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Summary

A method is given to classify rows and columns into subgroups so
that additivity holds within each of the subtables made of the grouped
rows or the grouped columns. The least squares estimators of the cell
means are easily obtained for the resulting linear model together with
their variances. An estimator of the error variance ¢’ is given when
there is only one observation per cell. A treatment of an ordered
table is also given.

1. Introduction

Suppose that we are given two-way observations with replications
Y. and assume the model

ytjk:ﬂij+eijk (’l:=1,' ce, .7.=1r' ) b; k=1,' "%y ’r) ’

where the ¢, are independently and normally distributed with mean
zero and variance o’

In testing the hypothesis of no interaction the usual F-test can be
applied. If the hypothesis is accepted, the p,; can be modeled by g,
=p+ae;+p8;. When the hypothesis of no interaction is rejected, how-
ever, we are faced with a more complicated model since the degrees
of freedom for interactions are usually large, and it is desirable to
simplify the structure of the interaction.

Practically it would be helpful if we can partition the sets of levels
of both the factors so that interaction exists only between pairs of
factor levels belonging to different sets, that is, p;;—py;—piy+pe;y=0
unless both % and 4/, 7 and 7’ belong to different sets. In this paper
we give a method for finding such a partition with the proposition
that the probability of judging any partition to be significant when
actually the additivity model holds is at most equal to a preassigned
significance level.
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78 C. HIROTSU

When r=1, special structures in interaction effects are often as-
sumed such as in Tukey [15], Mandel [11], [12] and Johnson and Gray-
bill [9]. Although these methods are often successful, it would be
helpful to have other approaches for those cases where there is not
any intrinsic interest in the special models. Our method can also be
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applied to the case when r=1. For this case Johnson and Graybill [8]
gave an approach in which they also assumed no special structures in
the interaction effects. Our method is expected to complement the
graphical technique introduced by Bradu and Gabriel [2] to find sub-
tables with simple structures.

An example is given to illustrate some of the ideas. The two-way
data in Table 4 of Johnson and Graybill [9] are plotted in Figures 1
and 2 by the method of Mandel [10]. They suggest the existence of
some interaction. The first plot suggests that rows 1, 2, 6 and 7 do
not interact with columns and that rows 3 and 4 do not interact with
columns. The interaction is between the sets of rows {1, 2,6, 7}, {3,
4} and {5}. Similarly the second plot suggests that columns 1 and 2
do not interact with rows and that the column 3 is very different from
them. These plots suggest the pertinency of considering the row-wise
interaction models introduced in Hirotsu [4]. A multiple comparison
method is required since the grouping of rows and/or columns is not
given in advance to obtaining the data.

2. Row-wise and column-wise interactions and a simplified model

Reparametrize the p,, as
p=p+(P.QP)r

where g is a column vector of g,’s arranged in dictionary order, sz
+

is the additive part of g with the b(:—1)+jth element being p;.+p.,
—p.. and y=(P/@ P/)p is the interaction part. We use the usual dot
notation so that g, means the average of p;;, with respect to j, ® de-
notes the Kronecker product and P/ is such an (n—1) by » matrix

-1/2 2
that [n P,J"'} is an orthogonal matrix of order =, so that P,P/=I,—

n'j.j., where I, is an identity matrix of order r and j, an 7 dimen-
sional vector of 1’s.

The contribution of two particular rows, the mth and the nth rows,
say, to 7 is given by

2.1) L(m; n)=(1/v 2)P{(ptn — 1) ,

where g, =(gu,**, po)- This is called an interaction element between
the two rows (Hirotsu [4]). If it is known to be zero, one can take
into consideration only those contrasts which are orthogonal to it. Thus
if by any means one can classify rows into homogeneous subgroups so
that in each of them all interaction elements are zero, one can have
a much simplified model. The same can be done with the columns.
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The resulting model may be expressed in terms of nonzero elements
of . However, a more convenient expression of the model is,

(2.2) 2oy =t — g+ (0fB)s
with (aB)..=0, (8).;=0 and (ef),;=(ep)., if 4, € H, and j, j’ € J,, where
H, u=1,-.-., A, and J,, v=1,.--, B, denote homogeneous subgroups of

rows and columns, respectively.

