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Abstract

Likelihood methods are described for fitting cyclic Poisson and
Hawkes’ self-exciting models to Kawasumi’s historical earthquake series
and to more recent data supplied by the Japan Meteorological Agency.
Identification of the model is discussed from the standpoint of an entropy
maximization principle. The cyclic effect is shown to be not statisti-
cally significant after clustering has been allowed for; its physical
significance therefore remains questionable.

1. Introduction

This paper describes the fitting of two types of point process model
to earthquake data: the cyclic Poisson process; and a general version
of the “self-exciting” process introduced by Hawkes [7], [8].

The cyeclic Poisson process is perhaps the simplest model to embody
a periodic effect of the type postulated by Kawasumi [10] in his analysis
of historical earthquake records in the South Kwanto area of Japan.
In view of the important implications of this work, we give further
analysis of Kawasumi’s data in Section 2, in the context of the general
problem of detecting and fitting a cyclic effect in point process data
when the frequency of the cyclic effect is unknown a priori.

In Section 3 the periodic model is contrasted with a self-exciting
model in which the complete intensity function

1. (t)dt=E [AN(t)|t;: —oo<t,<t],

representing the instantaneous intensity given the times ¢, of all past
earthquakes, is parameterized according to the proposal of Akaike (Ozaki
and Akaike [17]) to take
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(L.1) )=+ S‘_w o(t—w)dN (@)
with
(12) o0)=3 antre®,

and suitable restrictions on @, and 8 to ensure that

(1.3) e, t"=0  for t=0
0
and
(1.4) S'” g(t)dt<1 .
0

Loosely speaking, the function g(t) describes the decay of clustering
or aftershock activity after an initial event. The particular param-
eterization chosen is sufficiently flexible to accommodate situations where
the counting spectrum may show a peak away from zero frequency,
and avoids the numerical difficulty which can arise in maximum likeli-
hood computations with the alternative parameterization

J
g(t): P aje_ﬁjt
i=1

suggested by Hawkes [7] and Hawkes and Adamopoulos [9] (see Ozaki
[16]). In Section 3 the model (1.2) is fitted to Kawasumi’s data, to
selected earthquake data supplied by the Japan Meteorological Agency,
and to some simulated data sets.

Both models are of the general type described by Vere-Jones [20]
for which the conditional intensity function (conditional risk) has a form
simple enough to allow the method of maximum likelihood to be used
for parameter estimation, starting from the formula (Rubin [18]) for
the log-likelihood*’

(1.5) log L= ﬁ log A(t;)— S: At)dt .

Note that the conditional intensity () appearing here differs from
the complete intensity in that conditioning is taken from the start of
the observation period instead of from the infinite past; thus in (1.5)

At)dt=E [AN()|t:: 0<t,<t] .

This is an important distinction in principle, but the two intensities
coincide for the Poisson process (lack of memory property) while the

* Logarithms to base e.
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numerical difference between them is slight for the self-exciting model
because of the exponential term in the function 9(t). In the sequel,
in dealing with the self-exciting process, we shall approximate i(t) by
an expansion of the form (1.1) with the integral taken from 0 to &

Under wide circumstances, which certainly include the models treat-
ed in the present paper, the use of maximum likelihood methods assures
the asymptotic efficiency of the resulting estimates (see Ogata [15],
Kutoyants [12]). This is in contrast to spectral methods, which will
not be fully efficient when, as with many point process models, the
structure of the process is not fully expressed through its second order
properties. Maximum likelihood methods also allow some comparison
between models to be made using the AIC values defined by

(1.6) AIC=—2log L+2k

where L is maximum likelihood (i.e. the likelihood of the fitted model)
and k is the number of fitted parameters. This follows the entropy
maximization principle set out by Akaike [1]. Although the likelihood
ratios do not always follow the same distribution under the null hypoth-
esis, so that tests based on the likelihood ratios should be approached
with caution, the AIC values nevertheless provide a useful heuristic
guide to the models most likely to provide effective predictions.

