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Abstract

L, notion of the weak, mean, and strong consistency of the kernel
method of multivariate density estimation is proposed and studied.
The results expand, unify, or generalize most known results in the
literature. Rates of convergence in mean and strong L,-consistencies
are presented.

1. Introduction

Nonparametric density estimation has received a good deal of at-
tention recently. Various approaches are suggested and studied for
density estimation from a nonparametric viewpoint; we refer the reader
to a paper by Fryer [3] for a recent review of the subject.

One such technique for estimating a probability density function
is the so-called “kernel method” originated by Rosenblatt [10] and
developed rigorously by Parzen [9] and Nadaraya [8], among many, for
the univariate case and extended to the multidimensional case by
Cacoullos [1], Van Ryzin [13], and Riischendorf [11], among others.

Let X,,---, X, be a random sample from an m-dimensional dis-
tribution (m=1) with probability density function (pdf) f(x) and dis-
tribution function (df) F(x). Let k(u) be a known pdf defined on the
m-dimensional Euclidean space R™ and satisfying the following condi-
tions:

1.1 sup k(u)<oo and ||u|lk(w)—0 as [|u]|—oc.

Also let {a,} be a sequence of real numbers such that a,— 0 as n— oo.
Further conditions on k and a, will be stated in the sequel. The ker-
nel estimator of f(x) is defined by:
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) f@=a | He—waldF.w=(maz) 3 ke—Xe,

where k[(w_y)/an]zk[(wl—yl)/a’m ] (wm_ym)/an]‘

When discussing the consistency of the estimator (1.2) most authors
were concerned with pointwise or L. (uniform)-consistency, see, e.g.,
Parzen [9], Nadaraya [8], Cacoullos [1], Van Ryzin [13], and Riischen-
dorf [11] among others. Leadbetter [5] discussed the Ly-consistency by

showing that under some conditions E S [ f'(x)— Sf(x)]’dx converges to 0

as n— oo when m=1. The purpose of the present investigation is to
define a L, consistency in probability, in the mean, and strongly and
discuss under what conditions (on a,, k, and f) is f(x) consistent, 1<
p=oco. First let us give a definition.

DEFINITION 1.1. For any 1<p< oo, let ||/ — f|,= (S' Fa)— f(m)|vdx)”"
and for p=oo, let ||f—f||m:sup|f(x)——f(x)l. It is said that £ is weak-
ly L,-consistent if || f —f H,,—»Ozin probability as n— oo, that f is mean
L,-consistent if ||f—f|,—0 in the mean as n—oo, and that f is
strongly L,-consistent if ||| f—f||,—0 with probability one as n— co.

The purpose of this note is two-fold ; first to discuss L -consistency

of f for any p, 1=p=<oo and second to discuss the rates of convergence
in L,-consistency. We shall attempt to present the results using the
most widely known conditions. Precisely, we shall establish mean L,-
consistency under conditions similar to those of Parzen [9] and Cacoul-
los [1] and establish strong L,-consistency under conditions similar to
those of Nadaraya [8] and Riischendorf [11]. This is done in Section 2.
Allowing slightly stronger conditions we establish in Section 3 the rates
of convergence in mean and strong L ,-consistencies. Only mean and
strong consistency will be discussed. Note that weak consistency fol-
lows directly from mean consistency. Throughout this paper, C (some-
times subscripted) denotes generic positive constants not necessarily
the same.

2. L, consistency

THEOREM 1. (i) If feL, 1=p<oo, and if na™— o as n— oo,
then

(2.1) llf—fll,,—-»O in the mean as m — oo .
(i) If p=oco, if na™— oo, and if f is uniformly continuous,

2.2) Hf—fl[w—>0 in the mean as n— oo .
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ProoF. Note that (ii) is proved in Theorem 3.3 of Cacoullos [1].
Let us prove (i).