The least-squares estimators g, # and ﬁ(m; m) are obtained simply
by replacing g;;, by ¥, in their defining equations. The variance-co-
variance matrix of £ is also easily obtained by virtue of orthogonality
relations among coefficients. They lead to formulas (2.3) and (2.4) for
the p,;, 1€ H,, jed,.

(2.3) =Yty — U35 S v [ HI)
— 5 Y n(H)— 5 v lnd)+y..]

24) V(u)=la+db-1)ab+{a—n(H)Hb—n(],)}/{abn(H.)yJ)}(e/7) .

In (2.8) and (2.4) n(H,) and n(J,) denote the number of rows and col-
umns contained in the sets H, and J,, respectively.
In case r=1, an estimator of ¢? is given by

(2.5) =33 3 Wy~ ) I =T N7 YT

where T=3) 3 (¥:,;—¥:..—¥.;+9..)% |[v]® is the squared norm of a vector
v and f=(a—1)(b—1)—(A—1)(B—1) with (A—1)(B—1) being the num-
ber of orthogonal interaction contrasts remaining in the model. It
should be noted that the z,; and the & are better estimators of the
p:; and ¢ than those which might be obtained from separate subtables.

In Sections 3 and 4 simultaneous tests for no interaction are given
for the cases r=2 and r=1, respectively, so that the probability of
judging any interaction element, which is actually equal to zero, to be
significantly different from zero is at most equal to the preassigned
significance level.

3. Simultaneous test procedures for interaction elements when =2

3.1. Simultaneous tests for imteraction elements between rows
The hypotheses

H(m;mn): L(m;n)=0 (m,n=1,---,a)

are tested simultaneously by comparing the sums of squares
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S(m; n)="r||L(m; n)|*=(r/2) R R )

(m,n=1,---,a)

with (@—1)(b—1)d*F{(a—1)(b—1), ab(r—1); a}, where ¢* denotes the usual
unbiased estimate of the variance ¢ and F'(v,, v;; @) denotes the upper
100a% point of the F distribution with the degrees of freedom (»,, »,).
It is easy to verify that the null hypothesis of additivity H, is simply
the union of all the H(m;n). The function S(m; n) is first introduced
in Hirotsu [4] and is called the squared distance between the two rows.
Note that the usual sum of squares for interaction can be written in
matrix notation as

(3.1) T=r|(P:®P)yl’,

where y is a vector of ¥,,’s arranged in dictionary order. Then it is
easy to see that the S(m;n) are the components of 7 and we have

3.2) Pr [max S(m; n)=(a—1)(b—1)a*
X F{(a—1)(b—1), ab(r—1); a}| Hi]se .

As will be mentioned in Section 4, S(m;n) is more sharply bounded
by the largest latent root of a Wishart matrix and the use of it is
discussed in Johnson [7] in a slightly different context. However, we
use the criterion (3.2) here because of a procedure to be given in Sub-
section 3.3. Rows are classified into subgroups so that in each of them
no significant element is included. This is most easily done by making
an a by a matrix of squared distances and then by rearranging the
elements so that the (s, t)th element is S(m,; m,) where S(m,; m,) is
the largest S(m;n) (m,n=1,.-.-,a) and S(m,;m,) is the a—i+1th
largest S(m,; n) (n#m,), see Tables 1la and 1b. Some desirable prop-
erties of the S(m;n) for this procedure are shown in Hirotsu [4]. In
our experience there will not be much difference if the elements are
rearranged according to the size of S(m; m,) (m#m,).

3.2. Interaction element between subgroups

In this section a procedure is given which measures the contribu-
tion of two subgroups of rows to the sum of squares for interaction.
Without loss of generality let the first subgroup be composed of the
first p, rows and the second subgroup be composed of the subsequent
py, rows (p+p,<a). Then we define the interaction element between
the two subgroups by

(3.3) LA,--+,p; p+1,-++, D+ 1)
={p2(D+ )} {02y -+ P2y — D1y — D1 0,00, 0)Q P} pe .
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The sum of squares for (3.3) is