This paper provides the statistical background for fitting two of
the models suggested for earthquake data in Vere-Jones [20]. The
third model suggested there will be discussed in a forthecoming paper
with Y. Ogata.

2. The cyclic Poisson process

2.1. Mazximum likelihood estimation

Following Lewis [13] we take the time-dependent intensity of the
process in the form

(2.1) A(t)=exp {a+p sin (wt+6))

where e® is a measure of the average rate of occurrence of the process,
p determines the proportional amplitude of the cyclic fluctuations, and
wy, 0 describe the frequency and phase of the ecyclic term. Likelihood
equations based on (1.5) take the form (with A=log L),

2.2) o4 _ S " 9log 2 gty o)t} .
oa 0 Oa

For the model (2.1) they have been studied by Lewis [14], who showed
that if we are willing to ignore the edge terms introduced by the fact
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that 7 may not be an exact multiple of 2r/w, the equations for «a, p
and @ can be reduced to the following,

(2.3a) N="TeI(p)
(2.3b) S(w)zé sin wt,= Te" cos 61(p)
(2.3¢) Clw)=3] cos wt,= Te* sin 6L(p) ,

where I,(0) denotes the modified Bessel function of order j, viz.
L(p)=o " cos juexp (peoswdu  (7=0,1,2,--).
T Jo

Similarly, if we restrict attention to the terms of leading order in
T, the equation for the unknown frequency o can be written

(2.4) cos § S t; cos wt;—sin 6 X ¢, sin wt;=0 .

Simplifying, we see from (2.3) that the amplitude p is determined by
the value of the quantity

(2.5) [S*(w)+C*@))/ N=(2zT|N)I;(«w)

where I.(0) is the value at w of the Bartlett periodogram (Bartlett [2];
Cox and Lewis [3]). Also (2.4) is just the requirement that I;(w)=0,
i.e. that the estimate of frequency corresponds to a stationary value
(maximum) of the periodogram. At least for this model, therefore,
the periodogram plays much the same role as it does for the more
familiar situation of a periodic signal in white noise, i(¢{) playing the
role of the signal, and dZ(t)=dN(t)— A(t)dt playing the role of the white
noise.

In seeking a maximum of the periodogram, attention must be re-
stricted to a finite frequency interval of the form (e, £2), where ¢>0
and 2< oo are determined a priori. Without such a constraint, the
search for a maximum becomes meaningless, as it follows directly from
the properties of almost periodic functions that no matter what indi-
vidual ¢, values appear, there will be values of w for which (2.5) ap-
proaches arbitrarily close to its theoretical maximum of N. The need
to bound the interval away from 0 arises only because the mean term
has not been removed from the periodogram, a point which can easily
be corrected in practice. With these two restrictions, an analysis along
the lines of Hannan [6] shows that, provided the true frequency itself
lies within (e, 2), the frequency &, corresponding to the maximum of
the periodogram over this range is a strongly consistent estimate of
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the true frequency, with a standard error which is O(T~%?) as T— co.
Details are given in Vere-Jones [21].
The choice of the upper bound is arbitrary. Often, however, a

natural choice will be the frequency 2==N/T, corresponding to one
half-cycle over the average time interval between events. This has the
character of a Nyquist frequency, with the attractive feature that the

range (0, 2) then contains just [N/2] of the special frequencies w,=
2rk|T, for which the periodogram ordinates are asymptotically independ-
ent (Bartlett [2]). As Bartlett points out, it is desirable that the num-
ber of such frequencies included in the range should roughly match the
number of observations.

