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Summary

To compare different procedures for selection of regression varia-
bles, a mean efficiency concept is introduced, which is an extension of
the concept of efficiency previously introduced by the author (Shibata
[13]). Without any stronger assumption, we can show that the FPE
procedure or the AIC procedure or the C, procedure are all shown to
be asymptotically mean efficient, under the assumption that the num-
ber of regression variables be infinite or increase with the sample size.

1. Introduction

The present author showed (Shibata [13]) that when the loss funec-
tion is the mean squared error of prediction or the squared error of
estimated regression function, there is a lower bound in an asymptotic
sense. Using that lower bound, an asymptotic efficiency of a selection
procedures is defined as the limit of the ratio of the bound to the ac-
tual loss. It was also shown that the FPE procedure (Akaike [1]), the
AIC procedure (Akaike, [2]) and the C, procedure (Mallows [8]) are all
asymptotically efficient.

However, the results of computer simulations (Shibata [12]) suggest
that the above theory does not work so well in several cases. One of
the reason is that the convergence is in the sense of probability and
comparisons are not effective in small samples. Actually, in Shibata
[12] comparisons were done by introducing a new concept of efficiency,
namely the mean efficiency, by supposing that similar theorems will
hold true even if the loss is replaced by its expectation in the defini-
tion of the efficiency.

This paper aims to give a rigorous proof of the above supposition

* This work was partly done during the time the author was staying in the Austra-
lian National University.
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on the mean efficiency. Any stronger assumption is not needed for
showing mean convergence.

We will use the same notations and assumptions as in Shibata [13].
Assume that the observational equation is

Y={(x,B)+e =, Bel,

where ¢ is the error variable normally distributed with mean 0 and

unknown variance ¢*>0, B is the vector of regression parameters, and

I, is the Hilbert space of sequence of real numbers with the inner pro-

duct ¢, >, and the norm |-||. For convenience, we will call the above

model the “true model” and the parameter g the “true parameter”.
By 5= Jo-**» Juep)r (3:<52< -+ <Juep), we denote the model

Y=<x, B(5)>+e

where

B(3) € V()= 1{B(3); B(IY' =0+, By, 0,--+,0, Bye v vy By 000+ )}

is the vector of regression parameters and k(j) is the number of non-
zero parameters, that is, the number of variables included in the
model j.

Given 7 independent observations on Y at z®, x®,..., 2™, by fit-
ting a model ;7 we have the least squares estimates of nonzero param-
eters of B,

BGY =B+ By,
which is a solution of
M(5)B()=X()'y -
Here y'=(¥1, ¥5* * *» ¥a) is the vector of observations,
X()={%es;; 1Sesn, 1=S1=k(9)}
is the nxk(j) design matrix generated by subvectors of
B =(Loyy Tags®+) » a=1,---,m,

and M,(5)=X(5)X(j) is the k(j)XxFk(j) information matrix. For con-

venience, the vector é(j) is sometimes considered as an infinite dimen-
sional vector, putting undefined coordinates zeros.

In our problem, the choice of the loss function is crucial for dis-
cussing the goodness of a selection procedure. One of commonly used
loss functions is the 0,1 loss function, which takes the value 0 if the
selection is correct, otherwise 1. However such loss function is not
always appropriate. For instance, consider the case when the number
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of nonzero coordinates of g is finite but some of them are very close
to zero. For such case, is it still meaningful to know correctly the
true model? Furthermore, if 8 is truly infinite dimensional, then the
correctness of the selection itself is not well defined. Therefore in this
paper we adopt a loss function which well reflects the goodness of the

final estimate ﬁ(;’) of B, where j denotes a selection from a given family
J, of models.
One such reasonable loss function is the squared loss

L.{8, ()} = XB— XA
Here, X is the nx oo design matrix generated by the vectors z®,---,
™. We denote the risk for a non-random selection j=j by

R.())=E L.{8, ()} .