3.4) S, -, p; pA1, 0, Dt D)
=r||L1,- -+, pi; pi+1,--, B0
PP 2

b Py
= 2P xZ 2] -L 2] (yij~_yi~)__1_ ) (Y15 —Y:..)
pitpe 251 p ist Py i=p+1

Since it is also a component of T, it can also be compared to (¢ —1)(b—1)
-*F{(a—1)(b—1), ab(r—1); @}. Sometimes it will reveal an interaction
effect between groups even when no interaction element between two
rows from different groups is significant. This is because pooling homo-
geneous rows amounts to increasing the replication number. It should
be noted that the sum of squares of (3.4) is 2p,p:/(p,+p,) times the
usual sum of squares for interaction in the 2xb table made of averaged
observations over p, and p, rows.

If sqQ,---, p; »+1,--+, p+p) is significant and SQ,---, pi+p:;
Pi+p.+1, -+, Di+D+ 0 (=a)} is not significant one is still recommended
to have both of #,=L(Q,---, p;; p,+1,---, p,+p) and y,=L(,- - -, pi+p:;
p+p.+1,-+-+,a) remaining in the model, since they together sug-
gest the existence of interaction among the three subgroups, see Ex-
ample 1. The simple formulas (2.3) and (2.4) can be used only for this
model. It should also be noted that, as it is seen from Figure 3, an
equivalent model is obtained if we replace 7, and y, by y.=L(1,---, p;;
p+p+1,--+,a) and y,=L(A,- -+, p, py+2:+1,--+,a; p+1,- -, pi+m) Or
by 7i=L(p,+1, -+, pi+p:; 21+ 0:+1,--+,a) and ye=L{1,---, p; »+1,
..-,a). When no interaction element is revealed to be significant by
the procedures of Subsections 3.1 and 3.2 we can proceed as in Sub-
section 3.3.

3.8. Adding procedure

Classify rows into three subgroups noting carefully the elements
of the matrix of the squared distances. Suppose they are composed
of the first p, rows, the subsequent p, rows and the last p; rows, 3 p;
=a. Then compute the statistic

S@,-, p; ;1o i+p)+SA, - -, P2 DiHDAL, e, @)
=S, -+, p; Ptm:tl,---, Q)
+S@,- -, oy PiADeAL 0 DAL, DY)
=S(p+1,- -+, pi+D5 Di+D+1,-4-, Q)
+S81,- -, p; pi+1,--+, Q)
and compare it with (a—1)(b—1)s*F{(a—1)(b—1), ab(r—1); a}. If the
statistic is larger, the grouping into three subgroups is significant and
we obtain the model with 7, and #; of Subsection 3.2. Again the prob-
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ability of judging this to be significant when H, is true is less than or
equal to @ since the statistic is still a component of 7. If it is smaller
we can try four subgroups, five subgroups and so on until each sub-
group is composed of only one row, this obviously giving T. If no
significant element is obtained in this process, we can apply the addi-
tive model for the whole table. Otherwise we proceed to classify rows
and columns simultaneously.

4. Procedure for a two-way layout with exactly one observation
per cell

When r=1, we cannot apply the previous procedures since we do
not have the within cell sum of squares and have no independent esti-
mate of ¢®.. It is shown, however, that the sum of squares for the
interaction element between any two rows or between any two sub-
groups is bounded above by the largest latent root of a Wishart
matrix.

LEMMA 1. The maximum value of |[{(ay,- -+, @)@ P}y|* with re-
spect to a, subject to the restrictions that > a,=0, 3 ai=1 is the largest
latent root of a Wishart matrixz which is distributed as W{o*Luna-1,5-1>
max (@—1, b—1)} under H,. Here y is a column vector of y;;’s arranged
in dictionary order.

ProoF. It is easily verified that
max H(as - - -, @) @ P{ Yyl =max (X a:z)) (X a:2:)
> a,=0,% ai=1
=maximum latent root of (z;,---, z.)(z, "+, 2.),
or equivalently maximum latent root of X} z:z,
or maximum latent root of P/(z,---, 2.)' (21, *, Z.)Po,
since (2, +, 2,)J.=0,

where z,=P!Wu—Yi.—Y1+Y.,s+*» Yo—Yi.—Y+y.). But by Theorem
4.1 of Johnson and Graybill [9] the null distribution of 31 zz, is W(s*-
I,_,,a—1) when a=b. When b=a, similar arguments show that P/(z,
coo, 2)(21 ¢ 0y 2,)P, is distributed as W(s*I,_,, b—1).