2.2. Testing for the significance of the cyclic term

If the frequency of the cyclic term is known a priori, as in the
examples of a daily or weekly cycle described by Lewis, a simple test
can be based on the fact that the individual periodogram ordinates are
asymptotically exponentially distributed (y* on 2 d.f.). This argument
cannot be applied when the frequency is unknown a priori, as we are
concerned then with testing the maximum of the periodogram over a
specified frequency range. Nor is it possible to use standard asymp-
totic likelihood ratio theory, as the null hypothesis (Poisson with con-
stant rate) is not obtained by fixing values of the parameters in the
alternative hypothesis (thus: o and ¢ are undefined under the null
hypothesis). The exact distribution of the periodogram maximum is
not known even in the Gaussian case, still less in the present situation.

In looking for an approximation, a starting point is provided by
Bartlett’s observation (Bartlett [2]) that the periodogram ordinates at
the frequencies w, are approximately independent and exponentially
distributed with (under the null hypothesis of a constant rate Poisson
process) an expected value 2/2x. This suggests that the maximum of
the periodogram in this range might have a distribution not greatly
different from that of the maximum of N/2 such independent exponen-
tial variates. A more satisfactory approach to problems of this type
has been suggested recently by Davies [4], who uses level crossing
theory to find approximations to the distribution of the maximum. In
Davies [5] this method is applied to the classical time series problem,
and his approach can be extended with only trivial changes to the
point process context. A slight extension of the results of Sharpe [19]
on the level crossings of a y*-process leads to the conclusion that V,,
the 100a% significance level for a test based on I (®,) is given as the
solution to the equation

(2.6) 2rV,[A=0=In (2T/v48z)+(1/2) In 6—In
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which may be compared with the value
2.7 6*=In (2T /r)—In @

for testing the maximum of the ordinates 2zI;(»;) in (0, 2). A com-
parison of these values for various values of N is shown in Table 1.
It should be noted that both values are based on asymptotic theories
which ignore edge effects and the departure from normality in the dis-
tribution of C(w) and S(w).

Davies [5] has examined the edge effects in detail and provided an
exact upper bound in the Gaussian case for the probability of exceed-
ing a given crossing level; this leads to upper bounds for the signifi-
cance level which are very close to the values 6* noted in Table 1.
The effect of departures from normality is also likely to be small, in-
sofar as the terms C(w) and S(w) can both be represented in terms of
random sums of bounded random variables, for which the approxima-
tion provided by the Central Limit Theorem should be good even for
small values of =.

Table 1. Significance levels for the periodogram maximum
over the range (0, 2)

59 significance N=
levels 16 33 100 200 500 1000
o* 5.52 5.80 6.91 7.60 8.52 9.21
) 5.72 6.03 7.23 7.97 8.94 9.68

19 significance N=
levels 16 33 100 200 500 1000
o* 7.13 7.41 8.52 9.21  10.13  10.82
0 7.47 7.76 8.94 9.68  10.64  11.37

The values of 6* and ¢ are based on formulae (2.6) and (2.7) in the text.

2.3. Fit to Kawasumi’s Data ; adjustments for clustering

The periodogram for Kawasumi’s data (see Appendix) is shown in
Fig. 1. A correction for the mean has been made by taking

~ N T _ N
S(w)=> sin wti—S A sin wtdt=>3] sin wt;,— N 1—cosoT
1 0 1 oT

~ N T _ N 3
C(w)=3] cos wti—s A cos wtdt=3] cos wt,~—NM
1 0 1 oT

in place of S(w), C(w) in (2.5).
As Kawasumi pointed out, there is a sharp peak at @,=0.91
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Fig. 1. Periodogram for Kawasumi’s Data (full set).

radians/year, corresponding to a period of 69 years. Note also the
smaller peaks at the harmonics. Since &, falls very close to 2, we have

used the frequency range [0, 22] rather than [0, 2] in tests for the
maximum. The peak/mean ratio is about 7.75 which is significant at
the 59, level according to the values listed in Table 1. Parameters
for the best-fitting cyclic Poisson model, obtained by likelihood maxi-
mization, are listed in Table 2; the fitted model for the years 1900-
2000 AD is shown in Fig. 2.

