ON L_p -CONVERGENCE RATES FOR STATISTICAL FUNCTIONS WITH APPLICATION TO L-ESTIMATES

IBRAHIM A. AHMAD

(Received Aug. 10, 1982; revised Feb. 7, 1983)

Summary

A parameter which may be represented as a functional T(F) of a distribution function F may be estimated by the "statistical function" $T(F_n)$, where F_n is the empirical distribution function. Recently, Boos and Serfling (1979, Florida State University Statistics Report No. M 499) obtained sufficient conditions for the Berry-Esseen theorem to hold for $T(F_n)$ -T(F) and applied the results to derive rates of convergence in L_∞ for L-estimates. The present note complements their work by obtaining the L_p -rates of convergence, $1 \le p < \infty$ for $T(F_n)$ -T(F) and its application to L-estimates.

1. Introduction and a portmanteau theorem

Let a parameter θ of a distribution function (d.f.) F be represented as a functional T(F). If X_1, \dots, X_n is a random sample from F, then θ may be estimated by $T(F_n)$, where $F_n(x)$ denote the empirical d.f. For many instances the random variable $n^{1/2}(T(F_n)-T(F))/\sigma(T,F)$ is asymptotically standard normal, for some positive constant $\sigma(T,F)$. Using von Mises [6] expansion of $T(F_n)-T(F)$ as a sum of two terms; a U-statistic and a remainder term, i.e. $T(F_n)-T(F)=U_n+R_n$, Boos and Serfling [2] prove that under some conditions, $\sup_x |P[n^{1/2}(T(F_n)-T(F))] \leq x\sigma(T,F)|-\Phi(x)|=O(n^{-1/2}), n\to\infty$, where $\Phi(\cdot)$ denote the d.f. of the standard normal variate, see Theorem 2.1 (i) below. Then, they use this result to establish rates of convergence for L-estimate, i.e., $T(F)=\int_0^1 F^{-1}(u)J(u)du$.

The purpose of the present note is to show that one can obtain L_p -rates of convergence for $T(F_n)-T(F)$ for $1 \le p < \infty$, thus when combining these rates with those of Boos and Serfling [2] we can list rates

AMS 1970 subject classification: Primary; 60F05, Secondary; 60J80, 60F99.

Key words and phrases: L_p -rates, statistical functions, U-statistic.

of convergence for L_p $1 \leq p \leq \infty$.

For any function ϕ , define $\|\phi\|_p = \left(\int |\phi(t)|^p dt\right)^{1/p}$, $1 \le p < \infty$ and $\|\phi\|_{\infty} = \sup_t |\phi(t)|$. Denote by G_n the d.f. of $n^{1/2}(T(F_n) - T(F))/\sigma(T, F)$. Then we state and prove the following portmanteau theorem.

THEOREM 1.1. Suppose that $T(F_n)-T(F)$ can be written as V_n+R_n where

(1.1)
$$V_n = n^{-2} \sum_i \sum_i h(X_i, X_j)$$
,

with $h(\cdot, \cdot)$ a symmetric function, such that $Eh(X_1, X_2)=0$, $E|h(X_1, X_2)|^3 < \infty$, and $E|h(X_1, X_1)|^2 < \infty$. Let $\{\varepsilon_n\}$ be a sequence of real numbers such that $\varepsilon_n \ge n^{-1}$ for all $n \ge 1$ and $\varepsilon_n \to 0$ as $n \to \infty$.

(i) If for some C>0, $P[|R_n|>C\varepsilon_n]=O(\varepsilon_n^{1/2})$ and putting $\sigma(T,F)=4 \operatorname{Var} g(X_1)$, with $g(x)=E_F[h(X_1,X_2)|X_1=x]$, then

$$||G_n - \Phi||_{\infty} = O(\varepsilon_n^{1/2}).$$

(ii) If in addition $E(R_n^2) = O(\varepsilon_n^2)$, then for any $1 \le p < \infty$

(1.3)
$$||G_n - \Phi||_p = O(\varepsilon_n^{1/2}).$$

PROOF. (i) Follows exactly that of Theorem 1.1 of Boos and Serfling [2] with obvious modifications and hence is not repeated here. (ii) Let $H_n(\cdot)$ denote the d.f. of the random variable $\sqrt{n} V_n/\sigma(T, F)$. We use the following inequalities:

and

(1.5)
$$||G_n - \Phi||_1 \leq ||H_n - \Phi||_1 + \sqrt{n} \, \mathbf{E}^{1/2}(R_n^2) / \sigma(T, F) .$$

A proof of (1.5) is given in the appendix. Now, from Part (i) it follows that $\|G_n - \Phi\|_{\infty}^{p-1} = O(\varepsilon_n^{(p-1)/2})$.