The sum of squares for any interaction element between rows or
between subgroups is obtained by specifying the a/’s in |[{(a;, -, @) &®
P/}y|* subject to the restrictions on the a,’s.

Johnson and Graybill [9] studied the distribution of the ratio of
the largest latent root I, of the Wishart matrix to its trace which is
equal to T and tabulated the approximate 100a% points u, for some
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values of @, a and b. They used it in another paper (Johnson and
Graybill [8]) to make simultaneous comparisons of all two-by-two inter-
action contrasts. We can use a similar technique for all interaction
elements between any two rows and also between any two subgroups.
That is, we have

Pr[Sz {u./A—u)H(T—1)|H,, for any S]=e,

where S stands for the sum of squares for any interaction element.
Then the process to find significant elements is carried out similarly to
Subsections 3.1 and 3.2. The exact tabulation of u, is given by Schuur-
mann, Krishnaiah and Chattopadhay [14]. It should be noted that if
we apply the process also to columns the total number of interaction
elements compared amounts to

FECZEME0) 200
=<.;_>(3a+3b)—(2a+2°)+1 ., a,b=3.

Even for a moderate value of a or b this will be too large for the
Bonferroni inequality to be successful for obtaining the critical value.

When one factor, rows, say, is a classification factor, one may wish
to deal with the separate subtables assuming additivity after classifying
rows. This can be done in the contexts of Sections 3 and 4 just by
leaving the columns unclassified, see Example 2.

5. A treatment of an ordered table

When there is a natural order in the levels of one factor, columns,
say, not all interaction contrasts are interesting. For this case Hirotsu
[6] showed the desirability of considering contrasts »=(P;Q P;*')u,
where P} is a b—1 by b matrix, the mth row being given by

{mb(b—m)}*(b—m, -, b—m, —m,++-, —M) .
Following this we may reparameterize the g, as
(5.1) ﬂ=g+(Pa®B*“P;")71

where B*(j, P})(j, P¥). Since B*'P}P} =I,—b"'j,j, the equation
(5.1) is well defined.

The least squares estimator for newly introduced parameters are
obtained again by replacing g by y in their defining equations, where
y is a column vector of y;,.. For example, the least squares estimator
for 7 is found to be H#=(P;Q P;*")y. The statistic ||7|* is well approxi-
mated by a constant times a y* variable, adjusted for the first two
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cumulants. That is, in case r=2, we have that the probability,
(5.2) Pr[|I7/’=(a—1)(b—1)a’F{v, ab(r—1); e}| H] ,

is approximately less than or equal to «, where y=(a—1)(b—1)}/tr (P¥
-P¥). A better approximation is given in Hirotsu [6] together with
the table of (b—1)¥tr (P P;F) .

We can define modified interaction elements between two rows and
also between two subgroups of rows in the similar way to previous
sections and apply procedures in Subsections 3.1, 3.2 and 3.3 referring
to the inequality (5.2). For example, the modified interaction element
L* between two subgroups of rows, (1,---,p) and (p+1,:-, pi+p),
are defined by (8.3) with P, replaced by P}. The sum of squares
S*(1,-+ -, p; o141, -, ;i) for L¥(A,- -+, py; p+1,-+, D1+ py) I8

TP Pob ”2—‘ [ m {% (é ?/tj~/m“yt-->/p1_ ”‘ﬁ” <i yu./m—yi..>/pz}2]

P+ Dy m=t b—m li=a i=p+1 \j=1

and is judged to be significant if it exceeds the value in the right-
hand side of the inequality (5.2).

When a=b, by similar arguments to those in Section 4, the maxi-
mum value of ||{(ay,- -, @.)® P}*'}y|* with respect to a; subject to the
restrictions that 31 a,=0, 3} a?=1 is bounded above by the largest latent
root of a Wishart matrix which is distributed as W((1/r)s*P}*' P}, a—1)
under H,. However, the author has not obtained the critical values
like the u, for W(d’l,_;, a—1).

