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Summary

This paper is concerned with the set compound squared-error loss

estimation problem. Here, the author obtains Lévy consistent estimate G,,
of the empiric distribution G, of the parameters 6,,---, 6, for a more
general family of retracted distributions on the interval [4, 4+1) than
the uniform on [6#,0+1) as in R. Fox (1970, Ann. Math. Statist., 41,
1845-1852; 1978, Anmn. Statist., 6, 846-853) and exhibits a decision pro-

cedure based on G, with a convergence rate O((n~'logn)"¥) for the
modified regret uniformly in (6, 6,,---, 6,) € 2 with bounded 2. The
author also gives a counterexample to the convergence of the modified
regret for 2=(—oo0, o).

0. Introduction

The set compound problem simultaneously considers n statistical
decision problems each of which is structually identical to the compo-
nent problem. The loss is taken to be the average of n component losses.

Let ¢ be Lebesgue measure and f an integrable function with 0

f=1. Define q()= (SM fd{-‘) - and assume that ¢ is uniformly bounded

by a finite constant, say m. Letting p,=dP,/d¢ we denote by P(f)
the family of probability measures given by

(1) P(f)={P, with p,=q(0)[0, 6+1)f, Vb€ L2}

where 2 is a real interval and we denote the indicator function of a
set A by A itself. The family of probability measures as above are
useful when the population has the distribution with a Lebesgue den-
sity f on (—oo, o0) in general (as Normal distribution), but the range
of observations drawn as a sample is no more than 1 and furthermore
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the right end point of that range is a parameter # (although our den-
sity pJ(x) is a retraction of f to the range 4 through 6-+1).

In this paper, the component problem considered is the squared-
error loss estimation of ¢ based on X with distribution p, € P(f). For
any prior distribution G on 2, let R(G) be the Bayes risk versus G in
this component problem.

Let Xj,---, X, be n independent random variables with X, distri-
buted according to P, € P(f). Let t=(t,, t;,---,t,) be a set compound
procedure: for each j=1,2,..-,n, t(X) is an estimator of 4, based on
X=(X,, -+, X,). Let G, denote the empiric distribution of 4,,---, 4,
and let

(2) D@, t)= S n! j‘;l (t,(x)—0,)dP(x)—R(G.)

where P=P, X---XP,. We shall call D(,t) the modified regret for
a decision procedure ¢t.

With squared-error loss, let 8, be the procedure whose component
procedures are Bayes against G,: 0g (X)=(0, 0, - -+, 0,,) Wwith, for
each 7,

(3) 0,,= 0X)6.0) | 24X )aG.(0)
=, . 000aG.0)\"  adG,

where the affix + is intended to describe the integration as over (X,—1,
X;]. Henceforth we delete + in lower limits of f’s.

If sup {|D(8, t)|: 6 € 2*} =0(n"*), then we will say that ¢ has a rate
Oo(n~).

R. Fox [3] solved empirical Bayes squared error loss estimation
(SELE) problem for the uniform distribution U[#, 6+1) by exhibiting,
without rates, a (one-stage) decision procedure estimating the Bayes
estimator directly. Y. Nogami [8] extends his result to set compound
SELE problem for a family %(f) of retracted distributions on the
interval [, 6+1), demonstrated the existence of a one-stage decision
procedure ¢* with a convergence rate O(n~'?) and showed that ¢@*
has the best exact order n~** of convergence of the modified regret
D(0, ¢*) at f=1.

Furthermore, for the uniform Ul[#, 6+1) case where 6 ¢ (—oo, o)

Fox [2] exhibited a distribution-valued Lévy consistent estimate é,, of
G,. In empirical Bayes problem where the 4, are i.i.d. with common
distribution G, Fox ([3], the second Remark after Theorem 3.1) indicated
(without rates) a convergence of the expected risks to R(G) for a (boot-
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strap or two-stage) decision procedure 6 based on component procedures
Bayes versus an estimate éﬂ. In this paper we exhibit a distribution-

valued Lévy consistent estimate G, of G, for the family P(f) of re-
tracted distributions and obtain a convergence rate O((n~'log n)"*) for

the modified regret D(@, 6), when 2 is bounded. We also give a coun-
terexample to D(8, §)—0 when 2=(—oo, o).

