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1. Introduction

The importance of beta-distributed random variables in statistical
simulation experiments lies in the fact that the family of beta distri-
butions has a finite support and has a wide variety of shapes. This
paper proposes new algorithms for generating random numbers with
beta distributions

1.1) f(@)=cax*'(1—x)t, for >0, b>0 and 0<2<1,

where
¢”'=B(a, b)=I(a)['(b)/I'(a, b)=S: oo (1—x)~'d .

Like other algorithms for generating random numbers with non-uniform
distributions, our algorithms generate beta random numbers by trans-
forming uniform random numbers (uniform on the unit interval (0, 1))
and are exact, not approximate, in the sense that generated numbers
are truly distributed if ‘true’ uniform random numbers are supplied.

Algorithms for generating beta random numbers have been pro-
posed and tested by several authors including Johnk [6], Ahrens and
Dieter [1], Atkinson and Whittaker [2], [3], Cheng [5] and Schmeiser
and Babu [8]. J6hnk used the fact that the ratio of # to x+y, where
(®,y) is a random point in {(x, y); /*+y"*<1}, is a beta-distributed
random variate. Ahrens et al. considered the normal approximation for
the case a>1 and b>1, and generated beta random numbers using
normally distributed ones. Atkinson et al. and Schmeiser et al. con-
sidered another functional approximation. Cheng proposed an ingen-
ious algorithm to generate random numbers with modified (second kind)
beta distribution, which can be transformed into ordinary beta random
numbers by simple calculation.

The main tool in all these algorithms mentioned above is a so-called
rejection technique. To generate a random point in some possibly com-
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plex region A, not necessarily bounded, one finds another simple re-
gion B covering A, then, generate random points uniformly on B and
select those which are contained in A. It is evident that selected
points are uniformly distributed over A. This process to generate
random points in A is called rejection method. Squeeze method is an
elaborated technique to improve the efficiency of the rejection method.
Let C be a region which contains A and let D be an another region
which is contained in A, that is, Dc AcC. When it is time consum-
ing to test if a random point in B, say P, is also in A (P¢€ A) or not
(P¢ A), one may save time by testing first if Pe D andfor P¢C be-
fore testing Pe A or not. If Pis in D, it is also in A4, and if P is
not in C, it is not in A. This technique has been widely applied to
generating algorithms of random numbers with various statistical distri-
butions and the name was given by Marsaglia [7].

In this paper we propose three algorithms corresponding to differ-
ent shapes of the distributions, that is, U-shaped, J-shaped and unimodal
ones. Each algorithm needs several constants dependent on two shape
parameters, a and b, and these values must be computed beforehand.
Accordingly, our algorithms are not very effective when shape param-
eters change from time to time, but there are many situations where
a sequence of random numbers with fixed shape parameters are re-
quired. In such cases our algorithms are superior to other existing
algorithms mentioned above.

We give precise descriptions of the algorithms in the next section,
and show results of timing tests comparing with other algorithms in
Section 3.

2. Method

2.1. Stratified rejection method

Efficiency of the rejection method depends on two things which
are, in general, contradictory. One is easiness of generating a random
point in B, and the other is the expected number of necessary random
points in B to get one in A. The latter is given by the ratio |B|/|A|,
where |A| is an area of A.

Now we consider a technique to sample easily from A keeping the
ratio near to one. Let B,, B,, --- be a decomposition of B such that
sampling from each subset is easier. We call B, the jth stratum of
B. Let g, be an area of B,. Our sampling plan is as follows: First,
we randomly choose one stratum, say B,, according to the ratio g,:¢;:
-++, then generate a random point uniformly on B,;. If the point is
not contained in A, this sampling is a fail and the same sampling pro-
cess is tried again, otherwise the point is the required one. We call
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the above technique as stratified rejection method. As the stratifica-
tion is used only to simplify generating random points in B, correctness
of the method is easily verified. It is expected to be more efficient
than the old one by designing a fine stratification, since the expected
number of random points in B necessary to get one sample from A is
the same for two methods and since the additional step to choose one
of the strata randomly is not so time-consuming.

