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Summary

A parameter which may be represented as a functional T(F') of
a distribution function F may be estimated by the “statistical func-
tion” T(F,), where F, is the empirical distribution function. Recently,
Boos and Serfling (1979, Florida State University Statistics Report No.
M 499) obtained sufficient conditions for the Berry-Esseen theorem to
hold for T'(F,)-T(F) and applied the results to derive rates of conver-
gence in L. for L-estimates. The present note complements their work
by obtaining the L,rates of convergence, 1<p<oo for T(F,)-T(F) and
its application to L-estimates.

1. Introduction and a portmanteau theorem

Let a parameter 6 of a distribution function (d.f.) F' be represented
as a functional T'(F'). If X,,--., X, is a random sample from F, then
6 may be estimated by T'(F,), where F,(x) denote the empirical d.f.
For many instances the random variable n'T(F,)—T(F))/o(T, F) is
asymptotically standard normal, for some positive constant o(T, F).
Using von Mises [6] expansion of T'(F,)— T(F') as a sum of two terms;
a U-statistic and a remainder term, i.e. T(F,)—T(F)=U,+R,, Boos
and Serfling [2] prove that under some conditions, sup|P [#"%T(F,)—

T(F)=xo(T, F)]—0(x)|=0(n""?), n— oo, where @(-) denote the d.f. of
the standard normal variate, see Theorem 2.1 (i) below. Then, they
use this result to establish rates of convergence for L-estimate, i.e.,
T(F)= S: FY(u)J (u)du.

The purpose of the present note is to show that one can obtain
L,rates of convergence for T'(F,)— T(F) for 1<p< oo, thus when com-
bining these rates with those of Boos and Serfling [2] we can list rates
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of convergence for L, 1=p=co.

For any function ¢, define |[¢||,,=<S |¢(t)|pdt)””, 1<p<oo and ||¢l.=
sup |¢(t)]. Denote by G, the d.f. of n"A(T(F,)—T(F))/e(T, F). Then
Wte state and prove the following portmanteau theorem.

THEOREM 1.1. Suppose that T(F,)—T(F') can be written as V,+R,
where

(1.1) Vi=n"3 pY WX, X)) ,

with h(-, -) a symmetric function, such that E (X, X;)=0, E|h(X,, X)I
<oo, and E|MX;, X))[f<oco. Let {e,} be a sequence of real mumbers
such that e,=n"* for all n=1 and ¢,—0 as n— oo.

(i) If for some C>0, P[|R,|>Ce,]=0(e*) and putting o(T, F)=
4 Var g(X)), with g(x)=E;[M(X;, X})| X;=%x], then

1.2) 1Ga—@ll=0C(es") -
(i) If in addition E(R:)=0(cl), then for any 1<p<co
(1.3) Gr—@ll=0(e:") -

Proor. (i) Follows exactly that of Theorem 1.1 of Boos and
Serfling [2] with obvious modifications and hence is not repeated here.
(ii) Let H,(-) denote the d.f. of the random variable yn V,/o(T, F).
We use the following inequalities:

(1.4) G, — 231G — @5 |G, — Pl
and
(1.5) IG,—90|Z||H,—®|,+v7 EV*(R)/e(T, F) .

A proof of (1.5) is given in the appendix. Now, from Part (i) it fol-
lows that ||G,— |2 =0(eF~74).
Also we have

(1.6) |H,— | = | K — @i+ V7 B (U, —Vo)fe(T, F) ,

— . _(n\t
where K,(-) denote the d.f. of 47 U,/o(T, F), with U,,—<2>

1s5i<jsn

MX;, X,). Note that if W,=n" i MX., X)), then U,—V,=n"(U,—W,).
Hence
J%' EI/Z (Un_ V”)Z — n—l/z E1/2 (Un_ Wn)z
<2n~*{[Var (U,)]+[Var (W,)]}
=202 {0(n"*)} =0(n")=0(e,) -
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All that is remained is to show that ||K,—®|,=0(¢¥?). It suffices, cf.
Callaert and Janssen [3], to consider K,, the d.f. of vn U, 2s,. Write

U,=U,+4,, where ﬁn=2n'1§]g(X,) with g(X)=E[MX,, X,)|X;], and
j,,:(@" S1 X, X)—9(X)—g(X))]. Let L, denote the d.f. of

1si<jsn

vn U,/26,. Then
L7) K —0|= || L—0ll+ VT B (42)/4si=0(n""")+0(n ") ,
where the first term in the last upper bound is obtained from Theorem

4.3 of Ibragimov [5], and the second from the well-known result that
Ezf,’;:O(n“). Thus [lK,—a7||1=O(e:{’) and the theorem is now proved.

Remark 1.1. Note that listing the rate in Theorem 1.1 in terms
of ¢, allows the accommodation of the cases when P[|R,|>Cn™'] and
E(R}) do not attain the optimum rate. Note also that if we assume
that E|h(X,, X,)fH’ <o and E|h(X), X;)|[**2< oo for some 0<3<1, then
|G, —9|l.=0(e?) if P[|R,|>Cn']=0(/*) and if further E (R2)=0(e."),
then ||G,—9®|,=0(e¥*) 1=<p<oco. All the ingredients needed for the
proof of this extension are in the proof of Theorem 1.1 above except

that in this case |K,—®|..=0(s*), 0<3<1. This latter results is ob-
tained by altering the proof of Callaert and Janssen [3], for details
see Ahmad [1], Theorem 2.1.