In Section 1 (Theorem 1.1) we exhibit an upper bound of the modi-
fied regret D(4, é) (uniform wrt 8 € 2°) in terms of Lévy metric L(G,,

G,,) of G, and any distribution-valued estimate Gn, when £ is bounded.
In Section 2 we construct a particular distribution-valued Lévy consist-

ent estimate G,, of G, for =(—o0, o0). Under an additional assump-
tion that 1/f satisfies the Lipschitz condition, we show in Theorem 2.1,
by making use of the bound in Theorem 1.1, that the set compound deci-

sion procedure @ based on G, has a rate O((n~!log n)¥*). Section 3
shows in Theorem 3.1 that when 2=(—o0, c0), there is no sequence of
estimates of @ for which D(@, t) converges to zero.

Notational conventions

P abbreviate x P,. A distribution function also represents the

i=1
corresponding measure. We often let Ph, P(h) or P(h(w)) denote
Sh(w)dP(w). R denotes the real line. We abbreviate y—1 to y'. We

denote the indicator function of a set A by [A] or simply A itself.
v and A denote the supremum and the infimum, respectively.

1. An upper bound of the modified regret

. Let 2=[¢, d], where —co<e<d< + oo, throughout this section. Let
G, be a distribution-valued random variable which is an estimate of

the empiric distribution G,, obtained from X,,---, X,. Define é:(é,,
TR 5n) to be the procedure such that, for each j, é,(X ) (=é,,,) is of
form (3) with G, replaced by G. (0/0 is understood to be X)).

The modified regret for a procedure ¢ is of form

(4) D@, t)=n"* z {P(t,(X)—0,)— P(8,,—0,)}

because in (2) R(G,,):P{n"‘ >3 (a,.,,—a,y}.

Lévy distance for two distribution functions F and H of random
variables (cf. Feller [1], p. 285) is defined by
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(5) L(F, Hy=N{e=0: F(y—e)—e<H(y)SF(y+e)+e,
for all ye R} .

Remark that the infimum in the definition (5) attains (see Appendix of
Nogami [7]).

In this section we shall exhibit an upper bound of the modified
regret | D(6, é)l. To do so, the main development is Lemma 1.5 in which
we show that the average expectation of |0A,-,L—0,,,| over the set where

L(G,, Gn)§e is bounded by at most a constant times ¢ with 0<e<1.
For the proof of Lemma 1.5 we use Lemma 5.1 of R. S. Singh [12],
Proposition A of Nogami [7] and Lemma A.3 of Nogami [7]. Hence,
we shall state them here beforehand.

LemMA 1.1 (R. S. Singh [12]). Let y, z and B be in R with z+#0
and B>0. If Y and Z are real valued random wvariables, then for
every y>0

E ((Y/2)— (u/2)| ABY <2 5" |a| 7 (E |y — Y
+(y/el +272* B) E|o— 2}

where at denotes 0Va.

ProPOSITION (Nogami [7], Proposition A). Let I=(a, b] be a finite
interval and let F’; be the retraction of a distribution function F' into
the closed interval [F(a+), F(b+)]. Then,

L(Fy, G)=|(F—G)(a+)|VI(F-G)(b+)|V L(F, G)
where we use + on the line to denote the right limit.
For Lemma 1.2 we need to introduce following definition :

DEFINITION 1.1. With A, a function defined on a real interval I,
the modulus of continuity of & is the function given by

a(e)=V {Mw) —Mw,): o, 0y €I, |o,—w|< e}
for every e>0.

In Lemma 1.2 below, the natural generalization of the inverse
probability integral transformation is used to develop bounds for the
same difference of integrals in Lemma 8 of Oaten ([9], Appendix) with-
out partitioning as in Oaten’s proof.