In the following, we apply this technique to a beta random num-
ber generation. We consider respective algorithms according to differ-
ent shapes of the distributions:

Case 1) a, b<1,

Case 2) a<1<b,

Case 2) b<1<a,

Case 38) a,b>1 and

Case 4) (a—1)(b—1)=0.

Since a beta distribution is symmetric in ¢ and b, case 2) is included
in case 2): If x is a random variate of case 2), 1—« is a random
variate of case 2). For the last case, the inverse function method
seems to be efficient if either a or b is not equal to one. If a=b=1,
y=/f(x) becomes a uniform density. We treat three cases, 1), 2) and
3), in the following.

2.2. Algorithm for Case 1)
Let ¢t be a real number in (0, 1) and let a function g(x) be defined
on (0,1) by

c(1—t)-tant, for 0<2<t,
(2.1) 9(x)=
ct*{(1—x)!, for t<x<1.

Let B be a region between y=g(x) and z-axis and let A be a region
between y=f(x) and x-axis, which is completely covered by B. Let
B, and B, be two strata of B divided by the line x=t. To sample
from each stratum, use inverse function method; (tu*, f(tyu'~“/*v) is a
random point in the left stratum and (1—(1—¢)(1—u)"?, f(£)(1—u)'"""v)
is a random point in the right stratum if » and v are uniform random
numbers. If

(2.2) f(@)> ftu- Yy (=g(x)v) , where z=tu'*,

in B, or

(2.3) f(x)>f)(A—u)" Y (=g(x)v),  where x=1—(1—¢t)(1—u)",
in B, is true,  is a desired random number. (2.2) or (2.3) is equivalent to

(2.4) (A—2)/A=t))"'>v
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or
(2.5) @ty >,

respectively. To avoid the time-consuming computation of power opera-
tion, we apply the squeeze method to this case. Note that

2.6) (A—tP'—D/t+1>(1—z)*>A—bz+1, for 0<a<t,
@7 (-t @—1)/A—t)+1>a>(@—1)(@—1)+1, for t<w<l.

These inequalities are well used for squeezing steps.

A free parameter ¢ of this algorithm must be determined so that
efficiency of the algorithm becomes maximum. Efficiency of stratified
rejection method may be measured by the ratio of the expected num-
ber of rejection to sampling, |B|/|A|, where |A| is equal to one and |B]
is calculated as

| Bl=(cla)t(1—t) '+ (c/byt*1(1—1)" .
The optimal value of ¢ is given, solving a quadratic equation, by

((a—1)xvab(1—a)(1-D))/(b—a)(l—a—b)),
(2.8)  tw= if a#b and a+b#1,

1/2, if a=b or a+b=1.

It is possible to calculate t,, by the Newton method to avoid a trouble-
some problem which sign should be chosen for the first case. Numeri-
cal experiments show that practically reasonable approximations can be
obtained by the Newton method with single iteration starting from
the antimode for any combination of parameters.

Now we give the formal description of the first algorithm below.

Case 1) (Algorithm B00).

0. t—(1—a)/(2—a—b), s—(b—a)(l—a—b) and r —a(l—a).

t —t—((st+2r)t—7)/2(st+7), p—tla, g— (1—1t)[b, s—(1—1)"", c

t*~t and 7 « (c—1)/(t—1).

u, v<— UR(0,1) and u «— (p+q)u. If w>p, then go to 3.

2. x«t(u/p)* and v—sv. If v<(1—b)x+1, then deliver x. If v>
(s—1)z/t+1 or v>(1—x)*~", then go to 1, else deliver .

3. x—1—(1-t)(u—p)/g)”* and v—cv. If v<(a—1)(x—1)+1, then
deliver x. If v>7r(x—1)+1 or v>2*", then go to 1, else deliver .

p—

Step 0 should be executed once when parameters a and b are set new.
u — UR(0, 1) means to generate a uniform random number and to set
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to u. These remarks are true for the other algorithm descriptions.