Remark 1.2. Another rate of convergence is possible to establish
namely, if ¢,=0(n™), if E|i(X], X;)[" <o, E|MX], X)[*P <0, 0L

1, or ERYX,, X;) In (1 +]|h(x;, 25)[)<o0, d=0 and if for some C>O0, é
el P[|R,|>Ce,]<co, then i ei=7|G,—0||... If further, i‘, 0~ EV2 (R2)
< oo, then gei""zllGn—@||p<00, 1=<p<oo, 0<4<1. Again the main
points in the_ proof of this result is to show that gn‘””/zllHn—¢Hw<

oo which is proved in Theorem 2.2 of Ahmad [1], and that i._o‘, nIHE,
| L,—®]|;< oo which is proved by Heyde [4], Corollary 2.

2. Application to L-estimates

Consider the functional defined by T(F)=S:F“(u)J(u)du and the
corresponding L-estimate T(F,). As shown by Boos and Serfling [2]
it is possible to write

(2.1) T(F)—-T(F)=V.+R,,
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where Vnzn‘zééh(&, X)) with k(= ¥)=(1/2)[a)+a@)+ A, 9)]

where a(x):—gf [[(z<t)—F(t)]J » F(t)dt, and Az, y):-S"_° [I(zx<t)—
FOII(yst)—F@)J® o F(t)dt, with J®(-) the first derivative of J.
Note also that R,= T(F,)— T(F)—V, may be written as — S“’ W, (x)dz

with W, ;=Ko G—K o F—J o F(G—F)—(1/2)(J® o F)(F—G)* and K(u)
=S: J(v)dv. Further in this case o*J, F)= S:o Si’ J o F(x)J o F(u)-
[F(min (z, y))— F(x)F(y)ldxdy.

Boos and Serfling [2] established the Berry-Esseen bound of /7% -
(T(F,)—T(F))|e(J, F') under two sets of conditions on J and F, viz.:

CONDITION A: Assume that J vanishes outside a closed interval
[a,b], 0<a<b<l and that J* exists and is such that |JV(x)—J(y)]
<D|x—y| for some D>0, y>0 for all x,y defined on an open interval
containing [a, b], i.e., J* is Lipschiz of order y>0.

Or

CoNDITION B: Suppose that J exists and is such that |J®(x)—
JO(y)|=D|x—y|, for some D>0, y>1/3 and all z,y¢€(0,1). Assume
also that E|X;['<co.

Using Theorem 1.1 we shall establish L,rate of convergence of the
order n~'* for yn (T (F,)—F(F))/o(J, F') assuming that either Condition
A or B is satisfied and that ¢%J, F')>0.

THEOREM 2.1. Assume that oXJ, F)>0 and that either Condition
A or B 1is satisfied. Let G, denote the d.f. of n/T(F,)—T(F))/a(J, F).
Then

(2.2) G —2[,=0n7"*),  1=p=<co.

PrROOF. We need to establish that under either Condition A or B,
P[IR.|>Cn']=0(n""*) for some C>0 and E(R,*=0(n"%. But the first
assertion is a consequence of Theorems 2.1 and 2.2 of Boos and Serfling
[2]. Thus we shall prove the second. Since J is Lipschiz of order
r we obtain

(2.3) |R.|=(D[2) S | Fo(®)— F(2)*"de<(D/2)|| F,— F|.- | F,— F; .
Hence
(24) ER=<(D'4) E||F,—F|%-|F,—F|i=(D*/4) E||F,—F|}=0(n™?),

where E ||F,—F|i=0(n"? follows from Lemma 2.1 of Boos and Serfling
[2].
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Remark 2.1. Since under Condition A, or Condition B, P[|R,|>
Cn~']=0(n""*) and that E|R:=0(n"?%) it follows that g‘ln‘”"/”P[lR,.b
Cn™']< oo, and gn““/z EY?(R?)< oo, and hence it follows that for any
<9<, gn"“/zllG,.—(Dll,Koo, 1<p<oo, from Remark 1.2. It appears

that this is the first attempt at series rate of convergence for L-esti-
mates. Also analogous rates are obtainable for linear combinations of

order statistics. T,=n"! é J(/(n+1)) Xy, where X, <--- <X, denote

the order statistics corresponding to X,,--., X,.

Remark 2.2. Boos and Serfling indicate how the Berry-Esseen rate
can be obtained for the class of M-estimates (we refer the reader to
Boos and Serfling [2] for definition). Their representation T'(F,)— T'(F')
=V.+R, leads to R, satisfying |R,|<D,||F,—F| under certain condi-
tions, but it can be shown that E|F,—F|*=0x»"*), k=1, 2,---, and
thus ER;=0(n"?) and thus we can obtain the rate n~"* for L, conver-
gence in light of Theorem 1.1.

Appendix
Proor oF (1.5). Note that
1G.— 2l =||G— H, |l + | H,— 2]y -
But

“&—H%:KJEK&>@—EKK>MM$

gE“n&>m—Eﬂn>mux
~E|X,~Y,|<E"|X,~Y,I,

where X,=n"*{T(F,)—T(F)}/o(T, F) and Y,=n"*V,[o(T, F') with V, de-
fined in (1.1).
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