LEMMA 1.2 (Nogami [7], Lemma A.8). Let I be a finite interval
{a, b} supporting finite measures p and v and let h be measurable on I
wnto a finite interval [c,d]. Let F and G be distribution functions in-
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ducing p and v with F(a—)VGla—)<FO+)AGb+). Then ’Shd(p—u)
has the following family of bounds

d—c
2

{I(F-G)(@—)|+[(F=G)(0+)} +a(L(F, G)+)

x {F(b+)/\G(b+)—F(a—)vG(a—)}ld%cllpI—yﬂ .

We now go back to find the bound of (4). Since X/<6,,=<X, by
(3) whatever be the distribution G, [(6;,—6,)'—(0;.—0,7=2]0,,—0,.I.
Hence, it follows from (4) that

(6) 27| D(8, §)|<n* jz Pl6,.—0,] .

For fixed j, since |éj,,——0,,,|§1, for any 0<e<1,
(7)  Plo;u—0,,|S PILG,, G)>el+ P(|0,,—0,,][L(G., G)<¢)) .

Before dealing with the second term of rhs (7), we introduce two
lemmas.

LEMMA 1.3. For any s,t € R with s<t and for any 3=0 and =0
with 34+17<1,

(8) nt3 A, St—s
i=1
where for each 7,

X;-2
A=P, {(G,,(X,—s)—G,,(X,——t)) [0,+3<X,<0,+1—7] / SX qu,,} .

J

ProoF. Since for each j,

(9) 4,={ la0p10,+05y<0,+1-21{"" qac.}
X F@)(Gly—5)~Guly—t)it

and since [0,+d=<y<0,+1—9]=[y'+7<0,<y—3], the average wrt j=
1,---,n of the numerator in the quotient equals to the denominator.
Also, since f<1, taking the average wrt j over (9) and interchanging

the integral and average operation leads to lhs (8)§S G.(y—8)—G.(y—
t))dy.
But, the Fubini Theorem leads to

| Fw—s)-Fu-tpay={ " dyarw=t—s
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for an arbitrary distribution function F' of a random variable and any
s,t € R with s<t. This gives us the resulted bound.

LEMMA 1.4. For all s€eR,
10 #7 3 P |GG (X~ L(Gn Gzel /|| g dG.) S@—c+3)e .
=1 Xj

PROOF. For j fixed we let z=X,—s. By the definition of L(G,, G,)
and the fact that the infimum in the definition of Lévy distance is
attained,

|G —G)@)[L(G,, G)Se]lSe+Go(z+6)—Go(z—e) .
Thus,

Ths (10)<e {n-l jz P,j.(gz q dG,,)"}
-1 Zi]

+n P,j{(G,,(X,—s+a)—G,,(X,—s—s))/gzqdG,,} .

From the proof of Lemma 1.3 we can see that ¢~!{the first term}
is no more than d—c+1. Hence, an application of Lemma 1.3 with
(s, t, 9, 8)=(s—e, 8+¢,0,0) to the second term of the rhs completes the
proof.

We need Lemma 1.1 (R. S. Singh [12]) in the proof of Lemma 1.5
below which will give us an upper bound of the average wrt j of the
second term of rhs (7).

LEMMA 1.5, For >0,
n ; P(10,,—0,,|[L(G,, G)<e])<ame
=1

where ay=4m {174 24m+(7T+12m)(d—c)}.
Proor. Fix n and @¢[c,d]*. We also fix 5 until (20) and X ab-
breviates X,. Since (3)—X'=SX (o-X')q(o)dG,,(a)/ r 2(6)dG.(8), we ab-
X X’

breviate the quotient of the rhs to y/z and that with G, replaced by
G, to Y/Z. Then,

(11) bo—b,=L Y
Let * denote conditioning on X and {L(G., G,)<e}. Then, by

Lemma 1.1 with y=1 and B=1 and by the fact that 0<Y/Z, y/2<1
we have
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(12) m{%—l] <2 P(Y—y|+2|1Z—2) .
4 V4

By letting I=(X’, X], define by G, the retraction of G into the
closed interval [G.(X'), G.(X)]. Then, by Proposition (Nogami [7]),

L(Gy, G)=L(G., G)VSVT
where S=|(G.—G.)(X")| and T=|(G,—G.)(X)|. Thus,
(13) LG, G)<e = LG, G)<eVSVT (=2) .