2.3. Algorithm for Case 2)

Let t be a real number in (0,1) and let a function g(x) be defined
on (0,1) by

cx® !, for 0<2<t,
(2.9) 9(2)=
ct*{(1—x)y!, for t<x<1.

Same as 2.2, let B be a region between y=g(x) and z-axis and B, and
B; be two strata of B divided by the line x=¢. Using two uniform
random numbers u and v, (tu'?, g(tu'*)w) or (1—(1—t)(1—u)"®, f(t)X
(1 —u)=“"9) is a random point in B, or B,, respectively. If

(2.10) fx)>g(x)v, where x=tu'”,

in B, or (2.3) in B; is satisfied, # is a desired random number. (2.10)
is equivalent to

Q—x)t>v
and using
mr+1>1—x) ' >mex+1, for 0<2<t,
where
m;=max (1-b, (1-t)>"'—1)/t) and m,=min (1-b, (1—2£)*'=1)/t),

and (2.7) for squeezing steps, we can construct the algorithm in this
case. To determine the optimal value of ¢ which minimizes |B| where

| B|=(c/a)t*+(c[b)t*~'(1—1)",

we solve non-algebraic equation by the Newton method with the initial
value (1—a)/(b—a). Single iteration is sufficient to obtain the near-
optimal solution.

The formal description of the second algorithm is as follows.

Case 2) (Algorithm B01).

0. t—(1—a)/(db—a), s<—(1—t)*and r —a—(a+b—1)t.
t—t—(t—s(1—t)(1—7)/b)/(1—s7), p—tla, g —(1—1)*"?, 8« min(1—
b, (q—1)/t), r —max (1—b, (g—1)/t), ¢ —q(1—t)/b, c—t*! and d «—
(c—D)/(t—1).

1. u,v+—UR(0,1) and w — (p+q)u. If u>p, then go to 3.

2. xz<—tu/p)*. If v<sz+1, then deliver =z, else if v>rz+1 or v>
(1—=)*"', then go to 1, else deliver =.

3. v—1—-(1-t)((u—p)/g)"* and veecv. If v<(a—1)(x—1)+1, then
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deliver . If v>d(x—1)+1 or v>z*"!, then go to 1, else deliver .

As stated earlier, the above algorithm is also applicable to Case 2):
Exchange a and b, generate x according to B0l and transform x to
1—2.

2.4. Algorithm for Case 3)

In this case, the density function is bounded and B can be chosen
to be bounded. (1.1) has a single mode at

r=xy=(@—1)/(a+b—2).

If a>2 (b>2), there is a point of inflection at x_ (x,), where

r_=xy(1—+(b—1)/(a—1)/(a+b—3)) and

2, =2y(1+VB—1)J@a—1)@+5—3)),

and the left (right) tail of the density decreases faster than the ex-
ponential density.

Let y=g(x) be a function defined as follows (see Fig. 1).

S (=) exp (ri(x—wy)) , if 0<e=2,,
my(x—23)+ f () , if v, <2=w,,
my(x—2)+ f () , if x,<x=w,,
(2.11) 9@)=1 f(@x), if Zy<w=w;,
My —26)+ f () » if z;<w<w,,
My(%—26)+ F () , if vy<e=<1,,
\ f(@) exp (—r(e—a)), if 2, <2<1,
where
{ x_, if a>2,
Xy=
Ty/2, if a2,
% — f ()] f'(%2) if a>2,
x1={ 0, if a<2,
(f(@)—f@e)/(@—x),  if a>2,
mlz{ F(as), if a<2,

My= f(%)/(%2— ) ,
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g(x)

'y:

Fig. 1.
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ry=—f'(x)/ f(2) .

Let B be a region between y=g(x) and z-axis and let B,’s be defined
as follows:

Bi=Bn{0<z <},

B,=BnN {x>x:} N {y>my(x—x)+ f ()} 5
By=BN {x: <@ <2y} N {y<my(x—22)+ f ()},
B,=BN {wy <z <z} N {y <my(x—20)+ (%)}
Bi=BnN {z<z:} N {y>my(x—25)+f(2)} and
Bi=BnN {z;<x<1}.