(2.3) |f = FlE<C,{If—E flE+IIE F—£li} .
Now, for 1=p<oo

@y IES-fg=|IEf@—f@rdz—0 asn—eo,

since |E f(:z:)— f@)P—0 as n— oo provided « is a continuity point of
f and that ma™— co, see Cacoullos [1], and since |E f(m)-— f)pP=s

ClE £ (#))*+(f(x))?] which is integrable and converges at every conti-
nuity point x of f to 2C,(f(x))?, an integrable function, thus by Lebesgue
dominated convergence theorem, (2.4) follows. Next,

@5  BIf-Efl,<E|f-Efk=E|1/0)-E f@prds]
But
@8  E{1f@)-Bf@prd

<E sup| f(&)—E @) | 1/@)~E f()lda

<E (sup| f(#)—E f@)** B | 1 /(@) —E f@)ds
But it follows that for 0=v<2,

E {sup|/(2)—E f(@)}'<E* {sup| f(2)~E f(@)]}*

which converges to 0 as m — oo, see Theorem 3.3 of Cacollous [1].
This proof is an easy extension of the proof of (3.9) of Parzen [9].
Next, note that ESI f(x)—E f‘(oc)lzdx—>0 as n— oo by an application
of the Lebesgue dominated convergence theorem. Thus, it remains to
show that for any v=2, E {sgplf(w)—E f(®)]}*— 0 as m— oco. Let 7,(?)
= f_‘; % and ¢(t)=S e *I(x)dx. Then it follows that,

2.7

A
-

F@=(5=)" | e stantyntrat
Hence

@8 (sl f@-E s (L)

Slr-'

31 | Ig@.-t)llev s —E emdt]’

j=1
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=(z) R B
Note that |Y,.,,|§2S|¢(a,,-t)|dt, j=1,---,n and Y, -+, Y,, are iid ran-
dom variables. Thus by a theorem of Dharmadhikari, Fabian, and
Jogdeo [2] we have that for any v=2 and all =,
E {3 Y, '<C,(nap) .
Hence
(2.9) E {sup | /(#)~E f(2)}* S Cpnaz)™" .
Then part (i) follows from (2.4), (2.6) and (2.9).
THEOREM 2. Let k be a function of bounded variations and assume
that for any >0, i exp {—enal"} < co.
(i) If feL, 1§1;=<100, then
(2.10) Il f @) —f(@)|,—0 with probabilily one as n — oo.
(ii)) If p=oo, f is uniformly continuous, then
(2.11) Il f(x)— f@)|.—0 with probability one as m — oo.

PrROOF. Again part (ii) is proved by Riischendorf [10], Theorem
1(A). Let us prove (ii). Again notice that

£ (@) — f(@)BZC,{ll f(x)—E Ff(@)IE+]|E f(x)— f(@)|E} .

The second term of the upper bound is shown in Theorem 1 to con-
verge to 0 as m — co. Next, :

(212) ||/ (@)—E @)
=[1f@)-E f@)rds= sup | F@)—E F@)) | 1/@)—E f@)lde

But it is shown in Riischendorf [11] that if k is a function of bounded
variations and if for any >0, i‘,exp{-—snaf.’”}<00. then sgp[ f(2)—
E f(x)l—»O with probability one a;_l'n—*oo, hence we need only to show
that Sl f (x)—E f(x)ldx—»O with probability one as n—oo. Let B(0, 5)

denote the m-dimensional ball centered at the origin and of radius »>0.
Thus we have

@13) {If@—E f@lds
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|f@)—E f@)de+{ 1f@—E f@)de

- S.@(o,v» B0, )

<V (B0, 7)) sup | f@)~E f@)|+{ . 1f@)—E f@lde,

where V (B(0, )) denote the volume of $(0, 7). Let us deal with the
second term in the rhs of (2.13).

(2.14) |f(%)—E f(x)|dx

S B0, )

A

Flax)dz+ E f(z)dx

s| S
B0, 7) B0, 7)

/@) - f@ls+2|_  Ef@ds

- S.@(o, o) B0, )

<V (B0, 7)) sup| f(&)-E fm)l+2 | E fds,

(0,
since S Fx)dz=1 and SE Fx)dz=1. But it is not difficult but tedious
to show that for any 0>0 we can choose 7 such that for n sufficiently

- large,

(2.15) E f(x)dz<3 .

S-‘Bc(O, 7)

From (2.13)-(2.15) it follows that for sufficiently large » and large =
we have

(2.16) I/ =B fIh=V (BO, HIF—E fll. -

The desired conclusion now follows.

In the next remark we establish the necessity of the conditions of
Theorem 2 above. We remark that for m=1, and p=co the result
appears in Schuster [12].

Remark 1. Assume that & is a function of bounded variation and

that for any >0, i‘, exp (—ena’™)<oo. A necessary condition that
n=1
(2.17) Ilf—gllp —0 with probability one as n — o

for some measurable m-dimensional function g in L,;
(i) When 1<p<oo, then g is the L, pdf of F'.
(ii) When p=oo, then g is the uniformly continuous pdf of F'.