By applying Lemma 1.2 (Nogami [7]) with h(6), the retraction of (6—
X")q(6) to I, and weakening the resulting bound,

(14) LGy, G)E2 = |Y—y|S2a0(A+)+m(S+T)

where we use + on the line to denote the right limit.
To bound a(i+), pick w,, w, € I such that 0<w,—w;<i1. Now, by
the definition of &,

(15) ) —hw)=(ws—w) gw)+ 2= (aw)—q(w)) -

s — W
But, since by the definition of g, q(wz)—-q(wl)=q(w2)q(w,)<gw2 f(s)ds—

Sw2+1f(s)ds> and since ¢<m and 0 <1,

wy+

(16) lg(w,) — g(w,) | S m* (w,—wy) .

Thus, from (15), |h(wy)—h(w))|<(w,—wy){g(wy)+(w—X')m’}. Using ¢<
m, w,—X'<1 and w,—w,=<4, and applying the definition of a(1) gives
us that

a7 eV {h(w))—h(w,): for w;, w, € I such that 0<w,—w, <1}

< A(m+m?)
and thus the same bound applies for a(1+).

Therefore, applying the bound of (17) to the first term of rhs(14)
shows that

(18) LGy, G)=2 = |Y—y|£22(m+m?)+m(S+T)
=2(e+S+T)(m+m)+m(S+T) .

Similarly, by Lemma 1.2 (Nogami [7]) with 1Zh(=¢)<m, when
LGy, G2, |Z—2|<2a(A+)+m(S+T). Since by the definitions of a(2)
and ¢ and by (16) a(A)=V {|g(w,)—q(w,)|: for w,, w, € I such that 0<w,
—w; <A} =m?, a(A+) is also bounded by m?i. Hence, as in (18),
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(19) LG, G2 = |Z—z|<22m*+m(S+T) .

Therefore, by (18), (19) and (13) and weakening the bound by replacing
A there by ¢+S+ T,

(20) LG, G)<e = |Y—y|+2|Z—2|<2(m+3m?)e
+(Bm+6my)(S+1T) .

By this and in view of (12) and (11),
0 33 P(f,0= 0, (LG G <)
§4(m+3m’)e<n“ é P,jz“> +2(5m+6m?)
xn™t 33 P((S+ )Ly G <el/z) -

Applying Lemma 1.3 with s=¢c—d—1, t=d+4+1—c¢ and =6=0 to the
first term and using Lemma 1.4 twice to the second term results in
the bound of the asserted lemma.

The following theorem is an immediate consequence of (6), (7) and
Lemma 1.5.

THEOREM 1.1. If P, € P(f) with 2=[c, d], for j=1,2,.--,n, then
e>0,

271 D(8, 6)|< P[L(G,, G.)>e]+aqe uniformly in 8,

where a, 18 as defined in Lemma 1.5.

2. A particular procedure 8 with a rate O((n~!log n)")

We first construct a normalized (but not monotonized) estimate G
of the empiric distribution function G,. Then, we exhibit a distribu-

tion-valued estimate Gn of G,. Main work in this section is, under the
extra assumption on f (Lipschitz condition for 1/f), to obtain the gen-
eralization (Lemma 2.5) of Lemma 3.1 of Fox [2]. Lemma 2.6 show-
ing Lévy consistency of G',, to G,, will be proved as in the proof of
Theorem 3.1 of Fox [2] by using Lemma 2.5. Lemma 2.4 will be fur-
nished to apply Hoeffding’s bound ([5], Theorem 2) in the proof of
Lemma 2.5. Finally, Theorem 2.1 shows that there exists a procedure
6 with a rate O((n~!log n)").

