the variance-covariance matrix of @ as a col-
umn vector, we write,

8.7 E (@)=MXs+d

where d is a column vector formed by the diagonal elements of D, %
—a*u, M=M*M, X=X*X, (* denotes the Hadamard matrix product)

and ¢'=(d%, a3, - -, 0%).
Thus, we can express

(3.8) g=Go+e¢

where g=(i—d), G=MX and ¢ is an Nx1 disturbance vector with
mean vector 0 and variance-covariance matrix £.
The least squares (LS) estimator of ¢ in (3.7) is given as:

(3.9) 6=(G'G)"'G'g .

On the lines of Hildreth and Houck [1] it is easily shown that the
estimator (3.9) is consistent. Now we can utilize the elements of ¢ to

construct a consistent estimator & of @ from (2.5). Thus, an opera-
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tional random mixed estimator (ORME) corresponding to the consistent
estimator 6 may be defined as

(8.10) B=(X'6"'X+R'T-'R)(X'6'y+RT'r) .

Another estimator of ¢ may be defined by setting at zero the ul-
tradiagonal elements in the variance-covariance matrix 2 and applying
the weighted least squares (WLS) method to (3.8); thus we get the
following estimator:

(3.11) 5=[G'(I#2)"'GI"'G'(I:2) g .

Following Theil [11], it can be shown that the consistent estimator
o is more efficient than the LS estimator . Once again, the elements
of (8.11) may be utilized to produce another consistent estimator & of

6 from (2.5). Thus another ORME estimator of 8 corresponding to 6
is given by

(3.12) B:=(X'6"'X+R'T'R)"(X'6 'y +RT 7).

Finally, we may apply the generalized least squares (GLS) proce-
dure to (3.8) to obtain yet another consistent estimator & of o, where

(3.13) =(G'2'G)'G'2'g .

The estimator & can be shown to be more efficient than & and &; see
Raj [3].

An ORME of B corresponding to the consistent estimator (3.13) may
be defined as

(8.14) Bi=(X'6"'X+R'T-'R)(X'6~'y+RT'r)

where @ is a consistent estimator of  obtained by utilizing the ORME
estimates of ¢}’s from (3.13). The asymptotic variances of the elements
of jB; can be obtained from

(3.15) (X'6'X+R'T-'R)™" .

It may be noted that the LS estimator (8.9) is needed in the WLS
and GLS estimators of ¢ to operationalize them since they involve the
unknown #. We shall assume that it has been done.

Following Hildreth and Houck ([1], Sections 4 and 5) it is straight-
forward to show that all three estimators f;, 5, and B, of 8 are con-
sistent. Furthermore, in the first order sense, all the three estimators
are asymptotically equivalent to the best linear unbiased estimator §

of 8, and each ORME is more efficient than the ME estimator 3 of 8.
On the lines of Theil ([11], pp. 622-628) it is easily shown that the
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ultradiagonal elements of variance-covariance matrix £ of the ME re-
sidual vector # are of lower order of magnitude than its diagonal ele-
ments. Therefore, the WLS and GLS estimators ¢ and & are asymp-
totically equally efficient whereas the LS estimator ¢ is inefficient. It
might therefore appear that it is preferable to choose either the WLS

or the GLS estimators of & over the LS estimator & in deriving the
ORME of 3. However, in a large sample situation, there would be no
efficiency gain in utilizing either the GLS or WLS over LS estimator
of @ in selecting a suitable ORME of 8.

This result should not be surprising because all three estimators of
@ are consistent. Similar results were obtained by Raj and Srivastava
[5] in the context of random coefficient model without linear stochastic
constraints. The small sample efficiency rankings of alternatives ORMEs
could differ. In a simulation study on alternative random coefficient
models, Raj [3] has shown that for the sample of size 50 the opera-
tional GLS estimator of g, which utilizes GLS estimator of 6, is to be
prefered over other operational GLS estimators of 8, which utilize either
the WLS or LS estimator of #. Thus, we should expect that, in small
samples, the ORME j;, would be more efficient than either j, or j; esti-
mators in small samples.

It should also be noted that in defining each of the three ORMEs
for 3 we have utilized unrestricted estimators of o}’s, and these esti-
mates could sometimes be negative. An appealing solution to the prob-
lem of negative estimates of ¢} is either to use truncated estimates
of ¢2’s wherein negative estimates of ¢¥’s are replaced by zero or to
use restricted estimates of ¢2’s wherein estimators of ¢}’s are obtained
by optimizing an appropriate criterion function subject to the restric-
tions ¢2=0 for k=1,2,---, K. However, a restricted (or truncated)
operational estimator would be biased but more efficient than the cor-
responding unrestricted ORME, see Hildreth and Houck [1]. Further-
more, the use of a truncated or restricted estimator could complicate
(if not invalidate) the usual testing procedure. See Srivastava, Mishra
and Chaturvedi [8] for an alternative approach to ensuring almost non-
negativity in oi’s.

4. Concluding remarks

We have proposed three operational RME (or operational GLS) esti-
mators of B that are asymptotically equivalent to the best linear un-
biased estimator for 8. Based on the evidence in Raj [3], we can con-
clude that in small samples, estimator B, (which utilizes most efficient
estimators of ¢i’s), is most efficient estimator of g in the random co-
efficient model under linear stochastic constraints.
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In a similar situation it has been shown by Raj, Srivastava and
Upadhaya [6] that the variances of the operational GLS estimator of 8
obtained from the asymptotic moment matrix (3.15) would underesti-
mate its finite sample approximate moment matrix. Thus, a finite
sample approximation to the asymptotic moment matrix of limiting
distribution of the ORME j§; needs to be derived.
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