6. Examples

Example 1. We apply the procedure in Section 4 for the data in
Table 4 of Johnson and Graybill [9]. The total sum of squares for non-
additivity is 7'=1044.19. The latent roots of the relevant Wishart
matrix are [,=1029.05 and [,=15.14. The wu, is 0.9168 for «=0.05 by
Table 1 of Johnson and Graybill [9]. Therefore, we compare the sum
of squares for any interaction element with {uw,/(1—u)}(T—1)=166.79.

The matrix of squared distances for rows is given in Table 1la.
It is rearranged as Table 1b by noting the largest element S(1;5). As
mentioned at the end of Subsection 3.1 it is easy to interpret Table 1b.
The fifth row is found to behave very differently from the other rows.
Hence we extract a vector ¢,=427Y%1,1,1,1, —6,1,1). The sum of
squares for it is found to be S(,2,7,6,4,3;5)=777.32. Although
there is no significant element left in Table 1b, any two rows chosen
one from each of the subgroups of rows (1, 2, 7, 6) and (4, 3) show some-
what large squared distance. Therefore, try the vector ¢,=12'*1,1,
—-2,-2,0,1,1) to find S(,2,7,6;4,3)=217.74 which is significantly
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Table 1. Matrix of squared distances among rows

a. Original
Row Row number

number 1 2 3 4 5 6 7
1 0 10.8 149.6 126.3 730.0 37.4 17.1
2 0 84.4 67.0 574.7 8.1 6.4
3 0 1.0 218.9 42.8 111.1
4 0 249.5 30.8 91.4
5 0 451.5 629.5
6 0 16.4
7 0

b. Rearranged
Row Row number

number 1 2 7 6 4 3 5
1 0 10.8 17.1 37.4 | 126.3 149.6 730.0
2 0 6.4 8.1 67.0 84.4 574.7
7 0 16.4 91.4 111.0 629.5
6 0 30.8 42.8 451.5
4 0 1.0 | 249.5
3 0 218.5
5 0

large. This together with S(1, 2,7, 6, 4, 3; 5) explains 95.3% of T.

The squared distances among columns are calculated as S(1;2)=
70.42, S(1;3)=548.58 and S(2; 3)=947.30. The sum of squares S(1, 2;
3) is found to be T—70.42=973.77. It explains 93.3% of T. These
results agree very well with what suggested by Figures 1 and 2. Thus
we reach the model

(6'1) [4‘:[:‘*‘ {(Qu Qz)®6_1/2(1, 1’ "_2),} (alv az)' ’
where
(6.2) (3, 02)' =1{(g1, @) ®674(1, 1, —2)} e .

The least squares estimates of 4, and J, are obtained by replacing
p by y in (6.2). They give 31432 =(—27.056)*+ (—14.555): =943.87,
which explains 90.4% of T. The departures of the g, from y,.+y.;,—v..
are given by the last term of (6.1) with 8,’s being replaced by their
least squares estimates. They can also be obtained directly from the
formula (2.3) and given in Table 2, where rows are rearranged.

The variance of f,, is obtained by the formula (2.4) and an esti-
mate of ¢ is given by #=(T—943.87)/(12—2)=10.03.
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Table 2. Departures of the fi; from y,.+y.;—v..

Column number
Row number
1 2 3
1 —3.42 —3.42 6.84
2 —3.42 —3.42 6.84
7 —3.42 —3.42 6.84
6 —3.42 —3.42 6.84
4 1.73 1.73 —-3.45
3 1.73 1.73 -3.45
5 10.23 10.23 —20.45

In classifying rows one may try the vector ¢,=20"'41,1,0, 0, —4,
1,1) to find S(, 2,7, 6;5)=944.65 being significantly large and wish
to have this element only in the model because S(1,2,7,6,5;4,3)=
50.43 is far from being significant. However, as stated at the end of
Subsection 3.2, the author has the feeling that it should not be done
without any intrinsic interest in the vector g; because it specifies the
model too strongly.