In addition to the assumption on f in the introduction we now
assume that 1/f satisfies the Lipschitz condition:

(21) VA=) I(f@) = (f)']: u<v}=M
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for a finite constant M. By this assumption,
(22) |f(8)f(®)—1|=M|s—t].
Let 2=R through the end of the proof of Lemma 2.6. Let @, be the
distribution function defined by
@)=\ _ac,.

Then, letting I_’:S p,dG.(6), we have by the definition of p, that p(y)=
S (@Q.(y)—Q.(¥")) and thus

23 ()= PU—")
(23) Aw=5F=1

We remark that if the rth term of rhs(23) is nonzero then
(24) r—1=<range of {6,,---,0,} .

Since ¢=1 and q is the density of @, wrt G,, it follows by Theorem
32.B of Halmos [4] that

@) Gw)=|"_(a(6)"da0)

For each y, we let FX(y)=n""! é [X;<y] and for any A>0 4FX(Y)
=h (F}y+h)—F}y). We allow j}=1,1 to depend on n and assume h<1
for convenience. Let 13=S PdG,. Then, p=dP/d¢. We estimate p(y)
by 4FX(y) and Q.(y) by

(26) QW)=3 UFFy—nfy—7) -

Note that QF has bounded variation because of (21). From (25), we
obtain a raw estimate W of G, from

@7 w={"_aw)aq:e .

Since FX(y)=G.(y)<FF(y+1) for all y ¢ R, we furthermore estimate G,
at a point y by

G y)=F W)V W)AF y+1) .

We let d=N"!, N being a positive integer depending on =, and
consider the following grid on the real line: ... <—20<—38<0<3<
26<+--. We finally estimate G, at y by
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(28) G.(y)=sup {G}(j3): josy, j=0, +1,---}.

Let 6 be the procedure whose component procedures are Bayes
versus G, given by (28). To get a rate of convergence of the modified
regret for @ we use the bound of Theorem 1.1; we shall get an upper

bound for P[L(G,, é,,)>2e] (forthcoming Lemma 2.6). This bound is
essentially given by bounding 1—P ({G.(¥y—e)—eSGXY)SG.(y+¢e)+e})
(forthcoming Lemma 2.5). Therefore, the main part in this section is
Lemma 2.5. But, since we will apply Theorem 2 of Hoeffding [5] for

its proof, we want to get the bounds for PW(y); an upper bound with
the terms G.(y+h) and o(k) and a lower bound with the terms G.(¥)
and o(k) (Lemma 2.4). To do so we shall furnish Lemmas 2.1, 2.2 and 2.3.

Since the summation of » in (26) involves at most a finite number
of non-zero terms, we shall freely interchange integral and summation
on r without further comment.

By the definition (27) of W, W=n"' >} W, where for each j
i=1

@  w=3| @rdi-r<Xst-r+mee—r)r)

where the subseript ¢ in d, denotes the variable of integration. To
find bounds of PW(y) we shall find an upper and lower bound of PW,,
for each j. Fix j and use the corresponding notations without sub-
sceript 7 until the end of the proof of Lemma 2.4. We shall start with
getting an alternative form of PW. Hereafter, we abbreviate f(b)—
f(a) to f1} until the end of the proof of Lemma 2.3.

LEmMA 2.1.
(30)  POVYAO) =) 5 Sy—r)~1(3)
where
(31) sty=r{ " 10=s<0+11(F )/ F(t)ds
and

19)=\"_ 3 s-nride.

PrOOF. Because a function satisfying the Lipschitz condition is
absolutely continuous (cf. Royden [10], p. 108) and 1/q is clearly abso-
lutely continuous, 1/f(- —r) and 1/¢ are both of bounded variation in
the definition (29) of W. Applying integration by parts (Saks [11],
Theorem II1.14.1) and using d(q(t))"'=f]:*'dt gives us that
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62 | @) (t-r<Xst—r+hlifG—r)

_ly=r<Xsy—reh] [ {or<Xstorth g
fly—r)(y) S_w Ft—7) flde

Now, with E X denoting the expectation of a random variable X, Propo-
sition II1.2.1 of Neveu [6] gives us a version of the relation E {E (h(t)|
X)}=E(t) for an integrable function & and probability measures. But,
because of its proof it holds for finite measures. Hence,

P"{Sy [t—r<X<t—r+h] f]ﬁ“dt} =hq(6) Sy St—r)f1L+de .
() -

Thus, taking expectation wrt X and then summation on r over (32)
and multiplying (hq(8))! on both sides gives us the asserted lemma.

