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Summary

The usual Bayes-Stein shrinkages of maximum likelihood estimates
towards a common value may be refined by taking fuller account of
the locations of the individual observations. Under a Bayesian formu-
lation, the types of shrinkages depend critically upon the nature of the
common distribution assumed for the parameters at the second stage
of the prior model. In the present paper this distribution is estimated
empirically from the data, permitting the data to determine the nature
of the shrinkages. For example, when the observations are located in
two or more clearly distinct groups, the maximum likelihood estimates
are roughly speaking constrained towards common values within each
group. The method also detects outliers; an extreme observation will
either be regarded as an outlier and not substantially adjusted towards
the other observations, or it will be rejected as an outlier, in which
case a more radical adjustment takes place. The method is appropriate
for a wide range of sampling distributions and may also be viewed as
an alternative to standard multiple comparisons, cluster analysis, and
nonparametric kernel methods.

1. Introduction

Consider observations x,,:--, 2, which are independent, given re-
spective parameters 6y,---, 0, and where x, possesses density, or prob-
ability mass function fi(x;;0,) for x,€ X and 6,€86, for i=1,...,m.
Suppose further that the 6, are a priori exchangeable and that they
possess the prior probability structure of a random sample from a
distribution with density g(6,).

Most Bayesian simultaneous estimation methods (e.g. Leonard [8],
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Lindley and Smith [10], and Clevenson and Zidek [1], for binomial,
normal, and Poisson situations) take the density g to belong to a pa-
rametrized family, and then introduce second stage distributional as-
sumptions about the parameters of g. The choice of g very often in-
volves a unimodal density with thin tails (e.g. normal or Gamma).
These choices typically lead to posterior estimates of the ¢, which shrink
the x, towards a common value (e.g. zero, the prior mean, or the aver-
age observation) thus providing Bayesian analogues of frequentist pro-
cedures (e.g. James and Stein [6], and Efron and Morris [3]).

Whilst the previous choices of prior will be adequate in numerous
situations, shrinkages towards a common value may be less appropriate
in cases where g does not assume such an idealized form. For example,
Dawid [2] investigates prior densities with thicker tails than the normal
and shows that it is then unreasonable to shrink in extreme observa-
tions as radically as suggested by an analysis based upon a normal
prior. Alternatively, g might possess more than one mode in which
case fairly complex shrinkages might be involved.

In the present paper we relax previous assumptions involving thin-
tailed unimodal densities and indeed proceed to the other extreme by
supposing that the statistician possesses absolutely no prior information
about the density g. Our motivation is to investigate the shrinkages
which are actually suggested by the data, rather than imposed by
particular functional forms assumed for g. If there were some partial
information about g then this could be introduced via the method pro-
posed by Leonard [9] for smoothing densities; this aspect will not how-
ever be considered in this paper.

We will explore the consequences of estimating g empirically from
the data. Readily computable estimates will be obtained which avoid
problems of specifying the tail-behaviour, modality, and general shape
of g.

Laird [7] and Lindsay [11], [12], [13] investigate the theoretical
properties of the maximum likelihood estimate of g, obtained by max-
imizing the log-likelihood functional

(L1 Lg=3log | fi@:; 0)g(0)as .
Lindsay [11] shows, under general conditions, that the maximum likeli-

hood estimate of g is a discrete mixture of Kronecker-delta functions
of the form

(1.2) 7*(0)= 3] 4,0,(0)

where 31 ¢;,=1, with p<m, and 3,(6) denotes the Kronecker-delta func-
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tion at §=b>,. Laird proposes a fairly complex scheme based on the EM
algorithm for estimating ¢,,---, ¢, conditional upon a specified p. The
optimal p may then be ascertained by comparing the log-likelihoods in
(1.1) for different p. This iterative scheme will definitely converge,
due to general properties of the EM algorithm. There is, however, no
guarantee that convergence will be quick. Indeed, when these are a
large number of terms in the mixture, or when the specified p is in
contradiction to the values suggested by the data, the iterations could
become quite tedious. It is moreover necessary to complete the itera-
tions for each value of p.