Table 2. Parameter values for the Cyclic Poisson Model
(Kawasumi’s Data)

do a b [}
Full data set .092 —3.85 1.08 1.32
Reduced data set
(clusters removed) .092 —3.92 0.733 1.46

The parameters are defined in equation (2.1).

Although the high peak leads to a clear rejection of the null hy-
pothesis of a constant rate Poisson process, one should beware of con-
cluding too hastily from this result that the alternative of a cyclic
model is thereby accepted. In fact many alternatives are possible. In
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Fig. 2. Cyclic Poisson and Cluster Models for Kawasumi’s Data.

particular, the effects of clustering, which turns out to play a ecritical
role in the interpretation of the results, have not yet been taken into
account.

In fact, examination of the data shows three triplets (1647-8-9,
1853-4-5, and 1922-3-4) in which earthquakes were recorded in each
of three consecutive years, and one doublet (1240-1241). These multi-
ple events occur close to the peaks of the fitted cyclic rate function,
and contribute materially to its significance. They are enough by them-
selves, however, to reject the hypothesis of a Poisson process, whether
the rate be constant or cyclically varying. Indeed, since even the cyclic
rate function never exceeds a value of 0.07 shocks/year, the probability
that earthquakes will occur on each of three consecutive years is dom-
inated by (.07))=.000343. This number can also be considered as an
upper bound on the rate of occurrence of triplets, so that the prob-
ability of obtaining 3 or more triplets in a period of some 1140 years
is dominated by the sum of the third and higher terms in a Poisson
distribution with parameter 1140x.000343=.38, i.e. by about .0065.
Even this crude bound is enough to show that the occurrence of three
such triplets is incompatible with the notion of a Poisson process with
bounded rate, so that clustering has to be taken into account before
the periodic effect can be assessed adequately.

The simplest way of handling clusters is to ignore the small time
differences between the members of each cluster, and to treat the pro-
cess as having a constant (or cyclically varying) rate of occurrence of
clusters, the sizes of individual clusters being independently determined
according to some common distribution. If a process of this type were
taken as null hypothesis, the periodogram ordinates I,(w) would still
be asymptotically exponentially distributed, but with expected values
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(27)~'Amy/m, in place of (27)~!1, where 2 in both cases represents the aver-
age rate of occurrence of all earthquakes, including those in clusters,
and m, denotes the kth moment of the cluster size. The ratio my/m,,
calculated from the occurrence of three triplets and one doublet, is
equal to 1.61, reducing the ratio of the periodogram maximum to its
expected value from 7.75 for the null hypothesis of a simple Poisson
process to 4.8 for the null hypothesis of a compound Poisson process.
It can be seen from Table 1 that the peak is then no longer significant
at either of the levels listed.

An alternative procedure is to develop directly the likelihood anal-
ysis of the compound process, assuming a cyclically varying rate funec-
tion of the form (2.1) for the occurrence of cluster centres, and a simple
parametric form of distribution (the geometric distribution seems most
appropriate) for the cluster sizes. Assuming these aspects are inde-
pendent, the log likelihood breaks up into the sum of two terms, the
first of the form (1.5) but with the ¢, representing the times of occur-
rence of cluster centres, and the second of the form

é log p(n;)

where m is the total number of clusters and p(n)=(1—p)o"! is the
probability of observing just » earthquakes in a given cluster. Esti-
mates for the periodic effect involve only the first of these two terms.
In other words, for this simple cluster model the periodic effect should
be investigated by treating the clusters as single points and analyzing
the resulting reduced process as a simple cyclic Poisson model. This
leads both to more powerful tests and to more accurate estimates of
the periodic terms than use of the full data set, the additional “ noise”
introduced by the varying cluster sizes serving merely to increase the
variances.

The periodogram for the reduced process is shown in Fig. 3. It
is of interest that the dominant feature is still the peak at approxi-
mately 69 years. The peak/mean ratio, however, is now only 3.4, which
is even less significant than the value obtained earlier for the full data
set.

