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Summary

The polytopal association scheme for PBIB designs is introduced
and studied utilizing the concept of clustering of treatments.

1. Introduction

In [1], a family of m-associate class partially balanced association
schemes (PBAS(m)) was defined by considering » treatments as being
clustered at each of the s vertices of a regular s-sided polygon. This
polygonal association scheme and the resulting partially balanced incom-
plete block (PBIB) designs were studied in detail for s=3, 4, 5 and 6.

In the present paper, the ideas begun in [1] are extended to gen-
eral s-sided polygons (Section 4), to p-dimensional polytopes (Section 3),
and to the five regular polyhedra in three dimensional space (Section 5).

2. Clustering and the polytopal association scheme

In [3], it was shown how a PBAS having m+1 associate classes
could be constructed from a PBAS having m associate classes. The
procedure involves replacing each of the s treatments of the original
PBAS by n treatments. The resulting clustered PBAS in v=ns treat-
ments will be referred to as a CPBAS(m+1). The relation between
the parameters of the PBAS(m) and the CPBAS(m+1) are given in
[38]. The characteristic roots of the resulting PBIB(m+1) design in
terms of those of the PBIB (m) design are given by the following the-
orem.

THEOREM 2.1. Let N denote the incidence matric of a PBIB(m)
design and let NN' have characteristic roots 6y, 0y, 05, - -, 0,, with mult:i-
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plicities a,, oy, ay,+ -+, a,. If N* denotes the incidence matrixz of the
corresponding clustered PBIB (m+1) design, then the characteristics roots
of N*N* are 0F=mnf, with multiplicities af=a;, for 1=0,1,2,..-, m,

and 6%,,=0 with multiplicity ok, ,=v(n—1).

This theorem is easily established by noting that N*=N®,, the
Kronecker product of N with a column vector of n1’s. Also of note
is that 6*,,=r—2,,,=0 so that 2,,,=7, where i, denotes the number
of blocks in the design in which two treatments that are ith associates
jointly appear.

The regular polytopal association scheme provides an example of the
usefulness of the clustering principle. It can be defined as follows.
Consider an s-vertexed regular polytope in p-dimensional space, and
suppose n treatments are clustered at each of the s vertices, so that
v=mns. Two treatments belonging to adjacent (i.e. one-edge-away) ver-
tices will be called first associates; two treatments “two-edges-away ”
will be second associates;...; two treatments “(m —1)-edges-away ”
will be (m—1)th associates; and two treatments in the same cluster
will be mth associates.

The important properties of a PBAS are contained in its param-
eters, namely the number of treatments involved (v), the number of
associate classes (m), the number of 4th associates of each treatment
(niy ©=1,2,--., m), and the matrices P,=(p},) in which p}, denotes the
number of treatments that are simultaneously jth associates of one
treatment (say ¢,) and kth associates of another treatment (say ¢,),
where ¢, and ¢, are themselves ith associates (for 4, j, k=1, 2,.--, m).
The important properties of the corresponding PBIB design are the
characteristic roots 6,, 4, --, 8,, of NN’, where N again denotes the in-
cidence matrix of the design, together with their multiplicities a,, a;,
-++,a, In the next three sections, these properties are given for re-
gular polytopal designs.

3. The regular polytopal association scheme for general p

For p>4 there are only three regular polytopes each of which has
an analogue in 2, 3 and 4-dimensional space. These three are the reg-
ular simplex, the cross polytope, and the measure polytope. The designs
corresponding to these polytopes will be examined in this section.

Regular simplex. The regular simplex in p-dimensions has s=p+1
vertices, each vertex being joined to every other by an edge (see Fig.
1). For p=2 the regular simplex is an equilateral triangle and for p
=3 it is a regular tetrahedron. The parameters of the regular sim-
plex design are given in Table 1.
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Fig. 1. The regular simplex in p-space for p=2, 3,4

Table 1. Parameters of the regular simplex design

v=n(p+1) m=2

ni=np ne=n—1
n(p—1) n-1 np 0

P‘=[ Ez—l) 0 ] Pz:[o n—Z]

bo=7rk ao=1

O=r—nii+(n—1)2; a1=p

02=1’—12 az=(n—l)(p+1)
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Cross polytope. The cross polytope in p-dimensions has s=2p ver-
tices, each vertex being joined to 2(p—1) other vertices by an edge.