Random points in B, (B;) are generated by using truncated exponential
random variates. The shape of B; (B;) is triangular and B; (B,) trape-
zoid. Sampling from them is executed by using three or two uniform
variates, respectively.

A squeeze method is also effective in this case using the following
inequalities :

(@) > (f (@) — S (@) (& — Zar) [ (X2 — B0) + f (%) > S (22,)

in B,

F(@)> (f(@x) = S (@) (% — La) /(X3 — Xe) + S (%) > f (6)
in B,,

F(@)> f'(@)(x—21)+ f(21)
in B, and B, if a>2, and

F(@)> f'(@)(x—20)+ f (%)
in B; and Bg if b>2.
Now we give our third algorithm.

Case 3) (Algorithm B11).

0. c—a+b—2, d<—clog(c) and z,«—(@a—1)fc. If ¢>1, then d,—
‘/(b—l)/(a_l)/(c_l)' Set Loy Yz L1y Y19y sy T15 Qsy Loy Yoo L1y Y1 s
r, and ¢, according as Table 1. gq, «— x,—(x;+2,)/2, q; — g+ (xs+2,)/
2—2,, @ — Q+as G—GFq, G — GFHY(2—21)/2, g5 @G+ Yi(2— )/
2, di— (1 —w)/(xi—2,), ds— (1—y)/(x,—2xs), €, —0 and e « 0.

1. w,v<—UR(0,1) and u «qgu. If ¢,;<u<gq, (where ¢,=0), then go
to j+1.
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Table 1. Constants for the algorithm Bll

(a>2) (a<2)
X2 .’04(1-—do) $4/2
Y2 h(x2) h(x2)
1 zo(1—d) 0
U h(x1) y(1—(a@—1—cx2)/(1—x2))
T3 T+ x2d1]Ye2 X2 Y2
71 (a—1—cxy)/x:1/(1— 1) (not used)
qs Yi/n 0
®>2) ®=2)
Ze z4(1+do) (1+z4)/2
Ye h(xe) h(zs)
X7 .’l}e(l - dz) -1
Al h(z7) ye(14(a—1—cxe)/Ze)
25 L7+ Tedz/Ye 1+ (xe—1)/ye
72 (cxr—a+1)]xz:/(1—27) (not used)
s Y72 0

where Ah(x)=exp (d+(a—1)log(z/(a—1))
+(6—1)log (1 —x)/(b—1))),
di=(1—x;)/(a—1—cxs) and
d:=(1—xze)/(@a—1—cxs) .

2. xe—x,—2u. If v>@—=x)/(x;—2,), then v—1—v and 2 «— x,+x;,—z.
If v<y, or v<d(x—wx,)+1, then deliver x, else go to 8.

3. re—x+2u—q). If v>@—2)/(xs—2;), then v«—1—v and x«— x5+
;—wx. If v<y, or v<dy(x—x,)+1, then deliver z, else go to 8.

4. If ¢,=0, then e «—exp(rx,). w<« 1+(e,—1), z« (log (w))/r; and

v wy(u—q)/(¢:—¢)/e,.  Go to 6.1.

5. If ,=0, then ¢, «exp (—7y(1—2;)). w—1—1—e)v, <« z;,—(log (w))/
7, and v «— wy(u—qs)/(q,—qs). Go to 7.1.

6. w<« UR(0,1), x « x,+(2;—2,) min (w, v) and v « (yx(x — ;) — ys(x — T)(u
—a)/(g:—q))/(x,—x,). If a<2, then go to 8.

6.1. If v<y(r(x—wx)+1), then deliver z, else go to 8.

7. w<«UR(0,1), x < x;— (2,— %) min (w, v) and v «— (ys(x — 2;) — Yo(® — Te)(w
—:)/(@s—a5))/(xs—%:). If b<2, then go to 8.