Consider the “risk minimum model” j* which minimizes R,(j) in J,.
The model j* can be thought of the best model in J,, which balances
the “bias” term and the “variance” term of

1.1) R.(5)=1XB—XB*(9)|I"+k(5)0*

where B*(j)=E;§(j). We can not apply this model j* in practice, since
which depends on unknown parameters 8 and ¢’. But in Theorem 2.1
we will prove that R,(j*) asymptotically gives a lower bound for the

risk R,,(;) even when j is a random selection which depends on the

observations ¥y, ¥,** * Y.
Let us define a mean efficiency by the ratio

- R
1.2 ff()=—nI)
(-2 MO=51.16500

and an asymptotic mean efficiency by the limit,
a.eff (J)=lim inf eff (J) .

A selection j with a.eff (5)51, is called asymptotically mean efficient.
Examples of such selection are given by the minimum FPE procedure,
the minimum AIC procedure (Akaike [1], [2]), and the C, procedure
(Mallows [8]). On the other hand, the BIC procedure (Schwarz [9]) or
the ¢ procedure (Hannan and Quinn [6]) can be shown not to be asymp-
totically mean efficient in our sense, even though they are consistent
under the 0,1 loss function.

2. Asymptotic mean efficiency for a large number of variables

The following theorem shows that an asymptotic lower bound for
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the risk E L,{3, ﬁ(;’)} is given by R,(5*) when the true number of var-
iables is infinite or increases with the sample size n. The condition
(2.1) is easily satisfied in such cases. For example, the case of the
selection of the number of variables, a sufficient condition is that g is
infinite dimensional and both the largest number of variables in J, and
the minimum eigenvalue of the information matrix diverges to infinity
as n tends to infinity. For more detailed discussion on the condition
(2.1), see Shibata [13].

THEOREM 2.1. Assume that for any model 7 in J,, k(j)<n and
M,(j5) is of full rank. If

(2.1) S 3R

J eJn
converges to zero as n tends to infinity for any 0<d<1, then for any
selection procedure j from J,,

.o B LB, (D)
1 f — 2ol S0 >
T RGN S

ProOOF. From the definition of 7*, we have

E L,{8, ()} > g [ L.{8, A3 ] C14E [ L8, B}~ R.(3) ] ,
R.(5%) R.(7) R.(5)

Put

¢ = Lol BGY—Ro(5)
! R.(9)

then it is sufficient to show E|&;| converges to zero as n—oo. We
first rewrite &, as

¢, — I XBG) —XB )~ kG
’ R.(5)

Since
| XA(7)— XB*(5)|I

is distributed as o’ applying the Schwartz inequality and Lemma
2.1 of Shibata [13], [14] we have

(2.2) E{[&| Lei>n}=Pr (1§,]> 0)"{o*- 2k(5)/ R, (5)}}*
=20R.(j)7" exp {—R.(5)%*/(84"} ,

where I, is the indicator function of a set A. The sum of the right
hand side of (2.2) over J, converges to zero as n— oo, by the assump-
tion. It is enough to note that
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Elfi'§j§ E{|51|L|e,|>a)}+3 .

The above theorem justifies the definition (1.2) of the asymptotic
mean efficiency. The selection previously proposed by Shibata [13] as an

asymptotically efficient selection was defined by the 7 which minimizes
(2.3) S.(7)=na*(5)+2k(5)a*(J) -

Although asymptotically equivalent, for small samples the FPE pro-
cedure (Akaike [1]) behaves better, in which ¢*(j)=nd%(7)/{n—k(7)} is
used in the place of the last 4%j) on the right hand side of (2.3). This
is because ¢%(j) is a biased estimate of o?. Therefore, in this section

we will only prove the asymptotic mean efficiency of the selection }
which minimizes

FPE (5)=n4"(5)+2k(5)5°(J) -

As is seen from the proof, the other procedures, like the AIC or the
C,, which are shown to be asymptotically efficient in Shibata [13] are
all asymptotically mean efficient, too.