The remaining vertices are two-edges-away (see Fig. 2).

For p=2 the

cross polytope is a square and for p=3 it is a regular octahedron. The
parameters of the cross polytope design are given in Table 2.

2 2

4
Fig. 2. The cross polytope in p-space for p=2, 3, 4

Table 2. Parameters of the cross polytope design

v=2np m=3
ni=2n(p—1) ny=n ny=n—1
[2n(p—2) n n-—1]
P= n 0 0
L n—1 0 0 |
[2n(p—1) O 0 1
Pz= 0 0 n—1
L O n—-1 0 |
2n(p—-1) O 0 7
Ps= 0 n 0
L 0 0 n—2]
0o=7’k a'0=1
O=r—2n21+nl+(n—1)2s ar=p—1
02=r—n12+(n—1)13 az=7p

03=f—]3 a3=2p(n—1)
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Measure polytope. The p-dimensional analogue of the cube is the
measure polytope. It has s=27 vertices and p2?~! edges with each ver-
tex being joined to p others. Other vertices are at most p-edges-away
(see Fig. 3). For p=2 the measure polytope is a square and for p=3
it is a cube. The parameters of the measure polytope design are given
in Table 3.

12

Fig. 3. The measure polytope in p-space for p=2, 3, 4

Table 3. Parameters of the measure polytope design

v=n2? m=p+1

—n( P — —
n,=n i) 1=1,2,000,p ny=n-1
P, ,,=diag (n1, nz,+++, n,, n—2)

and, for i=1,2,..., p,
P;=(pi.) is a symmetric matrix with

n(i;2)<k”__i/’2> for j=k=1,2,++, p
0 for j=k=p+1
Ph= ( i )( p—i >
n| k—j+i || kti—i| for j<k=1,2,-+,p
2 2
(n—1)3,, for j=1,2,++, p, k=p-+1

in which 4;; is the Kronecker delta and <Z> is as-
sumed to be 0 if b is not an integer or if b>a or if

5<0.
0o=fk ao=1
P41 P .
0,=r+jZ: 4524 “t=(,-> for i=1,2,--, p
=1
Opr1=7—2p4, ap1=2%(n—1)

. . _ miaGp i\/p—i v
in which zu—k=mnx(§,i+j—P) <k><]—k>( 1)

for i, j=1,2,++, p
and zt,p+1=n—1 for t=1, 2'...,p_
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4. The polygonal association scheme

For p=2, polytopes become polygons and give rise to the polygonal
association scheme introduced in [1]. Let n treatments be clustered at
each of the s vertices of a regular s-sided polygon, for s=3,4,5,---.
The resulting polygonal association scheme has parameters as given in
Table 4.

Table 4. Parameters of polygonal Designs

v=ns m=(s+1)/2 for s odd
m=(s+2)/2 for s even
For i=1,2,..., m—1,
_[ QR
P=[fc]
in which Q;=(q}:) is an (m—1)x(m—1) symmetic ma-

trix with g},=7n(3)j-x1,s+0s42,:+0s4x,0-¢) and Ry=(r,,)
is an (m—1)x1 column vector with 7, ,=(n—1)d, ,,

and Pp=diag (27, 2n,:--, 2n, n—2) for s odd
=diag (2%, 2n,+++, 2n, n, n—2)  for s even.
00=fk
0,=r+3 na, cos(mijls) for i=1,2,-+, m—1
=1
Op=r—2p,

with ae=1, am=(n—1)s, and
for s odd, a;=2 for i=1,2,.--, m—1 and
for s even, a;=2 for i=1,2,++., m—2

Ap1=1.

