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Summary

We consider the problem of predicting the sth order statistic using
the lowest r order statistics from a large sample of size n» under the
assumption that the sample minimum, appropriately normalized, has a
non-degenerate limit distribution as m—oco. Assuming », s fixed and
n—oo we obtain asymptotically best linear unbiased as well as asymp-
totically best linear invariant predictors of the sth order statistic.

1. Introduction

The problem of predicting future order statistics based on a few
observed order statistics has received a great deal of attention in life
data analysis literature for quite some time (see, e.g., Nelson [12]).
Most of the papers have used the finite sample theory and handled the
problem for each family of distributions separately. Kaminsky and
Nelson [8] have used the asymptotic theory for the sample quantiles
in developing asymptotically best linear unbiased predictors (ABLUP)
for order statistics. In this paper we obtain ABLUP and asymptoti-
cally best linear invariant predictors (ABLIP) based on extreme value
theory. ;

Let X,..=X,,<---=X,. be the order statistics from a random
sample from a distribution with distribution function (df) F. Based on
Xims ey Xpmy Wwe would like to predict X,., where r and s are small
compared to n. Such a situation arises when the manufacturer of a
certain product would like to predict the failure times of the products
with the warranty period after observing the first few failures. For
example, suppose a car is sold with a five year warranty on certain
parts. After a year or two of the model year, the manufacturer would
have data on the failure times of the parts failed by that time. The
number of failures would be small compared to the number of cars sold.

Key words: Extreme-value distributions, best linear unbiased predictor, best linear in-
variant predictor.
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Based on this data, he would like to predict the times of the next
several failures. This would assist in estimating the cost associated
with warranty as well as inventory requirements.

Suppose X;.., appropriately normalized, converges in law to a non-
degenerate distribution with df G; that is there exist constants ¢, and
d,>0 such that

(1) P (Xin—e,)/d = x)=1—F"(c,+d,2)>G() ,

as n—oo for all x in the support of G. If this happens we write Fe
D(G). From Gnedenko [4] it is known that G can be one of the fol-
lowing df’s (up to location and scale parameters)

1—exp(—(—2)"™), <0, a>0
Ll,a(w):{
1 ’ x;O
1—exp(—2%), x>0, a>0
(2) LZ,a(x)={
0, <0
Lyx)= 1—exp(—exp(x)), —oco<x<o0.

The norming constants ¢, and d, depend on F' and G, and are avail-
able, for example in Galambos ([3], pp. 56-57). (The constant d, in
the L,, case should be the negative of the value given by (29) on page
56 of his book.) In the L,, case, ¢,=0 whereas in the other two cases
it is nonzero. If (1) holds then the limiting distribution of (X,..,—e¢,)/d,
is that of T,, the kth upper record value from the df G (see, e.g.,
Nagaraja [11]). Hence X,.,, X;..,---, X,., behave approximately as the
first » upper record values from the df G(p+ox) with g=c¢, and ¢=d,,
if n is large. Thus the problem now reduces to predicting the sth
upper record value using the first » record values from a location and
scale parameter family if G is L,, or L;, and from a scale parameter
family if G is L,,. Weissman [14] has considered the estimation of
norming constants for upper extremes and used the same in the esti-
mation of large quantiles. Ahsanullah [1] has considered the linear
prediction problem for exponential distribution; that is for L,,.

2. Asymptotic covariance structure of extreme order statistics

The following lemma gives the representation for limiting extreme
order statistics, that is for X,., as n— oo if (1) holds. It is useful in
the computation of the first two moments of limiting extreme order
statisties.

LEMMA 1. Let Z’s be independent standard exponential random
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variables and v be Euler’s constant (0.5772.-.). Then the T\’s, the up-
per record values from G(p+oax), have the following representation :

(32) Tiu+o( HA-Z)i-r+357) if G=L
(3b) T2 uto(3 2)" if G=L,
3¢) T,,_i_p——a(é Z,)'”" if G=L,..

Here < stands for the equality of distribution and ) j-=0.
j=1

PrOOF. Relation (3a) follows from Hall [6] and the remaining two
follow from Nagaraja [11].

Let ¢;=E(T\) and v,,=Cov (T;, T;). The following lemma exhibits
these constants when G is one of the distributions in (2).

LEMMA 2. For positive integers © and j with 1<7,

da)  a=S1"—7 and w=330",  if G=L

(4b) a,=I'(i+9)/I'(?) and vy=a[{I'(F+20)/[I'(j+3)}—a,],
where 3=a™* and G=L,,

(de)  @=T(G—0)(G) and vy,=a[{l'(G—28)T(G—3)}—a,],
where d=a~'<min (v, j/2) of G=L,,,.