THEOREM 2.2. Under the same assumptions of Theorem 2.1, if
r;xa}x k(7)=o(n), then

a.eff ()=lim — ") g
= K L{8, 8(5)}
ProOF. The conculsion follows if the expectation and the vari-

ance of R,,(j')/R,,(j*) converge to 1 and 0, respectively. In fact, using
the same technique as in the proof of Theorem 2.1 we can easily prove
that

lim E [ Lu{8, B0} R.(J) T=° ,
7 R.(3)
Then the desired result follows. We will only prove the covergence

of the expectation of R,,(f)/R,,('j*) to 1, as the proof for the conver-
gence of the variance is very similar. Put

w_ (i 7. Rad)
J —{J €d.; Wé(l-i-n)}

and J®=J,—JP.
Then

%ﬁ;%)—l:[jgn {‘RI%E% Pr(j=)f 1]+ 3 {7%% Pr (=)
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The first term of the right hand side is bounded by 7 from the defi-

nition of J and bounded away from {Pr(j € J)—1}, which converges
to zero as n— oo (see Shibata [11]). It is sufficient to show that the
second term converges to zero for any 7>0. We rewrite the FPE
statistic as

(2.4) FPE (j)= R.(j)+ {k(4)*— || XB(3) — XB*(3)II"}
+[{2k(5)m}{n—k(G)}[*(G) —{n—k(5)}d*/n]
+n{s%(5)—d*(G)}+nd’,

where ns*(7)=|y—XB*()|* and ¢*(j)=Es%j). For the second term of

the right hand side of (2.4) we have, from Lemma 2.1 of Shibata [13],
[14], and noting R.(j3)=k(j)s’

Pr {|k(_7)02—||Xﬁ(g)—Xﬂ*(j)“2| >3t <2 exp {—0R.(5)/(8sY)} .
R.(9) - .

The tail probability of the third term of the right hand side of (2.4)

can be evaluated in the same way. The fourth term can not be eval-

uated in the same way, but the differences can be done in the same

manner (see Shibata [13]). As a results, the tail probability of

4= FYPEGY)—-FPE()) _ R.(5*)—R.J)
R.(3) R.(3)

is evaluated as
Pr(|4|>8)=<Cexp{—3R.(5)/(8"} ,

for some constant C>0 and for large n. On the other hand, for j in
J(?)’

Pr(j=)sPr [TEEUN-TPEG) 5]

R.(3)
=Pr {4=1—-R,(5%)/R.(5)}
SPrdz=z{»/1+7)} .

Combining these results, we have

Rﬂ(j) ):: )
@5 3 RGY Pr(5=7)

S 3, B0 ep [ RIEAU )]

Here, R,(j*) diverges to infinity since

FFAUN ST 3ED

jeJn
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and
) R.(5)8%P
jeJn

converges to zero as n tends to infinity, because of the assumption
(2.1). Therefore (2.5) converges to zero and the proof is complete.

It should be noted that the generalized FPE procedure (FPE,) con-
sidered by Bhansali and Downham [5] is asymptotically mean efficient
if and only if @=2. It can be proved similarly as in Shibata [11].
Here the generalized FPE statistic is defined as

FPE, (j)=n6%(j)+ ak(5)d*(5) -

Another interesting attempt to justify a=2 is made by Leonard and
Ord [7] in the context of preliminary testing.

To help understanding in the theorem, a part of results by com-
puter simulations are given in Table 1. Samples are generated from
the model

Y=—log(1—x)+e

Table 1. Mean efficiency and the mean length of selected Fourier series;
f(x)=—log (1—x), n=400, K=163, 100 simulations

g FPE; FPE; FPE, FPE; AIC BIC 3 Sn Cy k*

0.01 0.90 091 0.89 0.8 0.88 0.76 0.89 0.54 0.92 0.9
78.1 72.5 67.5 65.1 80.9 58.8 65.2 147.8 75.2 74.0

0.02 0.91 0.92 0.90 0.8 0.8 0.73 0.89 0.47 0.92 1.00
63.4 58.8 54.9 52.8 66.2 45.9 53.5 140.8 61.1 60.0

0.03 0.88 0.91 0.8 0.85 0.87 0.71 0.87 0.45 0.91 0.9
56.9 49.6 46.9 45.0 58.8 39.7 46.1 131.9 54.0 54.0

0.04 0.93 0.93 0.90 0.86 0.91 0.72 0.89 0.42 0.95 1.03
51.4 45.1 41.5 39.8 52.7 35.2 40.8 130.0 49.1 48.0