Also we have

$$(1.6) ||H_n - \Phi||_1 \leq ||K_n - \Phi||_1 + \sqrt{\overline{n}} E^{1/2} (U_n - V_n)^2 / \sigma(T, F) ,$$

where $K_n(\cdot)$ denote the d.f. of $\sqrt{n} U_n/\sigma(T, F)$, with $U_n = \binom{n}{2}^{-1} \sum_{1 \le i < j \le n} h(X_i, X_j)$. Note that if $W_n = n^{-1} \sum_{i=1}^n h(X_i, X_i)$, then $U_n - V_n = n^{-1}(U_n - W_n)$. Hence

$$\sqrt{n} \ \mathrm{E}^{1/2} (U_n - V_n)^2 = n^{-1/2} \, \mathrm{E}^{1/2} (U_n - W_n)^2$$

$$\leq 2n^{-1/2} \{ [\mathrm{Var} (U_n)] + [\mathrm{Var} (W_n)] \}^{1/2}$$

$$= 2n^{-1/2} \{ O(n^{-1/2}) \} = O(n^{-1}) = O(\varepsilon_n) .$$

All that is remained is to show that $||K_n-\Phi||_1=O(\varepsilon_n^{1/2})$. It suffices, cf. Callaert and Janssen [3], to consider \hat{K}_n , the d.f. of $\sqrt{n} U_n/2\sigma_g$. Write $U_n=\hat{U}_n+\hat{A}_n$, where $\hat{U}_n=2n^{-1}\sum\limits_{j=1}^n g(X_j)$ with $g(X_1)=\mathrm{E}\left[h(X_1,X_2)|X_1\right]$, and $\hat{A}_n=\left(\frac{n}{2}\right)^{-1}\sum\limits_{1\leq i< j\leq n}\left[h(X_i,X_j)-g(X_i)-g(X_j)\right]$. Let L_n denote the d.f. of $\sqrt{n} \hat{U}_n/2\sigma_g$. Then

$$(1.7) ||\hat{K}_n - \Phi||_1 \leq ||L_n - \Phi||_1 + \sqrt{n} E^{1/2} (\hat{J}_n^2) / 4\sigma_q^2 = O(n^{-1/2}) + O(n^{-1/2}),$$

where the first term in the last upper bound is obtained from Theorem 4.3 of Ibragimov [5], and the second from the well-known result that $\mathbb{E} \hat{J}_n^2 = O(n^{-1})$. Thus $\|\hat{K}_n - \Phi\|_1 = O(\varepsilon_n^{1/2})$ and the theorem is now proved.

Remark 1.1. Note that listing the rate in Theorem 1.1 in terms of ε_n allows the accommodation of the cases when $P[|R_n|>Cn^{-1}]$ and $E(R_p^2)$ do not attain the optimum rate. Note also that if we assume that $E|h(X_1,X_2)|^{2+\delta}<\infty$ and $E|h(X_1,X_1)|^{(2+\delta)/2}<\infty$ for some $0<\delta\leq 1$, then $||G_n-\Phi||_{\infty}=O(\varepsilon_n^{\delta/2})$ if $P[|R_n|>Cn^{-1}]=O(\varepsilon_n^{\delta/2})$ and if further $E(R_n^2)=O(\varepsilon_n^{1+\delta})$, then $||G_n-\Phi||_p=O(\varepsilon_n^{\delta/2})$ $1\leq p<\infty$. All the ingredients needed for the proof of this extension are in the proof of Theorem 1.1 above except that in this case $||\hat{K}_n-\Phi||_{\infty}=O(\varepsilon_n^{\delta/2})$, $0<\delta\leq 1$. This latter results is obtained by altering the proof of Callaert and Janssen [3], for details see Ahmad [1], Theorem 2.1.