In the next section a computational shortcut is deseribed which
will be appropriate whenever the optimal p is small compared with m.
This shortcut will avoid the possibly tedious iterations on the mixing
probabilities, and will also estimate the optimal p during a single set
of iterations on some location parameters. The numerical solution will
provide the maximum likelihood estimates of p and ¢,,---, ¢, but when
é1,++, ¢, are constrained to be integer multiples of m™'. This restric-
tion on the parameter space leads in practice in much more rapid con-
vergence of the maximum likelihood iterations. The general idea is
to replace (1.2) by an equiprobable mixture, with m possibly different
locations, and then to estimate these locations by maximum likelihood.
The estimated locations will in practice cluster into several subsets,
with equal estimates within each subset. The number of such subsets
will then estimate p and the proportions of estimates in the various
subsets will estimate ¢,,---, ¢,. This idea provides an alternative to a
large literature of procedures following the (non-parametric) empirical
Bayes philosophy. Previous work is well-catalogued by Laird and in-
cludes the pioneering work of H. Robbins, most importantly Robbins [15].

2. The empirical estimation of the prior density

Consider the limiting situation where the sampling variation in each
of the fi(x;]0;) distributions approach zero, so that the 6, become ef-

fectively known and equal to their maximum likelihood estimates 6,.
In this limiting case the maximum likelihood estimate of g(@) is

2.1) §(6)=m"! ﬁ 3 (0)=m™ i 3%,0) (0¢8).

This motivates us to consider, in general, estimates for g which take
the form

(2.2) §0)=m310,(0) (0¢86),
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but where a,,---, a, are now arbitrary points to be estimated from the
data. We anticipate that, when the first-stage sampling variation is

reintroduced, this will cause the a, to adjust the 6, by reducing their

overall spread, and hence cause a sort of Stein-effect on the 6,. Sub-
stituting the function in (2.2) for g in (1.1) provides us with the log-

likelihood of ay,-:-, a,, which is given by
2.3) L(a):é}1 log éf}(mi, a,)—m log m .

The a; will be estimated by maximizing the function in (2.3). The
optimizing values could be interpreted as hypothetical observations from
the distribution g roughly speaking equal in information content about
g to the information about g contained in the log-likelihood functional
(1.1). Note that in all the numerical examples we have considered,
the optimal values for a,,---, a, will become concentrated at a smaller
number of estimated points, say b,,---,b,. The prior probability ¢, at-
tached to point b, should then be estimated by

(2.4) 9(b)=%as; a;=b)/m  (j=1,---,p).

This yields a discrete distribution, of the form described in (1.2), which
assigns estimated probabilities to p estimated points, where p is also
obtained empirically. We anticipate that it will often be close in nu-
merical terms to the unrestricted maximum likelihood estimate proposed
by Laird. Differentiating the function in (2.3) with respect to a, gives
us, after some rearrangement

(2.5) %=2 p, 2log fulzi; ) logfgfi? @ g=1,...,m)
where

(2.6) Pi=Au/3 A

with

(2.7) Au=flz; a) .

Note that, when a,,---, @, are unequal, the expression in (2.6) is just
the posterior probability that 6,=a,, under the prior distribution in
(2.1). Therefore, solving the maximum likelihood equations for the a,
also gives us empirical estimates for the entire posterior distribution
for each 4, for ¢=1,---, m; so that posterior estimates may also be
obtained for the 6, Equating the derivatives in (2.3) to zero yields
a set of equations which may in general be solved by any standard
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iterative procedure (e.g. Newton-Raphson). However, the computations
turn out to be particularly simple in a variety of special cases.

(a) Exponential family of sampling distributions
When the sampling densities f; assume the forms

(2.8) fi(x:; 0,)=exp {B(6;)+t(x,)C(6:)+ D(x,)}
for appropriate choices of the functions B, C, D, and ¢, then the maxi-
mum likelihood equations for the a, are

(2.9) _B(l)(al) =§‘_, t(a};)P”/ié1 P, (l=1,..--,m)

where the P,, are defined in (2.6). Equations (2.9) may be solved by

substituting trial values (initially the values 51) for the a, in the right-
hand sides, transforming the left-hand sides into fresh values for the
a, and then cycling until convergence. For example, when the z, pos-
sess Poisson distributions with respective means 6,, we have,

(2.10) a;=§l x‘P”/E P,

demonstrating that each a, takes the form of a weighted average of
%+, . This provides an alternative to the procedure described by
Simar [17] for mixtures of Poisson distributions. The iterations for
for a,,---,a, described in this section could also be justified via the
EM algorithm, under the constraint in (2.2), by regarding x,,---, x, as
incomplete data and 4,,---, 6, as missing values. Therefore conver-
gence is guaranteed. Since no iterations are required on the mixing
probabilities, convergence is usually very rapid.