To get bounds for PW we shall first find bounds for the first term
of rhs(30) (Lemma 2.2) and then bounds for the second term I(S) of
rhs (30) (Lemma 2.3). Until the end of the proof of Lemma 2.3 we
use the notation

H(t)=h-" S”" [0<s<f+1]ds .
t

LEMMA 2.2.

(33) (@) ' [0Zy]—2'Mh< first term of rhs(30)
S(e)'0sy+h}+27'Mh .

Proor. Applying (22) to the definition (31) of S(t) and changing
a variable leads to the inequality

(34 ISy—r)—dy—nISMh™ || 10— @—r)Su<o+1—(y—r)udu .
Moreover, because

(35) 3 dy-n=h"|" 0=tidt=h"10-hSy<ol-+h—0)+[0=y]

we obtain that [0§y]§§3 Ay—r)[0<y+h]. Hence, this, %rhs(&i)
<2"'Mh and (q(y))'<1 leads to the bounds in the asserted lemma.

LEmMMA 2.3.
(36) 18)-1050)({] F1vat) | e+ MADZ

Proor. Let [2] denote the greater integer <z if 2>0 and —1 if



252 YOSHIKO NOGAMI

2<0. Since S" S(t—y)f]i“dt:SS(t)[tgy—r]f]:i:“dt and

@) Sltsy—rI(fE+r+D—fE+r)
=[tZyl(fEt+ly—t1+-1)— @)= ft+ly—tl+1)— f(t)
(the latter equality because [y—tl=—1 if t>y), if follows that

(38) 1(8)=| S@s1v-04dt .

From the derivation, (38) holds for 4 in place of S. Thus, from (34)
with any y—» and then by 0= <1,

(39) |I(S)— I(4)| <2~ Mh. .

But by (35), I(A)=Si (Ihs (35) with y=t)f]:*'dt which in turn equals

@ fo-rzy<a| +wosaf jrerr-osa
+1o=y)({ r1at) .

Since |£(t-+1)—FOISIFO) '~ (FE+D)IALSMAL and |7 ¢+h—o)it
<27'h%, |first term of (40)|<(MA1)27'h. Thus,

1(4)-1o=9({, F1de) | s@eAv2h
I}
and hence by (39) we get the asserted bound of the lemma.
LEMMA 2.4. For every y € [04,—1, 0»y+1],

(41) G (y)—bh=PW(y)<G.(y+h)+bh
where by=2"'m(2M+5(MA1)), 6, =mind, and 6.,=max 6,.
15isn

15isn
ProorF. We shall first find the bounds of PW. From (30), (33)
and (36), we can see that (PW)/q(¢) is bounded above and below by
rhs (833)—(lower bound of I(S) in (36)) and lhs(33)—(upper bound of
I(S) in (36)), respectively.
Since for >0

(“2) =ul | F1de=105y+haw)- 10=y+hg(®)

'}
_ly<0=y+h] Syf]iﬂdt ,
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using (42) and weakening the upper bound for (PW)/q(6) by applying
(43) w<osy+h]| || FL.dt| SMADR
and 1=¢=<m results in the upper bound

PWsl=y+h]+bh—(MADRS[O<y+h]+bh .

On the other hand, since applying the equality [y<8=<y+h]{(q(6))!
—(q(y))"'} = — {the third term of rhs(42)} results in the equality lhs(42)
=[0=yl{(a(¥))'—(q(8))"'} —2{—(the third term of rhs (42))}, weakening
the lower bound for (PW)/q(6) by using (43) and ¢<m we obtain

[6=Zy]—-bh<PW.