ProOF. (i) For 1=p<oco and using the C,inequality, see Loeve
[6] p. 153, it follows that:

2.18)  ||E f—gl=C I/ -E flg+If—glE} =0  w.p. 1,
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as m— oo, by the argument of Theorem 2 and the assumption (2.17).
Hence S |E f (x)—g(x)Pde — 0 as n — oo and thus S (E f (x))Pdx — S g2(x)dx

as m— oo. Next, if a'=(ay, ---, a,) and b'=(by, - - -, b,), then Sb (E f(x))”

-dx — Sb g°(x)dx as m — co. But from Fubini’s theorem and the Lebes-

gue convergence theorem
b A
(2.19) S E f(x)dx — F(b)—F(a;, by, - -+, bp)+-- - +(—1)"F(a) .

Hence g=f in the Lebesgue sense and by the fundamental theorem of
calculus f=g in the Rieman sense. To prove (ii) we proceed as follows:

(2.20) IE f—gll.<|f—E flla+llf—gll.—0
with probability one as n— oo,

from Theorem 2 and the assumption of Remark 1. Thus F' is continu-
ous, since if not, let x, be a discontinuity point of F', i.e., P[X=2]>
0, then

(2.21) sup E f(#)=a;™ P [X=u,] sup k[(x—zo)/a,] .

But also we have that

(2.22) sup E f(w)§a;"‘M )

where M =sup k(u), this contradicts (2.20). Hence F' is uniformly con-

tinuous, which implies that E f(x) is uniformly continuous, but g(x) is
the uniform limit of E fi (x) then it is uniformly continuous, and hence

SbE f(x)dx—egbg(x)dac, but using Fubini’s theorem and the Lebesgue

convergence theorem (2.19) holds and thus f=g in Lebesgue sence and
by the fundamental theorem of calculus in the Rieman sense.

Remark 2. Another metric that may be used as a criterion for den-
sity estimate consistency is the so-called, Hellinger distance cf. Matu-
sita [7], defined by

@28) == (17— 2pds) " for any pz2.

The case p=2 is the usual definition of the Hellinger metric. Note
that for any p=2

12— 52 = P s 1~ f =11 £
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Hence | f”’— S =( f —fll,»)"* and we conclude that Theorems 1
and 2 remain valid for the Hellinger metric.

3. Rates of convergence

We start this section by evaluating E||f— 7|}z for 1<p=<oco. First
let 1<p<oo, and note that by the C,-inequality,

@) E|lf@-r@rd
<G,{E |1/@~E f@)pds+| B f&)- f@)Pda],
so that
32  E{l1f@)-Ef@)rd
<E* sup| f@)~E f@IFe B[ | 10— fl@)ida),

where it follows from Theorem 1 that E'*[sup|/(x)—E f@)pers
C(nap) @™, and also E S | f(z)—E f(x)lzdx=s Var (f(x))do=(naz)™
S le(u)du+O((nar)™). Henee
@3 I/ —E fly={E |1/~ f@)rds] =0y

Let us evaluate |[E f—/I§={ B f(x)— f(@)Pdz. Note that
@4 Ef@—f@=|fe—euw—f@hkwds

=B 579w —ew

____1_ b oan _ . ]
+M! So f(x—0a,u; —a,uw)dl |k(wydu ,

m m m 2
where f®(x;t)=>] mti, fP>z; )= 0*f(x) tt;, --- generally
i=1 ax‘l i=1 j=1 axiaxj

[Pz )= }"i‘, e % —ajf@l—t‘ «++t;. Note that if S Wiy » Uy k(u)du=0

=1 =1 amil---axil_ 1
for all 4, +--,%,=1,--+,m and j=1,2, .-+, M—1, then we get

(3.5) E f(z)— f(w)=—1%'— SS: o) £ (@ — B, ; —a,u)d0du .

But it | fuy| - bl e(uMdu<oo for all iy iy, -+ iy=1,2, -, m and if
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f(x) has all of its partial derivatives of order M in L, 1=p<co, then

S k(u) S: f®(x—0a,u; —a,.u)d&durdx .