(b) Binomial distributions with unequal sample size

If the x, are independent and possess binomial distributions, given
the corresponding probabilities 6, and sample sizes n; then the maxi-
mum likelihood equations for the a, are given by

(2.11) az=§1 xiPu/iZJl Py
where we may take the A, in the expression for P, in (2.6) to satisfy

(2.12) A“ :afi(l—al)"i_zi

since the functional contributions to the sampling distribution cancel
themselves out. Note that —2log A, takes the form of a distance
measure between x;/n;, and a,, Hence a, in (2.11) will depend more
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heavily upon those x;/n; nearby then on outlying «,/n;, This creates
a mechanism enabling a,,---,a, to take full account of the random
variability in z,,---, @,.

(¢) Normal observations with unknown variance

Suppose now that for :=1,..., m and j=1,---, n,; the observations
x,, are independent and normally distributed with respective group
means 6, and common variance ¢*. Then ¢* may be estimated jointly
with the prior values a, by solving the joint maximum likelihood equa-
tions

(2.13) = jf_i: 0Py é} mPy  (=1,+-,m)
and

(2.14) *=N-18+ N~ ﬁ " % (F:—a,)'Pas
where

and the P, are defined in (2.6), with
(2.15) A, =exp —%nia-z@—ak)2 .

Equations (2.13) and (2.14) may be solved by combining the iterations
recommended in (a), for fixed o%, with simple cyclic substitutions on o*
The above procedure may be employed in either the Model I or Model
II ANOVA situations since our assumptions relate either to an exchange-
ability model for fixed effects, or a random effects model. Note that
the classical F-test for equality of the means may be replaced by an
inspection as to whether or not all the estimated a, are equal; ¢-tests
for individual differences may be avoided by comparing the posterior
means discussed in the next section.

3. Posterior estimation of the sampling parameters

Once the iterations have been completed for the a, and P,;, the
parameters 6,,---, 6, may be estimated (e.g. by their empirical poste-
rior means)

3.1) k=i a, Py, (k=1,---,m).
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For example, in the normal situation in section (2c) we have

3.2) 5}::;1 T, ?"1:1 szPu/?‘.::l n,Py
which can be arranged in the form of a weighted average of Z,,:: -, Z,.

Again, as —2log A,;,, from (2.15), is a distance measure between Z; and
a;, the posterior mean in (3.2) will take more account of z,’s which are
close to Z, rather than those which are some distance away. We sug-
gest that (3.2) will in many practical situations be preferable to the
James-Stein estimator, as far as meaningful statistical interpretations
are concerned since it does not shrink all the %; irrevocably towards a
common value without taking into account the statistical scatter of the
data.

4, Numerical examples

The data in Table 1 relate to the males and females on 10 differ-
ent courses, and were previously analyzed by Leonard [8] using a Bayes-
Stein estimation technique for binomial data.

Table 1. Classification of students according to sex and course

% of Bayes-

Course Female Male Females Stein Empirical
1 42 47 47.2 4.4 44.0
2 32 40 44.4 41.6 44.0
3 45 57 4.1 42.1 4.0
4 10 16 38.5 34.5 43.2
5 7 20 25.9 26.7 21.1
6 3 12 20.0 24.1 18.2
7 3 13 18.8 23.6 17.3
8 5 22 18.5 22.3 15.7
9 12 72 14.3 16.9 15.7

10 11 84 11.6 14.5 15.3

The rows of the table were not originally arranged according to the
values of the percentages; the present ordering is intended simply for
ease of presentation. The Bayes-Stein estimates in the fifth column
shrink each observed proportion towards an average value of 28.0 The
amounts of shrinkage vary according to sample size and according to
distance from the average value when measured on logistic scale. Ap-
plication of our empirical method in Section 2b yielded an estimated
common prior distribution for the binomial probabilities. This assigned
prior probabilities 4/10 and 6/10 to the values 0.440 and 0.153. We see
from the last column of Table 1 that our empirical procedure has dis-
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cerned that the observed percentages lie in two clearly distinct groups.
It has moreover decided that the fourth percentage lies in the first
group, and therefore pulls the 38.5 value right up to 43.2, in the op-
posite direction than the radical shrinkage to 84.5 which was suggested
by James-Stein. The first three percentages are regarded as equal with
the fourth percentage just a small distance away. The second group
of six percentages causes shrinkages for the first five which are all
opposite in direction to that suggested by Bayes-Stein. Percentage
number 5 is slightly unwilling to join the group, because of possible
inclinations to either join the first group or to stay on its own. Overall
the differences from James-Stein are quite remarkable.