One interesting feature of these designs is that, with proper num-
bering of the ms treatments, the matrix NN’ becomes a circulant ma-
trix. Suppose treatment number ¢ (=1, 2,--., ns) is assigned coordi-
nates (a, B) (¢=1,2,--.,s8; =1,2,..-,n) such that t=(8—1)s+a so that
the treatment numbered ¢ is the gth treatment in the cluster of n treat-
ments at the ath vertex. Two treatments (e, 8) and (¢, #) will then
be kth associates (k=1,2,---, m—1) if |a—a'|=k and will be mth asso-
ciates if a=da'.

With this numbering, the matrix NN’ for a polygonal design is a
real symmetric circulant matrix. Its characteristic roots have the form

0;% a, cos (2rij/ns) , 1=1,2,..-,m8
Jj=1
where ay, a,,- -+, a,, are the entries in the first row of NN’ (see [2]).
Observing that the a; values are each r, 2;, 4,---, or 4,, and that cer-

tain characteristic roots are repeated, the characteristic roots of NN’
and their multiplicities can be written as in Table 4.
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5. The polyhedral association scheme

There are five regular polyhedra in 3-space, each giving rise to a
PBAS in a similar way. The tetrahedron, octahedron and hexahedron
are special cases of the regular simplex, cross polytope and measure
polytope, respectively, with p=38. The icosahedron and dodecahedron
designs have parameters given in Tables 5 and 6 respectively.

Table 5. Parameters of the icosahedron design

v=12n m=4
n,=5n ny=5n ny=n m=n-—1
[2n 2n 0 n-—1 2n 2n =n 0
2n 2n n 0 2n 2n 0 n-1
A=l w0 o0 P=ly 0 0 o
ln—1 0 0 0 0 #n—1 0 0
[0 b5n 0 0 [52 0 O 0
52 0 0 0 0 52 0 0
P=ly 0o 0o a=1| P=lo 0 x o
L0 0 n—1 0 0 0 0 n—2
0o=fk‘ ap=1
O1=r—nl1—nls+nds+(n—1)24 ar=5
0z=r+1/€n21—\/§n22—-n23+(n—1)24 az=3
Os=7r—/ 5 nA1++/5 nds—nis+(n—1) as=3
Os=r—24 a=12(n—1)

Table 6. Parameters of the dodecahedron design

v=20n m=6
n1=3n ny=6n ns=6mn n=3n ns=n ne=n—1
0 22 0 0 0 n-1 (n  n n 0 0 0
2n 2n 2n 0 O 0 n n 2n n 0 n-—1
Pi= 0 2n 2n 2n 0 0 P= n 2n n n n 0
0 0 2 0 =n O 0 n n n 0 0
0 0 0 =» 0 0 0 0 =»n 00 O J
l»—-1 0 0 0 0 O 10 »n—-1 0 0 O O
0 = n n 0 0 ro 0 2n 0 »n 0
n 2n n n n 0 0 27 2n 2n O 0
Py= n n 2n n 0 n-1 Pi= 2n 2n 2n 0 0 0
“ln n n 00 0 1o 22 0 0 0 n-1
0 = 0O 0 0 O n 0 O 0 0 o
0 0 »n—1 0 0 O L0 0 0 =»n—-1 0 O
[0 0 0 3z O 0 Bz~ 0 0 0 0 0
0 0 62 O 0 0 0 62 0 0 O O
P__ 0 62 0 O 0 0 P 0 0 62 0 0 O
13 0 0 0 0 0 “lo 0 0 32 0 0
0 0 0 0 0 n—lJ 0 0 0 0 »n O
L0 0 0 0 n—1 0 0 0 0 0 0 n-2
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o=7rk ao=1
O1=7r—3n2:4+3n23—nis+(n—1)s ay=

Os=r+ni1—2nA;—2nls+nis+nis+(n—1)a¢ az=5
Os=7r—2n21+nle+nls—2nd+nis+(n—1)26 asg=4

0.:r—ﬁn11+2nlz—2nls+ﬁn24—n25+(n—1)15 a4=3
05=r+ﬁn11+2n22—2n13—ﬁnl;—-nxs—}—(n—l)h as=3
0e=r—13 as=20(n—l)
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