@6 |IEf@)—f@rdss| ey
We shall show that a;"‘"S’Sk(u) S: f¥(x—0a,u; -—a,,u)d&du'pdx has a
finite limit. Let D(iy, - - -, 1y; f)(®)=0%f(%)/0%; - - - 0x;,. Thus
3.7  fOA(z—bau; —amw)

=31 DV D(Ey e, G F)(@— 0@, - -y - a2(—1)X.

i3=1 iy=1

Hence

3.8)  a;™ \|k(u) S: [ (x—0a,u; —a,.u)dﬂdurdw

m m 1
=C,>---3 S‘k(u)(S D(3y, - -+, Ty f)(a:—«?a,,u)dﬁ)u,-l- . -uiﬂlp
=1 ip=1 0
Xdudzx ,
which converges to C, i‘, . e f_} (S %, - - 'u,-MIPk(u)du> S | D?(%yy « + +y s FI ()]
dr<oco. We therefo;e profrled that EI|f—f]|p=0((na;")“/2+a’:”), 1<p

< oo, thus for a,=n"Ye¥tVm we get that EHf—fll,,:O(n"‘”/‘Z”“’"‘).
When p=oo we proceed exactly as above but assuming that all partial
derivatives of f(x) of order M are bounded and we also get, for a,=

nvarton that E||f— f|l.=0(n ) . collecting the above we have
proved the following theorem.

THEOREM 3. Suppose that k(u) satisfies, Su"l’ cugk(u)du=0 for all

iy iy =12, moand G=1,2, 000, M=1, and | Jug)- -l o(wdu<

oo for all &y, -+, 14=1,2,---,m. Assume that all partial derivatives
of order M or less exist and take a,=mn"Y/mEH+D,

(i) If the partial derivatives of order M of f are all in L, for 1<p
< oo, then,

(3.9) | E||f— fll,=0(n-wex+v),
(ii) If the partial derivatives of order M of f are bounded, then
(3.10) E || f — flle=0(n-/eu+v)

In the next theorem we discuss the rates of convergence in the
strong L,-consistency. Our main tool is the following result of Kuelbs
[4]. Let B denote a real vector space, B a o-field of subsets of B,
and ||-|| a seminorm on B. The triplet (B, 3, ||-|)) is said to be a linear
measurable space if the following conditions are satisfied :
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(i) Addition and scalar multiplication are $-measurable operations.
(ii) For all ¢=0, the set {x € B: ||z||<t} is B-measurable.

(iii) There exists a subset F' of the B-measurable linear functionals
on B such that

(3.11) Hxll=§gglf(x)|, zeB.

Examples of linear measurable spaces include the R™ Euclidean space.
Kuelbs [4] proved the following :

THEOREM 4. Let (B, B,||-||) be a linear measurable space and as-
sume that X, X,, --- are independent (B, B)-valued random variables
such that E f(X,)=0 for all f€F and all j=1, sup E [exp (8]| X;|)] < oo

jz1

for all >0, and for some sequence of positive constants {b;} we have;

(i) 2=318— 00 as n— oo, (ii) b2z — 0 as 1 — oo, and (iii) {z b,X,/
i=1 j=1

an}ml is bounded inprobability. If S,.=é b,X, and C,=(20;1In1no})"?,
n= Jj=1
then for all >0,

(3.12) E [exp {8 sup [1S:/CalF}]1< 00 .

Note that if 4,=sup|F,(x)—F(x)| denote the empirical process and
we set M,=sup (#/21nln n)"*4,, then Theorem 4 applies and we have

for all >0, E [exp (8M?)]<oo. This fact is utilized in developing the
following result.

THEOREM 5. Suppose that k(u) satisfies the conditions imposed on
it in Theorem 2. Assume further that f has all partial derivatives of
order M or less and take a,=(n/lnIn n)~1/2m®+D,

(i) If the partial derivatives of order M of f are all in L, 1=p<oo,
then

(3.13) 11— £1l,=O((n/In In )~y
and
(3.14) lim E [exp (8]l/— fIl,} =1.

(ii) If the partial derivatives of order M of f are all 'bounded, then
(3.13) and (3.14) hold for p=oo.

Proor. It follows from Theorem 2 that for any 1<p=<c
(3.15) I —E Fll,<Ca;"4,<C(In In n/naim)* .

But also it follows from Theorem 3 that for any 1=p=c
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(3.16) IE f— fll,=O(ar™) .

From (3.15) and (3.16), (3.13) follows by taking a,=(n/In In n) V2ma+n
Next, (3.14) also follows from (8.15) and (3.16) in light of the remark
immediately following Theorem 4.

We conclude this section by noting that the rates obtained in
Theorems 3 and 5 are independent from the dimensionality of f(x),
however, the best choice of a, leading to these estimates does.
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