The overall conclusion from this analysis must be that the evidence
in favour of a 69-year cycle is not conclusive, although it is certainly
suggestive, particularly in view of the AIC values listed in Table 3.
Physical considerations tend to reinforce a negative conclusion. The
data set is very heterogeneous, containing both large earthquakes in
the offshore trench and relatively small earthquakes in the vicinity of
Kamakura itself. It is hard to conceive of any physical mechanism
which could produce periodic effects in such data, particularly as the
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Fig. 3. Periodogram for Kawasumi’s Data (reduced set).

proposed period of 69 years does not tally with any other known geo-
physical effects. The absence of strict periodicities would not rule out
the operation of some weaker type of relaxation model, and this is
perhaps the most plausible explanation of the sequence of large earth-
quakes in the set. One model of this type is described in Vere-Jones
[20], but the data are not sufficient to allow any clear conclusions to
be drawn.

Table 3. AIC values for Cyclic Poisson and Self-Exciting Models
(Kawasumi’s Data)

—log L | No. parameters AIC
Simple Poisson, constant rate 149.2 1 300.3
Compound Poisson, constant rate 140.8 2 285.6
Simple Poisson, cyclic rate 139.5 4 287.0
Compound Poisson, cyclic rate 133.6 5 277.2
Self-exciting, order 0 141.3 3 288.6
Self-exciting, order 4 140.9 7 295.7
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3. The self-exciting model

3.1. Descriptive properties

We shall refer to the model (1.1) with parameterization (1.2) as
Akaike’s model of order M. When the process is stationary, it holds
that

A=EL®]=p+1| gt)dt .

For the Akaike model (1.4) implies that

(3.1) |, awae=32 “;;?T! <i.
Then
2=C-p
where
(3.2) C=1 / (1— S: g(t)dt>

will be referred to as the cluster factor of the model.
The counting spectrum of the self-exciting process is given by
Hawkes [8] as

P(w)————zﬂn—{1—G(w)}-1{1—G(—w)}-*

where G(w) is the Fourier transform of the response function g(t).
Using this representation, the counting spectrum for Akaike’s model
becomes

3.3)  P(w)= ,z(l—é amm!/ﬂm+l)"| 1—$ anm!/(B+iw)|".

3.2. Maximum likelihood fitting

Throughout this and the following section we shall use the approx-
imation referred to in the introduction, replacing .(t) by the approx-
imate form

At)=p+ So g(t—w)dN () .

The effect of this approximation is restricted to a transient term at
the beginning of the observation period, and it is not difficult to show,
as in the discussion of Ogata [15], that estimates based on the approx-
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imate form are still asymptotically efficient.
From (1.6) we can write the log-likelihood for Akaike’s model of
order M in the form

log L=—uT— 3 a,B(m)+ 3 log C(i)
where

é( —HT-tp 1),

B(m)=7>] S:_ti gme Py =T 2

‘Bm+1 i=1

[ & B(T—t) e—ﬁ‘T"i’] ’

i=0 J!
. M .
Ct)=p+ 2:0 A7) ,

and
A, 1)=0,
A= S (Gt for iz2.

Gradients of the log-likelihood are given by

olog L A1) —0....
—aam B(m)—}—lz‘{ ) (m=0,.---, M)
dlogL X Y, —D(1)

3= 2 e Blm 1)+ 3

. M .
D(i)= 3} (i)

along_T ¥ 1
o =0 O

The Hessian of the log-likelihood is given by

Plog L _ 3y ~Ai)A)

Oa,da;,  i=t C(z)

o%log L —A;1(2)-C(2)+ A (2)- D(7)

S LG DANES S

ot logL M 04 Eo ‘3\’mAm+2(":)'C(":)_‘D(":)2
== 3 e Bm )+ 3] i
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log L _ &, —A[i)

o*log L =§ D(7)
0Bou w1 C(v)?

= o)

Maximum likelihood estimates of the parameters of Akaike’s models
can now be obtained using the above representations and the nonlinear
optimization technique of Davidon-Fletcher-Powell (see Kowalik et al.