We also reanalyzed the famous baseball batting example introduced
by Efron and Morris [56]. Again, the common prior distribution was esti-
mated by a two-point discrete distribution, but this time the two points
were close enough together to retain Bayes-Stein type shrinkages towards
a common value. Interestingly our posterior means were virtually iden-
tical to the estimates proposed by Efron and Moris even though the
latter were based upon very different (parametric) assumptions. There-
fore our estimates seem to agree with Bayes-Stein when the scatter of
the data is well-enough behaved to justify these simple shrinkages.

The data in Table 2 comprise a subset of a well-known 14 X 14 con-
tingency table introduced by Karl Pearson [14]. The entries in the fourth
column give the proportions of sons who follow their father’s occu-
pation, for each of fourteen occupations; the categories have again

Table 2. Proportions of sons following their father’s occupation

Occupation 2 ” Observed Smoothed

i) i ¢ Proportion Proportion
1 0 26 0.000 0.020
2 6 88 0.068 0.103
3 11 106 0.104 0.103
4 7 54 0.130 0.115
5 6 44 0.137 0.127
6 4 19 0.211 0.221
7 18 69 0.261 0.257
8 9 32 0.281 0.270
9 6 18 0.333 0.334
10 23 51 0.451 0.477
11 54 115 0.470 0.480
12 20 41 0.488 0.480
13 28 50 0.560 0.480
14 51 62 0.823 0.823
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been rearranged into a suitable order. In this case our empirical prior
distribution assigned respective probabilities 1/14, 4/14, 4/14, 4/14 and
1/14 to the points 0.020, 0.103, 0.257, 0.480, and 0.823, representing a
number of interesting features in the scatter of the data. The corre-
sponding posterior means we described in the fifth column of the table.
The first two groups illustrate that our method can be used to decide
whether or not particular observations are outliers. The second pro-
portion (0.068) has been pulled back into the main group, whilst the
first proportion (0.000) has been left virtually alone. Similarly the 14th
proportion (0.823) is left alone by the fifth group whilst the ninth pro-
portion is of interest as an internal outlier isolating itself between the
third and fifth groups.

Our method provides a type of cluster analysis since it groups the
observations into definite clusters. Also, the method seems to be robust
under deviations from the assumption of exchangeability of 6,,-:-, 0,.
If there is strong evidence in the data to refute exchangeability for a
particular parameter then the latter is simply estimated as an outlier
without radically effecting the other estimates. Indeed, our method
effectively splits the parameters up into exchangeable subsets thus pro-
viding an alternative to the Efron and Morris [4] procedure for decid-
ing whether to combine possibly related estimation problems. Finally,
our method could be viewed as an alternative to standard techniques
for multiple comparisons since it smooths the data to a form where it
is easy to compare subsets of the parameters.

5. Relationship with nonparametric kernel methods

Suppose, for simplicity, that fi(x,; 8, belongs to the symmetric
location family

(5.1) Sfl@i; 0)=f(w.—0) .

Then our method estimates the marginal density

(5.2 é@)=, f(z—0Dg(0)d0
by
(5.3) d@)=m" 3 flo—a) (@eX)

where the a, are calculated via our computational procedure. We see
that (5.3) could also be used as an estimate for the density &(-) under
the assumption that the sampling (rather than marginal) density of z,,
«ve, o, is equal to &(x). These are close similarities with nonparametric
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kernel estimators of the form
(5.4) H@)=m" 33 fllz—al) .

These are prevalent in the literature; see Silverman [16] for some re-
cent developments. The estimate &* averages the kernels f(xz—=;)
centered on the data points, rather than centered on ay---,a,, as in
(5.3).

Kernel estimators are open to criticism on the following grounds
(i) They tend to lead to estimators which are too “flat”. The vari-

ance corresponding to &*(x) is theoretically always larger than the
sample variance of the observations.

(ii) When an equal kernel is placed over each data point, then, ac-
cording to its spread, the estimator very often tends to be either
too flat, or too bumpy in the details.

(iii) When, say, f is a normal density with mean zero and variance
d’, the value ¢7! is referred to as the “ band width” and regulates
the degree of smoothing. It is notoriously difficult to obtain a
reasonable analytic method for estimating ¢* from the data.

Our procedure promises to answer all three criticisms. Firstly, as
the a, are more compressed than the z, the estimator £ in (5.3) will
always be less flat. Secondly, by estimating the a, according to the
scatter of the data it will avoid many of the problems in (iii). Thirdly,
when f is a normal (or other symmetric) density with scale parameter
o' we may estimate ¢ as well. In the normal case we may use equa-
tions (2.12)-(2.14) with single replications 7n,=1, when the equations
still possess enough structure to sensibly estimate o?.

The kernel ideas will be pursued in greater detail elsewhere.
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