For comparisons the biplot of deviations from the over all mean
was applied. It shows that two subgroups of row markers (g,, gz, 95 97)
and (g;, g,) are approximately collinear making angles close to 90° with
an appoximately fitted line through column markers, which suggests
the same result obtained above. Goodness of fit coefficients defined by
Bradu and Gabriel [2] for the three columns in the biplot are 0.978,
0.583 and 0.938. They suggest that although in the plane the column
markers appear nearly collinear, in three dimensional space they are
not. This situation leads one to try a biplot of only two columns. The
biplot of the first two columns is then verified to indicate that an ad-
ditive model might be appropriate for the first two columns.

The next example is taken from Davies [3].

Example 2. Aluminium alloys. Corrosion resistance.

This relates to the testing of nine Aluminium alloys for their re-
sistance to corrosion in a chemical plant atmosphere. Four sites in the
factory were chosen, and at each of them a plate made from each alloy
was exposed for a year. The plates were then submitted to four ob-
servers, who assessed their condition visually and awarded marks to
each from 0 to 10 according to the degree of resistance to attack. Thus
the data were originally of a 9x4x4 experiment. However, we can
treat them as a two-way table, Table 3 here, averaged over the ob-
servers since there is no evidence of interaction of observers with sites
and alloys. According to Davies the unbiased estimate of the variance
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Table 3. Averaged corrosion resistance of aluminium alloys (r=4)

Alloys
Sites
1 2 3 4 5 6 7 8 9
1 5.50 5.50 5.25 5.00 6.50 5.00 2.25 6.00 7.00
2 8.00 8.00 7.25 7.50 6.00 5.00 5.50 5.75 6.50
3 3.25 3.75 5.00 3.25 4.50 3.00 1.00 5.50 6.25
4 4.25 4.00 6.00 4.75 6.00 4.50 3.75 7.00 6.00
1,3,4 4.33 4.42 5.42 4.33 5.67 4.17 2.33 6.17 6.42
2 8.00 8.00 7.25 7.50 6.00 5.00 5.50 5.75 6.50

to assess the interaction involved in Table 3 is 6°=0.90 with the degrees
of freedom 105. The purpose of the experiment is to choose an ap-
propriate alloy for each of four sites which are considered to be an
uncontrollable factor. Then it is preferrable if an alloy is suitable for
as many sites as possible since it would be inconvenient to have to use
different alloys in different sites in a factory. The squared distances
between rows, which should be compared with 244°F(24, 105; )=35.26
(@=0.05), 43.04 (¢=0.01), are as follows: S(1;2)=38.36*, S(1;3)=8.53,
S(1;4)=17.69, S(2;3)=>52.75**, S(2; 4)=49.61**, S(3;4)=11.69. The
site 2 seems to behave very differently from other sites and after elim-
inating it we can find no significant element. The squared distance
between the subgroups is found to be S(1, 3, 4; 2)=64.04, which eluci-
dates approximately 71.70% of T'=89.32. The mean responses of alloys
averaged over the sites in each subgroup are shown in the lower half
of Table 3. From it we can derive a tentative conclusion that for sites
1, 3 and 4 the alloy 9 or 8 would be suitable and the alloy 1 or 2 for
the site 2.

Another example given in Hirotsu [5] is a two-way layout without
replication examining the adaptability of 18 varieties of rice to 44 com-
binations of regions and years. The procedure was applied there by
using the percentage of the sum of the sums of squares for orthogonal
interaction contrasts to the total sum of squares 7T since the distribu-
tional property of Section 4 was not obtained then. Nevertheless it
succeeded in classifying varieties into four types, Formosan type, Indian
type, Japanese and Korean type and the special variety called Hybrid.
Regions were also classified properly into six groups, Korea and the
northern part of Japan, southern part of Japan, tropical regions, Nepal,
Egypt and Mexico.

7. Conclusion

Advantages of considering interaction elements here will be:
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1. The simultaneous tests must be more powerful than the usual ones
for interaction contrasts with one degree of freedom since the critical
values used are the same in both tests.

2. The resulting model aids interpretation.

In fact by the adding procedure of Subsection 3.3. the test can
have the same power as the usual F' test when r=2. However, in
case too many subgroups of rows and columns are necessary to define
the model, the best thing to do will be to find some appropriate trans-
formation for the data. To this point one should refer to Tukey [15],
Box and Cox [1] and Schlesselman [18]. The method here is expected
to suggest whether any kind of transformation is necessary or not.
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