[11]).

3.8. Application to Kawasumi’s Data

Akaike’s models of order 0 and of order 4 were fitted to the data.
Parameter values are listed in Table 4, and AIC values compared with
those of the cyclic Poisson models in Table 3. Note the large differ-
ences in the estimates of the mean rates and cluster sizes for the dif-
ferent order models. The reason for this difference is illustrated in
Fig. 4, which shows the response function for the 4th order model.

1

M=

Table 4. Parameter values for self-exciting models

A
Mean Cluster R A AlC
rate size # B value

Kawasumi’s

Data

Order 0 0.2783 1.24 0.2241 0.6387 288.6

Order 4 0.1789 | 18.04 0.9927 0.2993 295.7

x 1072 x 1074

JMA Data

Order 2 0.3470 1.9286 0.1799 1.5809 3997.0

Order 4 0.3470 2.0218 0.1717 1.7400 3974.0

Order 6 0.3664 2.3374 0.1482 0.9479 3959.2
B

do & ax as A as e

Kawasumi’s

Data

Order 0 0.1243

Order 4 0.2535 |—0.8627 |—0.2627 |—0.3857 0.1845

x 10! x 1078 x 104 x 1078 x 10-8

JMA Data

Order 2 1.0587 |—2.2779 1.4288

Order 4 1.4178 |—-5.7732 8.7619 |—4.8280 0.9511

Order 6 1.2009 |—4.3545 5.9690 |—3.5241 0.9972 |—0.1295 —0.6181% R

%10~
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It takes several hundred years to die away, whereas the Oth order
response function dies away very rapidly. With only 33 earthquakes
recorded in a period of about 1000 years, the situation is similar to
that of fitting an autoregressive time series model for which the char-
acteristic roots of the fitted model lie close to the unit circle and the
number of data points is small. In such a situation the estimates are

(x10-1)
008 012 016 020 024 028

0.04

1 1 1 1 1 i d 1 1 1 1 1 1 1 1 1 J
<0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00
Time (Year)

Fig. 4. Response function for 4th order self-exciting (Akaike) model for
Kawasumi’s Data.
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Fig. 5. Spectrum of 4th order self-exciting (Akaike) model for Kawasumi’s
Data.
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unstable and asymptotic theories must be applied with caution.

The spectrum of the 4th order model is shown in Fig. 5, where a
dull hill is seen to cover periods from 60 years to 360 years. Fitting
higher order models might allow the hill to split into peaks correspond-
ing to the 69 year periodicity and its harmonics, but the sample size
and observation period seem too small for this type of treatment.

In summary, the zero order model could be used to give a first
approximation to the clustering effect, but the data are unsuitable for
the application of higher order models.

3.4. Application to JMA Data

The Akaike model was also applied to earthquake occurrence data
supplied by the Japan Meteorological Agency for shallow earthquakes
in a region roughly corresponding to the Kwanto area, Japan, from 1926
until 1975. The area used was a quadrilateral with vertices at the
points (39°N, 143°E), (35°N, 141°E), (36°N, 138°E) and (40°N, 140°E) and
the depth<70km. There were altogether 1268 earthquakes in the list
with magnitudes 5 or greater. We assume as before that the initial
effect can be ignored, and take 0=¢,<t,<--- <ty Models of several
different orders were fitted, with estimated parameters given in Table 4.
The figures of the estimated response functions and spectra for some
of the fitted models are shown in Figs. 6 and 7.