Proor. Since E (Z;)=1 and Var (Z,)=1 and Zs are all mutually
independent, (4a) follows directly from (3a). In the L,, case, since

Usi Z, is a Gamma (1,t) variable, o;=EU’=I"(1+0)/'(). Further
l=1
v,;=E (zi_‘, Zl>a<lé ZL)J—aia, and the first term on the right side is
=1 =1
EUYU+Y) where Y= ﬁ Z, is Gamma (1, j—1) and U and Y are in-

l=i+1
dependent. Hence the first term is

co (“oo s 5 e'-uul-l —y y(j—i)—l dud
|, | vy e e dudy

=—I:§—f(“;T")E (U*+Y)  where U* is Gamma (1, i+9)
=q, E (W?) where W is Gamma (1, j+9)
=a,l"(j+20)/I'(§+3) .
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Hence (4b) follows. The relation (4c) follows similarly. Existence of
v;; in this case requires that d<min (¢, j/2) so that the gamma func-
tions involved are convergent.

In view of Lemma 2 it is clear that existence of V¥, the covariance
matrix of T’s, when G=L,, requires that «>2. However in all the
three cases we have for 1<j, v,;=ab;. The following lemma, which
has been known for quite some time (see, e.g., Greenberg and Sarhan
[5], p. 757), exhibits V! for such a matrix V.

LEMMA 3. Let V=(v;;) be an rXr momsingular matriz with v,,=
ab;, 1=j. Then v¥, the (3, j)th element of V' is given by

Qip1bi 1 —@;_1biyy

(@Dei— b)) @iy ibi—birr) i=j=2to r—1

—(apibi—abi )™, j=14+1 and i=1 to r—1
(5) Y= aafa(0sh; —asb,) i=j=1

b,_i/b(@;b,—a,_b,), i=j=r

0, li—j|>1.

and P = giGHD,

The lemma follows by the direct manipulation of the fact that
Vv-i=L

Remarks. (1) Lemma 3 shows that the elements of V! are well
defined if and only if @, and b, are nonzero and ab, ,#a, b, for 1=2
to ». Hence this serves as a necessary and sufficient condition for the
nonsingularity of V. This is satisfied for V where the v,’s are given

by (da—c).

(2) Let &'=(v, v+, v,,) for s=7. Then if v,;=ab,, 1<j and V=
(v4)rxr is nonsingular, ¥ '=(0,0,---,0, b,/b,). This is because @' is
(b,/b,) times the last row of V. Kaminsky and Nelson [8] note that
(6) o'V1=(0,0,---,0,q)

where ¢=v,,/v,, for i=1 to r, for order statistics themselves if the
standardized df F belongs to the family containing exponential, power
function and Pareto, and the negative versions of these distributions.
Our discussion shows that (6) holds for the ‘limiting’ order statistics
from any parent distribution provided the limit distributions exist; or
in other words, it holds for upper record values from L,,, L,, and L.
We now give a necessary and sufficient condition for a covariance
matrix V to have v,,=ab;, ©<7 in terms of a general version of (6).
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LEMMA 4. Let Y,, 1=i<n be n random variables with v,;=Cov
(Y., Y;). Let V. be the covariance matriz of Y, 1=i<k and @,=(vy,
Vaer* **y Viorn).  Assume that V' exists. Then v =ab,, 1Si<jsn if
and only if

( 7) a)l,c-HVk_l:(Ov O’ R} 01 bk+1/bk) ’ 1§k§n—1 .

ProoF. The fact that v,,=a;b; implies (7) follows from remark (2)
above. To prove the converse, note that (7) implies that w},,V;'V.=
@1 =(be11/00) (Vigy Vogy* -+, Vix), 1Sk<n—1. Putting k=1, we have v,=
(bofby)vy; k=2 yields (v, vis)=bsb:'(v1s, V2s) = (Bsbi 'vyy, bsbi'ves) and in gen-
eral

(vl,k+1!' ) ’Ulc,k+1)=< bk“ Dy h’l)zzy‘ *y bk“ ’U,,;,) ) 1§k§’n——1 .
bl bz bk

Now defining a,=v,b;* it follows that v,,=ab, for i<j.