Averaging the above upper and lower bounds for PW gives the
asserted bounds for the lemma.

Following Lemma 2.5 is a direct generalization of Lemma 3.1 of
Fox [2] in the sense that if f=1, then m=1 and M=0, and hence we
get his bound 2 exp (—2nh’e?).

LeMMA 2.5. If 0<h=e=1, then for each y

(44) 1-P({G(y—e)— e =GFY)=G.(y+e)+e})
 2nhi((e—bih)*y
=2exp (1+ 30, M) }

where by=d—c+3 and b, is as defined in Lemma 2.4.

Proor. For y>0.,+1, FXy)=GHy)=G.(y+e)=1 and for y<b,
—1, FXy+1)=G}y)=G.(y—e)=0; in both case lhs(44)=0 and (44)
holds trivially.

For ye[04,—1, 6,,+1], it is sufficient to prove the lemma for the
raw estimate W, for if G (y—e)—e<W(y)<G.(y+e)+e, it follows that
G (y—e)—eSWWAFFy+1)SGHy)S W)V FXy) <SG (y+e)+e.

Pick y €[04,—1, 0cy+1]. As in the proof of Lemma 3.1 of Fox [2]
we shall apply Theorem 2 of Hoeffding [5]. To do so we shall use the
bounds of P(W(y)) in Lemma 2.4 and furthermore need to get an up-
per and a lower bound of W,, for each j. By (32) and (37) applied to
the definition (29) of W,

(45) MW, = (@)™ 3 [y—r< X, Sy—r+hl/f (y—7)

—S [t< X, <t +h{(f ¢ +ly—t1+ 1)/ £())—1}dt .
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In the summation of the first term of rhs(45), there are at most
two positive terms and both terms cannot be positive at the same time.
Applying (22) and then the fact that r<d—c+2 (=b,—1) gives that

0<(first term of rhs(45))<1+b,M .

In addition, by a use of (22) and the fact that [y—X,+hrl<b—1 (be-
cause Yy<0O,+1, 0»,=X, and h<1),

|second term of rhs(45)|<bMh  (<bM).
Therefore,
—bM=hW,<1+2b,M , for each 7.

We now apply Theorem 2 of Hoeffding [5]. Since h=<e, using the
second inequality of (41) in Lemma 2.4 and applying Theorem 2 of
Hoeffding [5] gives

(46) P[W(y)>G (y+e)+el< P[W(y)— PW(y)>e—bh]
_ 2nh¥((e—bh)*)
R UGS 7y -

Furthermore, by the first inequality of (41), {W(y)<G.(y—e)—¢}
c{PW(y)—W(y)>ec—bh}. Hence by the symmetry of the tail bounds,
P[W(y)<G.(y—e)—e]<rhs(46), which together with (46) gives us the
asserted bound of Lemma 2.5.

With G, as defined in (28) we are now furnished to get an upper
bound for the first term of the right hand side of Theorem 1.1, show-
ing Lévy consistency of the estimate G, for G,.

LEMMA 2.6. For any >0, if h=<e and 3¢, then
47) PIL(G,, G,)>2e]1< (37 '+ 1)[e~'+1](rhs (44)) .

Proor. We rely on the proof of Theorem 3.1 of Fox [2]. For
0<e=<1, let n be large enough so that h<e and d=<e. Let J be the
largest integer such that F¥(j+1)<e. We also let I={j: F}(5+1)d
+1)—FX(j8)>e, j=J, =0, £1,.-:} and A,= 'Ug[ja,(j+1)6). Since

JE€

only retraction and monotonicity properties of his respective estimate
G¥ and G, were used before Lemma 3.1 of Fox was applied, the fol-

lowing inequalities are still true for our estimates G} and G,.

48)  PIL(G. G.)>2]
=P( U (16.)>G.(y+2¢)+26} U (G.(y) <Guly—2¢)~2¢}))
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<P U (630> Go(jd+e)+¢) U (GIG0) <Gu(jd —e)—e))
< 5 P({GH0)>G.(i0+8)+5) U (GIG0) <Gu(id—e)—e}) .