Remark 1.2. Another rate of convergence is possible to establish namely, if $\varepsilon_n = O(n^{-1})$, if $E|h(X_1, X_2)|^{2+\delta} < \infty$, $E|h(X_1, X_1)|^{(2+\delta)} < \infty$, $0 < \delta < 1$, or $Eh^2(X_1, X_2) \ln (1 + |h(x_1, x_2)|) < \infty$, $\delta = 0$ and if for some C > 0, $\sum_{n=1}^{\infty} \varepsilon_n^{1-\delta/2} P[|R_n| > C\varepsilon_n] < \infty$, then $\sum_{n=1}^{\infty} \varepsilon_n^{1-\delta/2} ||G_n - \mathbf{\Phi}||_{\infty}$. If further, $\sum_{n=1}^{\infty} \varepsilon_n^{(1-\delta)} E^{1/2}(R_n^2) < \infty$, then $\sum_{n=1}^{\infty} \varepsilon_n^{1-\delta/2} ||G_n - \mathbf{\Phi}||_p < \infty$, $1 \le p < \infty$, $0 \le \delta < 1$. Again the main points in the proof of this result is to show that $\sum_{n=1}^{\sigma} n^{-1+\delta/2} ||H_n - \mathbf{\Phi}||_{\infty} < \infty$ which is proved in Theorem 2.2 of Ahmad [1], and that $\sum_{n=1}^{\infty} n^{-1+\delta/2} \cdot ||H_n - \mathbf{\Phi}||_1 < \infty$ which is proved by Heyde [4], Corollary 2.

2. Application to L-estimates

Consider the functional defined by $T(F) = \int_0^1 F^{-1}(u)J(u)du$ and the corresponding L-estimate $T(F_n)$. As shown by Boos and Serfling [2] it is possible to write

$$(2.1) T(F_n) - T(F) = V_n + R_n,$$

where $V_n = n^{-2} \sum_{i=1}^n \sum_{j=1}^n h(X_i, X_j)$ with $h(x, y) = (1/2)[\alpha(x) + \alpha(y) + \beta(x, y)]$ where $\alpha(x) = -\int_{-\infty}^{\infty} [I(x \le t) - F(t)]J \circ F(t)dt$, and $\beta(x, y) = -\int_{-\infty}^{\infty} [I(x \le t) - F(t)][I(y \le t) - F(t)]J^{(1)} \circ F(t)dt$, with $J^{(1)}(\cdot)$ the first derivative of J. Note also that $R_n = T(F_n) - T(F) - V_n$ may be written as $-\int_{-\infty}^{\infty} W_{F_n,F}(x)dx$ with $W_{G,F} = K \circ G - K \circ F - J \circ F(G - F) - (1/2)(J^{(1)} \circ F)(F - G)^2$ and $K(u) = \int_{-0}^{u} J(v)dv$. Further in this case $\sigma^2(J,F) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J \circ F(x)J \circ F(u) \cdot [F(\min(x,y)) - F(x)F(y)]dxdy$.

Boos and Serfling [2] established the Berry-Esseen bound of \sqrt{n} \cdot $(T(F_n)-T(F))/\sigma(J, F)$ under two sets of conditions on J and F, viz.:

CONDITION A: Assume that J vanishes outside a closed interval [a,b], 0 < a < b < 1 and that $J^{(1)}$ exists and is such that $|J^{(1)}(x) - J^{(1)}(y)| \le D|x-y|^{\gamma}$ for some D>0, $\gamma>0$ for all x,y defined on an open interval containing [a,b], i.e., $J^{(1)}$ is Lipschiz of order $\gamma>0$.

Or

CONDITION B: Suppose that $J^{(1)}$ exists and is such that $|J^{(1)}(x)-J^{(1)}(y)| \le D|x-y|^{r}$, for some D>0, $\gamma>1/3$ and all $x,y\in(0,1)$. Assume also that $\mathrm{E}\,|X_1|^{8}<\infty$.

Using Theorem 1.1 we shall establish L_p -rate of convergence of the order $n^{-1/2}$ for $\sqrt{n}(T(F_n)-F(F))/\sigma(J,F)$ assuming that either Condition A or B is satisfied and that $\sigma^2(J,F)>0$.