3. General theory of linear prediction

In this section we enumerate results of interest from the general
theory of linear estimation and prediction in location and scale families.
Let X'=(T\, Ty, -+, T,) denote the vector of first » record values from a
df G(p¢+ox). Then E (X)=pl+oa where 1'=(1,1,---,1) and a'=(a,,
+o+,a,) with a,=E {(T,—pg)/s}. Let ¢V be the covariance matrix of
the Ts. Then (see, for example David [2], p. 130) the best linear
unbiased estimates (BLUE) of g and ¢ are given by g=—a'V-'(la'—
al)V'X/4 and ¢=1'V'(la’'—al’)V'X/4 where 4=(1'V'1)(a'V 'a)—
(1'V-'a)’. Further Var (g)=d’a’'V~'a/d, Var (6)=6"1'V~'1/4 and Cov (,
0)=—d1'V%'a/4. If &'=(vy, vy, +, v,), Where v,;=0*Cov (T, T,), then

the BLUP of T, is (see, e.g., Kaminsky and Nelson [8], p. 146)

T.=p+as+a'Vi(X—jl—ba)
and the BLIP of T, is (see, Kaminsky, Mann and Nelson [7], p. 525)
T,=T,— {Cu/(1+C)} &
where
Cyo*=Cov {5, 1—a@'V'1)i+(a,—@'V'a)d} ,  Cus*=Var (s).

Kaminsky and Nelson [9] note that Watson’s [13] result implies that
@'V (X—pl—oa)=0 if and only if @ is in the column space of (1, a).
From (4a-c) it follows that @'=b,1’' in the L, case and @'=b,a’ in the
remaining two cases. However when G=L,, we have only a scale
parameter family and hence the prediction problem is simpler. Hence
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we have

(8) T, =p+asé

when G=L; or L,,. Also since @'V'=(0,0,---,0,b,/b,) we have
(9) T.=T,— {Cul(1+Cu)}é

where

Co={(a,—ba,b; )1’V 1 —(1—-bb;)1'V'a} /4, Cup=1'V'1)/4.

Further, with Cy,0=Var {(1—b,b;")p+(a,—b,a,b;')s},
(10) M(T)=E (T,—T.)'=0"(v,,— @'V '@+Cy) = o¥at;b,— a,bb;* +Cy,)
and

M(T)=M(T)— {CLi(1+Cu)lo* .
o In the L,, case d=(a'V'X)/(@a'V'a) (see Lloyd [10], p. 25) and
TJ_OV!{;’e. consider the detailed discussion of the three cases one by one
in the next section.

4. Detailed discussion
Case (i) G=L;

Here a;=1, 'vijzb,=il“z and a;=S;—y where Siziil“, 1=2 and

l=j l=1
S;=0. From these, one obtains 1'V'=(0, 0,---, 0, b;!), @'V '=(-1,---,
—1, a,b;'4+(r—1)), @' V'a=aib;'+(r—1), 1'V'a=a,b;!, 1'V-'1=b;' and
consequently 4=(r—1)b;'. These, on substitution yield g=T,1+7r—S,)
+(S,—7)T._, and 6=T,—T,_, where T = T./(r—1). This fact also
i=1

follows from the work of Weissman [14] on upper extremes where he
essentially shows that g and ¢ are in fact minimum variance unbiased
estimators of 4 and o respectively.

Now from (8) the BLUP of T, is given by T,=T,+(S,—S,)(T,—
T._). Since Cp/(1+Cy)=(a;—a,)/r=(S,—8,)/r, on simplification, the
BLIP of T, reduces to T,=T,+ {(r—1)/r}(S,—S,)(T,—T,_,). Also one
obtains M(T,):az(b,—b,-i—(S,—S,)Z('r—1)‘1) and M(T,)=d%b,—b,+(S,—S,)*
-r7!) so that the improvement in the mean square error (MSE) is (S,
—S)}r(r—1).

Case (ii) G=L,,
In this case the additional parameter 4 (=a™') complicates the prob-
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lem. First we consider the case where 4 is unknown and show that
no linear unbiased estimates (LUE) of the parameters exist. Then we
obtain the predictors using the discussion of the preceding section,
when 8 is known.

LEMMA 5. If 3 is unknown no LUE of p or ¢ or 3 exists.

PrROOF. From the representation in (3b) and the fact E(Z,+ .-+
Z)=I'(k+3)/I'(k) we have

EX lka)zy ShtoeX lkr(k+a)/r(k) .

Hence for 11T, to be unbiased for p, we should have >l.=1 and
S LT (k+0)/T'(k)=0 for all 3. The latter equation can be written as

11) 5_‘, md@+1)--(3+k—1)=0  for all 3>0

where m,=l,/I'(k), since I'(3) is nonzero. The equation (11) being an
rth degree polynomial equation, more than r solutions imply that each
m,=0. This in turn implies that I,=0 for all k. This contradicts the
fact that 3 [,=1. Hence no LUE of p exists.