7.1. If v<y,(—ry(x—2x,)+1), then deliver .

8. If v>f(x), then go to 1, else deliver z.

The area of the region B, |B|, varying according to two parameters,
a and b, is a good measure of the efficiency of the algorithm and we
give the values for various parameters in all cases in Table 2. Accord-
ing to the table, sampling efficiency is very high in almost all cases
except for the case where both values of ¢ and b are very small.
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Table 2. Expected number of sampling

N 0.0l 0.2 0.5 0.8 1.5 5 10

0.01 1.973 1.402  1.249 1.121 1.004 1.008  1.008

0.2 1.595  1.365 1.169  1.063 1.131 1.145
0.5 1.273 1.144 1.112 1.227 1.251
0.8 1.087  1.098 1.178  1.194
1.5 1.089 1.064 1.068
5 1.042 1.045
10 1.045

3. Numerical experiments

We show some timing test results to compare several existing al-
gorithms and to claim the superiority of our algorithms. Compared
algorithms are BA, BB and BC by Cheng [5], AS134 by Atkinson et al.
[4] and B4PE by Schmeiser et al. [8]. BA and BC may not work for
small value(s) of parameter(s), say min (a, b)<0.05, according to over-
flow effect. AS134 is only applicable for the case 2) and B4PE is only
applicable for the case 3).

All algorithms are coded in FORTRAN and timing tests are exe-
cuted using FACOM M-200/0S-IV at Tsukuba University. For uniform
random numbers, we used in-line generator of multiplicative congruen-
tial method to avoid linkage to and from a subroutine: It takes about
4 psec. to link a subroutine and about 1 usec. to generate one uniform
random number.

Results are summarized in Table 3. All numbers are average of
25,000 values. The only algorithm competing with ours is B4PE with
both parameters greater than 2. In order to obtain such high per-
formance, we must prepare several constants depending on parameter
values before generation. The time to compute these constants is
called set-up time and that of each algorithm is listed in Table 4.
From these two tables we conclude the followings. Roughly speaking,
our new algorithms are recommended for the consecutive generation,
of size at least 6 (if a,b>1) or 3 (otherwise), with the same parameter
values. For the case where parameter values change from time to
time, BA algorithm of Cheng is preferable except for some skew cases,
where BC, a time saving modification of BA, becomes efficient. Pro-
gram length of each algorithm is given in Table 5. Memory require-
ment is of little interest at present and the difference in the table is
not practically significant. Our complete subroutine program of beta
random number generation consists of 180 FORTRAN statements in-
cluding all 5 cases stated in Section 2.1, and it is not too big as a part
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of a large-scale computer simulation program.

Table 3. Timing tests

N 000 02 05 0.8 1.5 5 10 100
0.01 37 27 2 22 20 20 20 20
* * * * * * * *

* * * * * * * *

- - - Z 3 3 3 3

0.2 32 28 24 22 2% 25 25
56 73 79 83 86 87 88

42 41 41 41 40 40 39

— — — 35 37 38 37

0.8 23 23 26 27 30
40 6 53 55 57

37 38 41 41 42

— 36 39 40 40

1.5 15 13 14 15
6 51 52 55

32 38 42 7

23 16 17 18

5 12 12 13
48 48 50

33 35 41

13 13 15

10 12 12
49 49

33 39

13 15

100 (1st row : B00/B01/B11) 12
(2nd row: BA ) 49

(3rd row : BB/BC ; 34

(4th row : B4PE 13

(5th row : AS134 )

Remark 1. * shows that overflow occurred in the “EXP” function

in FORTRAN.

2. — shows that the algorithm is not applicable in this

case.

Table 4. Set-up time

B00/B01/B11  BB/BC BA B4PE AS134
a,b<1 35 1 0 — —
a<l1<b 51 1 0 — 60~130
1<a,b<2 80 17 0 33 —
1<a<2<b 108 17 0 80 —
2<a,b 133 17 0 130 —

Remark. — shows that the algorithm is not applicable in this case.

301
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Table 5. Program length (a number of executable statements)

B00 BO1 B11 BA BB BC B4PE AS134

set-up 9 11 46 7 5 0 39 31
generation 16 15 46 20 15 10 54 9
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