The results are not very revealing in physical terms. The 6th order
model gives the minimum AIC value and should be preferred from the
point of view of entropy maximization. The dominant feature is the
high peak of the response function near the origin, with a similar peak

—-—- 2nd order model
—————— 4th order model

——— 6th order model

048 064 080 096 112 1.28 144 160

0.00 016 0.32

Time (Day)
Fig. 6. Response functions for JMA data.
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—-—- 2nd order model

—————— 4th order model

——— 6th order model

Density in DB

—1260-11.86-11.12-10.38 —9.64 -8.90 —8.16 ~7.42 —6.68 —5.94 —5.20

000133 267 4.00 533 667 8.00 9.33 10.67 12.00 13.33 1467 16.00 1733 1867 20.00

Frequency

Fig. 7. Spectra for JMA Data.

in the spectrum. This is indicative of the strong clustering effect. The
spectrum of the model suggests that there may be weak periodicities
with periods at about 4.5, 1.5 and 0.6 days. The physical interpretation
of such features is obscure. The second and fourth order models merge
these features in dull hills. Some other applications of the model to
earthquake data is discussed in Ozaki and Akaike [17].

3.5. Simulation Data

It should be noted that it was necessary to use a constrained opti-
mization technique in fitting the model of order 4, in order to get a
model which satisfied the non-negativity condition (1.3). Although such
constraining is not necessary in most situations, it may be needed when
the impulse response function of the true stationary model has a valley
with its bottom close to zero. To examine such effects we simulated
the model of order 2 with impulse response function (see Fig. 8)

9(t)=(0.5—1.15t+0.7t}e ,

and £=0.025. The estimated response function obtained by constrained
optimization is

9(£)=(0.4439 —1.0824¢ +0.6403¢)¢ 0 47
and the impulse response function obtained by free optimization is
9(£)=(0.4753—1.1261t+0.6671¢2)e "4

The two functions are illustrated in Fig. 8; they cannot be distinguished.
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true model
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Fig. 8. True and estimated response functions for simulation data.

4. Conclusions

205

1. The method of maximum likelihood can be used successfully in fit-
ting both the cyclic Poisson process and the self-exciting process with

Akaike’s form (1.2) for the impulse response function g(¢).

2. The cyclic rate compound Poisson process provides the most effec-
tive description of Kawasumi’s earthquake data from the point of view
However the periodic effect is not statisti-

of entropy maximization.
cally significant when clustering is properly taken into account.

In

general, the number of data points is too small to distinguish properly
between models.

Date (AD) Magnitude

818

841

878
1096
1213
1227
1240
1241
1257
1293
1433

KAMAKURA EARTHQUAKE DATA (after Kawasumi [10])
Date (AD) Magnitude

7.9
7.0
7.4
8.4
6.8
6.3
6.9
7.0
7.2
7.1
7.1

APPENDIX

1498
1525
1590
1605
1633
1647
1648
1649
1670
1697
1703

8.6
6.6
7.2
7.9
7.1
6.8
7.1
6.5
6.4
7.2
8.2

Date (AD) Magnitude

1782
1812
1853
1854
1855
1905
1909
1922
1923
1924
1933

7.3
6.6
6.5
8.4
7.5
7.5
7.0
6.9
7.9
7.2
7.0
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CORRECTIONS TO

“ SOME EXAMPLES OF STATISTICAL ESTIMATION
APPLIED TO EARTHQUAKE DATA”

D. VERE-JONES AND T. OzAKI
(This Annals Vol. 34, No. 1 (1982), pp. 189-207)

Dr. Mark Berman, Division of Mathematics and Statistics, CSIRO,
Sydney, has drawn our attention to the following algebraical and num-
erical slips in the above paper.

p. 193, equation (2.6): Replace “In (27/v48z)” by “In (2T/v12x)”
p. 194, equation (2.7): Replace “In (2T/z)” by “In (27T/2x)”

In Table 1, for N=16 read N=25, and for the #-values listed read as
follows

N =25 33 100 200 500 1000
a=.05 6.48 6.78 7.97 8.71 9.68 10.40
a=.01 8.21 8.50 9.68 10.40 11.36 12.09

These changes only reinforce the conclusion in the paper that the cy-
clic effect in Kawasumi’s data cannot be clearly established.

We would like to record our appreciation of Dr. Berman’s interest.
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