Now for 31, T, to be unbiased for s, one should have >}1,=0 and

(12) S LI(k+9)/T(k)=1 for 4>0.
Using (12) with 8 and 6*=d+1, on substraction one obtains

r I'(k+38+1) I'(k+3)) _
l —1 = for all 3>0.
> {k T T 0 or all 3>

That is

Lr+o+1) =y o Tk+3+1) _; IT'(1+9d) _
L, o) +3 Ge—be) T L %0 0.

In other words rzﬂm}"F (7+0)=0 for all 3>0. Now proceeding as be-
=1

fore one obtains m*=0, j=1 to r+1. This used sequentially, would
give [,=0 for all j=1 to », contradicting (12). That is, a LUE of ¢
does not exist. Note that in claiming this we did not use the fact
that 3)0,=0; hence whether g is known or not a LUE of ¢ does not
exist.

Similarly one can show that no LUE of 4 exists even if ¢ and ¢
are known.

If 8 is known, BLUE’s of g and ¢ can be obtained using the gen-
eral discussion considered earlier. Substantial simplification is possible
since v;;=a;b;, 1<j where a,=I'(:+9)/I'(¢) and b,=I(5+23)/'(§+3)—a,.
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On simplification one obtains 4=a,(1'V"1)/b,—b;%, p={—(T,/b,)+a, 1’V

-X}/b,4 and ¢={1'V1)T,—1'V'X}/b,d where the elements of V!
can be obtained using (5). In fact

vi= LW 1G4 arp(i—1)(i—1+20)], 2<i<r—1

I'(1+208)d*
PIAFD — U+ — F('i'l‘l)(i"‘a) 1<isr—-1,
3T'(i+423) ==
,vll:_ (1+a)2 M br—l(r_1+a)r(r)
3ra+2e) ’ b0 (r—1+29)

and v"=0 otherwise.

Now T‘,:il"—as& and T,: T,'—{Clg/(1+Cn)}a' where Cm and ng are
as given in (9) with 1'V-'a=b;!. Further the MSE’s are given by (10)
with

e G K i w U w [l I

To illustrate the application of these formulas, some computation was
carried out and the results are recorded below. The following tables
give the coefficients of the T,’s for predicting T, by T, and T, as well
as M(T)/o* and M(T.)/s*. Table 1 gives these values for r=5, s=6,7,
10 and Table 2 gives the coefficients and the MSE’s for r=10, s=11,
12, 15. The last two rows give the coefficients of T,’s for the BLUE’s
of x and o respectively. Both the tables restrict their attention to
0=0.5 and 1.5 only. The case where d=1 has been handled earlier by
Ahsanullah [1] when he considered the linear prediction of record values
in the two-parameter exponential distribution. So when d=1, g=(rT,

—T)/(r=1), =(T,—T)/(r—1), T,=((s—1)T,—(—r)T)/(r-1), T,=(sT,
—(s—n)T)/r, M(T,)=oz(s——r)(s—1)/(r—1) and M(T,)=d's(s—7)/r.

Case (iii)) G=L,,,

In this set-up we have a scale parameter family with parameters
o(=d,) and d(=a™). As in the L,, case, one can show that no LUE
exists either for ¢ or for 4 when 4 is unknown. If 8 is known, o=
T.le, and T_,:a,,T,/a, where a,=—TI'(j—93)/I'(§). Note that even though
application of the general theory requires that «>2 or 4<1/2, for the
finite variance of ¢ one needs only 3<r/2. Hence these formulas can
be used as long as 3<r/2. However note that in order to use these
we should have T,<0 since the support of L,, is (—oo, 0)!
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5. Examples

1. Suppose we are observing life data following a normal distri-
bution. From a large random sample of size m, we have observed the
first » failures X,.,,---, X,.. and would like to predict X,.,. If n is
large compared to s, we can use the formulas derived in the last sec-

tion. Since the normal distribution is in 9(L;), the ABLUP of X,., is X,m

= r:n+(St_Sr)(Xr:n_)_(r—1) and the ABLIP of D, is X::n::er'i’ {(/’-_

1)/r}(S,—S,)(X,..—X,_,) where S,=3 471, and X,_, is the mean of the
ji=1

first (r—1) order statistics. One can also estimate the mean square
errors of prediction by using & as an estimate of ¢. These formulas
remain the same for any distribution in" 9(L;). The lognormal distri-
bution which is used quite often as a model in life data is one example.