THEOREM 2.1. Assume that $\sigma^2(J, F) > 0$ and that either Condition A or B is satisfied. Let G_n denote the d.f. of $n^{1/2}(T(F_n) - T(F))/\sigma(J, F)$. Then

$$(2.2) ||G_n - \Phi||_p = O(n^{-1/2}), 1 \le p \le \infty.$$

PROOF. We need to establish that under either Condition A or B, $P[|R_n|>Cn^{-1}]=O(n^{-1/2})$ for some C>0 and $E(R_n)^2=O(n^{-2})$. But the first assertion is a consequence of Theorems 2.1 and 2.2 of Boos and Serfling [2]. Thus we shall prove the second. Since $J^{(1)}$ is Lipschiz of order γ we obtain

$$(2.3) \qquad |R_n| \leq (D/2) \int |F_n(x) - F(x)|^{2+r} dx \leq (D/2) ||F_n - F||_{\infty}^r \cdot ||F_n - F||_2^2 \ .$$

Hence

$$(2.4) \quad \to R_n^2 \leq (D^2/4) \to \|F_n - F\|_\infty^r \cdot \|F_n - F\|_2^4 \leq (D^2/4) \to \|F_n - F\|_2^4 \leq O(n^{-2}) \ ,$$

where $\mathbb{E} \|F_n - F\|_2^4 = O(n^{-2})$ follows from Lemma 2.1 of Boos and Serfling [2].

Remark 2.1. Since under Condition A, or Condition B, $P[|R_n| > Cn^{-1}] = O(n^{-1/2})$ and that $E[R_n^2] = O(n^{-2})$ it follows that $\sum_{n=1}^{\infty} n^{-1+\delta/2} P[|R_n| > Cn^{-1}] < \infty$, and $\sum_{n=1}^{\infty} n^{-1+\delta/2} E^{1/2}(R_n^2) < \infty$, and hence it follows that for any $0 \le \delta < 1$, $\sum_{n=1}^{\infty} n^{-1+\delta/2} ||G_n - \Phi||_p < \infty$, $1 \le p < \infty$, from Remark 1.2. It appears that this is the first attempt at series rate of convergence for L-estimates. Also analogous rates are obtainable for linear combinations of order statistics. $T_n = n^{-1} \sum_{i=1}^n J(i/(n+1)) X_{(i)}$, where $X_{(1)} \le \cdots \le X_{(n)}$ denote the order statistics corresponding to X_1, \cdots, X_n .

Remark 2.2. Boos and Serfling indicate how the Berry-Esseen rate can be obtained for the class of M-estimates (we refer the reader to Boos and Serfling [2] for definition). Their representation $T(F_n)-T(F)=V_n+R_n$ leads to R_n satisfying $|R_n|< D_1 ||F_n-F||_\infty^3$ under certain conditions, but it can be shown that $\mathbb{E} ||F_n-F||_\infty^{2k} = O(n^{-k})$, $k=1,2,\cdots$, and thus $\mathbb{E} R_n^2 = O(n^{-2})$ and thus we can obtain the rate $n^{-1/2}$ for L_p -convergence in light of Theorem 1.1.

Appendix

PROOF OF (1.5). Note that

$$||G_n - \Phi||_1 \le ||G_n - H_n||_1 + ||H_n - \Phi||_1$$
.

But

$$||G_n - H_n||_1 = \int_{-\infty}^{\infty} |E I(X_n > x) - E I(Y_n > x)| dx$$

$$\leq E \int |I(X_n > x) - E I(Y_n > x)| dx$$

$$= E |X_n - Y_n| \leq E^{1/2} |X_n - Y_n|^2,$$

where $X_n = n^{1/2} \{T(F_n) - T(F)\} / \sigma(T, F)$ and $Y_n = n^{1/2} V_n / \sigma(T, F)$ with V_n defined in (1.1).

University of Maryland Baltimore County

REFERENCES

- [1] Ahmad, I. A. (1981). On some asymptotic properties of U-statistics, Scand. J. Statist., 8, 175-182.
- [2] Boos, D. D. and Serfling, R. J. (1979). On Berry-Esseen rates for statistical functions with application to L-estimates, Florida State University Statistics Report No. M499.
- [3] Callaert, H. and Janssen, P. (1978). The Berry-Esseen theorem for U-statistics, Ann. Statist., 6, 417-421.

- [4] Heyde, C. C. (1975). A non-uniform bound on convergence to normality, Ann. Prob., 3, 903-907.
- [5] Ibragimov, I. A. (1966). On the accuracy of Gaussian approximation to distribution function of sums of independent variables, *Theory Prob. Appl.*, 11, 559-579.
- [6] Von Mises, R. (1947). On the asymptotic distributions of differentiable statistical functions, Ann. Math. Statist., 18, 309-348.