Since there are at most (87'+1)[e'+1] grid points (see Fox [2],
p. 1850) in A,, by Lemma 2.5 the extreme rhs(48) is no larger than
ths (47).

Let @ be the procedure whose component procedures are Bayes
versus G, defined by (28). To get a rate of convergence of the modi-
fied regret for 6 we use the bound of Theorem 1.1. Since this bound

is valid only for 2=[c,d] where —oo<c<d<+o0, we consider only
P(f) with 2=[c, d].

THEOREM 2.1. If P, € P(f) with 2=[c,d], j=1,2,---, n where
satisfies the Lipschitz condition (21), then there exist constants b, and bs

so that, for 6 with bh =00 =(n""log n)*,
(49) | D@, 6)|=0((n""log n)*) ,  uniformly in 8 €[c, d]*.

ProoF. We use Theorem 1.1 and apply Lemma 2.6. Then, choos-
ing e=3=(2b;+1)h<1 (for sufficiently large n) and weakening the bound
gives

(50) |D(9, 6)|<bih+bh" exp {—(nh'[b)}

where b, and b; are some constants, and b;=2{1+3(d—c+3)M}*

Choose b, and by so that b,<44(8bs)""* and by=b,(2b,+1)"!. Then,
for bh(=b0)=(n""log n)"*, (50) leads to the asserted rate in Theorem
2.1.

3. A counterexample to D(8,t)—0 on R

In Section 2 we demonstrated a procedure 6 such that |D(8, é)lz
O((n~'log m)*) uniformly in @ in case of a bounded parameter set 2=
[¢,d]. Here we prove that the boundedness assumption on £ is neces-
sary for the modified regret converging to zero.

THEOREM 3.1. Let X, X;,- - be independent random variables where
for each j, X;~Ul[0,, 0,+1), 6,¢ 2=R. Let #(X)=(t(X),---, t.(X)) be
an estimator of 8=(0,,---,0,), n=1,2,---. Then, there exists a sequence
8y, 05, -+) € R* such that Iim D(@, t)>0.

n—oco

PROOF. P, denotes the conditional distribution of (X,.--, X,
X410+, X,) given x=X;. Since for each j, P (X)—0,z2 P, (Pt,(X))
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—4,), it follows that
(51) DO, zn™ 33 Py(Pu(t(X))—0,)~R(G:) .

Now, let g be a joint prior measure on (6, 6;,---). Let g, be the
conditional measure given 6, and let x; be the marginal measure of
6;. Then, setting s;=p, P(t(X)), j=1,2,---,n, we have that

(52) {07 3} PPt X0) =0 207 32 u,Pyfs,—0)

Now consider g=p X g, X -+ where p, puts mass 1/2 on each of
the values 2747, =1, where r is some fixed number such that 0<7»
<1/2. Then

(53) piPo(8;,— 0, =27"Py;_(8;— (25 — 7))+ 27 Pyyy.,(s;,— (25 + 7))
2(7 @~ @2 (s~ @)} e
=ri(1-2r),
where the last inequality follows since the integrand on the lhs is not
less than 7%
Since R(G,)=n"! ]i_l P,(6,,—0, where 6,, is defined by the poste-

rior mean (3) with ¢=1, and since the #,’s are apart from each other
more than 1, 6,,=6; for all j and hence R(G,)=0. Thus, p(R(G,))=0.
Therefore, in view of (51), (52) and (53),

(54) #{D(@, t)} =r*(1—2r)

for all n. The retraction ¢* of ¢ formed by taking t¥=(X/At)VX,
has modified regret bounded by 1 and satisfies (54). Therefore, using
Fatou’s lemma gives

(55) p{lim D(6, t*)} Zlim {pD(8, t*)} Zr*(1—2r)>0 .

By Iim D(@, t)=lim D(6, t*) and (55), there exists a (8,, 6,,---) € R~ such
that Iim D(8, £)>0.

n—oo
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