2. The Weibull, gamma and beta distributions, used extensively
in life testing and reliability problems, are in 9(L,,). For these dis-
tributions, ¢,=p, the threshold parameter and «, the shape parameter.
Recently Weissman [15] has obtained confidence intervals for px using
asymptotic theory. Our discussion in the last section gives g, asymp-

Table 1. The coefficients of 73's when r=5

i 0=0.5

Predictor/ !
estimator 1 2 8 4 5 MSE/a",
T —.1440 —.0240 —.0160 —.0120 1.1960 .0548

Ts —.1194 —.0199 —.0133 —.0010 1.1626 .0532

Ty —.2760 —.0460 —.0307 —.0230 1.3757 .1180

T, —.2297 —.0383 —.0255 —.0191 1.3126 .1123

T —.6220 —.1037 —.0691 —.0518 1.8466 .3420

T —.5212 —.0869 —.0579 —.0434 1.7094 .3151

Ji 1.4400 .2400 .1600 .1200 —.9600 .4800

& —.6603 —.1100 —.0734 —.0550 .8987 .1521

5=1.5

Ts —.3571 .0179 .0071 .0036 1.3286 19.2857

Te —.2692 .0135 .0054 .0027 1.2477 18.1172

T —.7440 .0372 .0149 .0074 1.6845 52.2054

Ty — .5564 .0278 .0111 .0056 1.5119 46.8819

T —2.0640 .1032 .0413 .0206 2.8988 | 262.2638

T —1.5159 .0758 .0303 .0152 2.3946 | 216.8445

i 1.1905 —.0595 —.0238 —.0119 —.0952 4.2857

P —.0992 .0050 .0020 .0010 .0913 .4893
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totically BLUE (ABLUE) of p as well as ABLUP and ABLIP of X,.,.
One can use the coefficients of the T.’s given in Tables 1 and 2 as the
coefficients of X, ,’s for this purpose. One can also estimate M(T,) and

M(T,) by replacing ¢ by &, the ABLUE of o. The last column in the
tables give MSE/s®* and ¢ can be obtained using the coefficients given
in the tables once the sample data is known. These coefficients remain

the same for any distribution in 9(L,,) where a is known.

Table 2. The coefficients of 7i’s when r=10

i 8=0.5
Predictor/ 1 2 3 4 5

estimator (6) (7) (8) (9) (10) MSE/¢g?

Tu —.0530 —.0088 —.0059 —.0044 —.0035 .0259
(—.0029) | (—.0025) | (—.0022) | (—.0020) (1.0853)

Tu —.0488 —.0081 —.0054 —.0041 —.0033 .0257
(—.0027) | (—.0023) | (—.0020) | (—.0018) (1.0785)

Tie —.1036 —.0173 —.0115 —.0086 —.0069 .0534
(—.0058) | (—.0049) | (—.0043) | (—.0038) (1.1668)

Tz —.0954 —.0159 —.0106 —.0080 —.0064 .0528
(—.0053) | (—.0045) | (—.0040) | (—.0035) (1.1536)

Tis —.2438 —.0406 —.0271 —.0203 —.0163 .1441
(—.0135) | (—.0116) | (—.0102) | (—.0090) (1.3924)

T1s —.2250 —.0375 —.0250 —.0187 —.0150 .1408
(—.0125) | (—.0107) | (—.0094) | (—.0083) (1.3621)

£ 1.0605 .1767 .1178 .0884 .0707 .3535
(.0589) (.0505) (.0442) (.0393) | (—.7070)

& —.3396 —.0566 —.0377 —.0283 —.0226 .0615
(—.0189) | (—.0162) | (—.0141) | (—.0126) (.5466)

5=1.5

Tu —.1698 .0085 .0034 .0017 .0010 29.7917
(.0006) (.0004) (.0003) (.0002) (1.1537)

Tu —.1472 .0074 .0029 .0015 .0008 29.2638
(.0005) (.0004) (.0002) (.0002) (1.1332)

T —.3472 .0174 .0069 .0035 .0020 70.6449
(.0012) (.0008) (.0006) (.0004) 1.3144

T —.3002 .0150 .0060 .0030 .0017 68.3590
(.0011) (.0007) (.0005) (.0004) (1.2718)

Tis —.9229 .0461 .0185 .0092 .0053 | 273.4775
(.0033) (.0022) (.0015) (.0011) 1.8356

Tis —.7926 .0396 .0159 .0079 .0045 | 255.9214
(.0028) (.0019) (.0013) (.0010) (1.7176)

A 1.1317 —.0566 —.0226 —.0113 —.0065 4.0741
(—.0040) | (—.0027) | (—.0019) | (—.0014) | (—.0247)

& —.0345 .0017 .0007 .0003 .0002 .2314
(.0001) (.0001) (.0001) (.0000) (.0312)
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