0.05 0.90 0.90 0.87 0.82 0.8 0.70 0.87 0.41 0.90 0.9
47.0 41.1 379 35.7 48.2 31.9 37.6 119.5 45.5 44.0

0.06 0.88 0.87 0.83 0.79 0.86 0.68 0.82 0.41 0.8 0.95
43.2 37.8 34.6 32.9 44.0 29.3 34.4 109.0 41.7 42.0

0.07 0.86 0.8 0.84 0.80 0.85 0.66 0.84 0.40 0.88 0.99
41.8 35.7 32.6 30.6 42.3 26.8 32.1 107.4 40.3 40.0

0.08 0.86 0.89 0.86 0.81 0.86 0.67 0.86 0.42 0.8 0.9
39.8 33.7 31.4 29.0 39.9 25.4 31.3 96.8 37.1 37.0

0.09 0.89 0.91 0.85 0.80 0.89 0.68 0.85 0.33 0.92 1.03
37.5 31.3 28.6 27.3 37.8 23.9 28.4 121.7 35.8 36.0

0.10 0.88 0.88 0.83 0.79 0.87 0.68 0.83 0.37 0.89 1.02
35.0 30.5 27.0 25.7 35.1 22.8 27.0 102.8 33.6 34.0

0.20 0.86 0.84 0.78 0.72 0.86 0.62 0.80 0.29 0.87 1.00
25.9 20.6 18.3 16.7 26.1 14.8 18.5 92.3 24.7 24.0

0.30 0.85 0.84 0.80 0.74 0.84 0.64 0.82 0.33 0.8 0.9
21.1 17.2 14.8 13.2 21.3 11.6 15.1 67.0 20.8 20.0

0.40 0.80 0.82 0.79 0.73 0.80 0.66 0.80 0.33 0.81 0.97
18.0 14.2 12.6 11.4 18.0 10.1 12.8 57.6 17.4 16.0




422 RITEI SHIBATA

Table 1. Continued

o FPE; FPE, FPE, FPE; AIC BIC ¢ S, C, k*
0.50 | 0.85 0.84 0.79 0.73 0.85 0.65 0.8 0.33 0.86 1.03
14.7 11.9 10.4 9.5 14.8 8.7 10.7 49.1 14.4 14.0
0.60 | 0.8 0.84 0.77 0.72 0.83 0.63 0.79 0.26 0.84 1.03
14.0 10.5 8.9 81 14.0 7.2 9.4 56.2 13.6 13.0
0.70 | 0.8 0.80 0.75 0.71 0.83 0.66 0.77 0.30  0.83 0.98
11.6 9.4 8.2 7.4 11.6 6.8 85 43.7 11.5 12.0
0.80 | 0.79 0.84 0.78 0.72 0.79 0.67 0.79 0.34 0.80 1.02
11.8 88 7.7 6.9 11.8 6.3 7.9 37.0 11.5 10.0
0.90 | 0.79 0.78 0.75 0.69 0.79 0.63 0.76 0.21 0.79 0.9
10.6 7.8 6.7 6.0 10.6 54 6.9 54.7 10.6 10.0
1.00 | 0.82 0.82 0.76 0.72 0.82 0.65 0.78 0.26 0.82 1.03
9.4 7.3 6.1 5.6 9.4 51 63 40.3 9.2 9.0
2.00 | 0.72 0.75 0.72 0.66 0.72 0.62 0.73 0.20 0.72 1.00
6.3 4.8 4.0 3.5 6.3 3.1 4.3 33.9 6.4 6.0
3.00 | 0.66 0.78 0.77 0.75 0.66 0.72 0.78 0.17 0.64 1.03
4.9 3.4 2.9 27 4.9 24 3.0 2.9 50 4.0
4.00 | 0.67 0.80 0.79 0.78 0.67 0.74 0.80 0.18 0.68 1.00
4.2 2.9 25 23 4.2 21 27 2.2 4.1 4.0
5.00 | 0.60 0.71 0.76 0.73 0.60 0.63 0.77 0.15 0.60 1.04
3.9 24 2.2 20 39 1.8 23 24.0 39 3.0
6.00 | 0.51 0.63 0.63 0.58 0.51 0.56 0.66 0.11 0.51 0.98
3.8 25 21 1.8 3.8 1.6 2.3 294 3.8 3.0

for the points,
2, =0/(n+1), 2,=28/(n+1),- -+, x,=nd/(n+1) .
A model is selected from Fourier regression models;
_ "1 cos {xl(x/3)} _
Y_Lgo '_'lTi_‘l——“.BH-l"'e ’ k—19 2! )K-

Each model can be specified only by the length %k of the Fourier series
so that the notation % is used in the place of 5. In this example, o=
0.99, =400 and K=163. The true number of variables is infinite since
the regression function in (2.6) has an infinite Fourier series expansion.
The risk minimum length k*=Fk(5*) changes from 3 to 74 as ¢ varies
from 6.0 to 0.01. Efficiencies are obtained for the following selection
procedures. A model & is selected so as to minimize the corresponding
statistic ;

AIC (k)=mnlog o'(k)+2k , (Akaike [2])

BIC (k)=n log ¢%(k)+(log n)k , (Schwarz [9], Akaike [3])
#(k)=mn log a*(k)+2(log log n)k , (Hannan and Quinn [6])
S.(k)=na*(k)+2ks*(k) , (Shibata [13])
C.=nd"(k)+2ka*(K) , (Mallows [8], C,)
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FPE, (k)=na*(k)+aka’(k) .
(Akaike [1], Bhansali and Downham [5], Atkinson [4])

For n=400, ¢(k) is approximately FPE; (k) and BIC(k) is approxi-
mately FPE; (k). Among these procedures, the FPE, the AIC, the
S, and the C, procedures are only asymptotically mean efficient. The
k* denotes the selection which always takes the model k*. The mean
efficiency of the k* is always 1, so that the estimated efficiencies indi-
cate how accurate our simulations are.

High efficiency of the FPE or the AIC, especially of the C, is in
contrast with the low efficiency of the S, procedure. This may sug-
gest a goodness of the replacement &%k) of o*(k) in S,(k), furthermore
of the replacement 6% K). Although the FPE, and the FPE; are not
so clearly discriminated, the efficiency of the FPE quickly goes down
as o increase to 4.5 and 5.98. The above observation is valid only for
the case k*=9. Otherwise the efficiencies behave differently.

UNIVERSITY OF PITTSBURGH
TOKYO INSTITUTE OF TECHNOLOGY

REFERENCES

[1] Akaike, H. (1970). Statistical predictor identification, Ann. Inst. Statist. Math., 22,
203-217.

[2] Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle, 2nd International Symposium on Information Theory, (eds. B. N. Petrov and
F. Csaki), Akademia Kiado, Budapest, 267-281.

[3] Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure, Ann. Inst.
Statist. Math., A, 30, 9-14.

[4] Atkinson, A. C. (1980). A note on the generalized information criterion for choice
of a model, Biometrika, 67, 413-418.

[5] Bhansali, R. J. and Downham, D. Y. (1977). Some properties of the order of an auto-
regressive model selected by a generalization of Akaike’s FPE criterion, Biometrika,
64, 547-551.

[6] Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of autoreg-
ression, J. R. Statist. Soc., B, 41, 190-195.

[7] Leonard, T. and Ord, K. (1976). An investigation of the F-test procedure as an esti-
mation short-cut, J. R. Statist. Soc., B, 38, 95-98.

[8] Mallows, C. L. (1973). Some comments on Cy, Technometrics, 12, 591-612.

[9] Schwarz, G. (1978). Estimating the dimension of a model, Ann. Statist., 6, 461-464.

[10] Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s
information criterion, Biometrika, 63, 117-126.

[11] Shibata, R. (1980a). Asymptotically efficient selection of the order of the model for
estimating parameters of a linear process, Ann. Statist., 8, 147-164.

[12] Shibata, R. (1980b). Selection of the number of regression parameters in small sam-
ple cases, Statistical Climatology, Developments in Atmospheric Science, 13, (eds. S. Ikeda
et al.), Elsevier, 137-148.

[13] Shibata, R. (1981). An optimal selection of regression variables, Biometrika, 68, 45-54.

[14] Shibata, R. (1982). Correction to ‘“An optimal selection of regression variables”,
Biometrika, 69.



