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Summary

The bound of the asymptotic distributions of nlé,,—ﬁl for all asymp-

totically median unbiased (AMU) estimators 6, is given in non-regular
cases. It provides us with a powerful criterion for an AMU estimator to
be two-sided asymptotically efficient and also useful in the cases when
there may not exist a two-sided asymptotically efficient estimator since
we may find an AMU estimator whose asymptotic distribution attains
at least at a point, or an AMU estimator whose asymptotic distribution
is uniformly “close” to it. Some examples are given.

1. Introduction

In the asymptotic theory of statistical estimation the concepts of
asymptotic efficiency and asymptotic sufficiency play an important part.
The asymptotic efficiency including higher order in regular cases has
been extensively studied by Akahira and Takeuchi [5], [9] and Pfanzagl
and Wefelmeyer [7]. The asymptotic sufficiency in non-regular cases
has been discussed by Akahira [3] and recently extended by Weiss [10].
The asymptotic efficiency in non-regular cases has been discussed by
Takeuchi [8], Akahira [2], [4] and Akahira and Takeuchi [6] in special
cases.

In this paper we obtain the bound of the asymptotic distributions

of nlé,,—0| for all AMU estimators 4, in non-regular cases. It provides
us with a powerful criterion for an AMU estimator to be two-sided
asymptotically efficient, which can be used for constructing an AMU
estimator with this property. And it is also useful in the cases when
there may not exist a two-sided asymptotically efficient estimator, i.e.,
an AMU estimator whose asymptotic distribution uniformly attains it.

* The results of this paper have been presented at the Meeting on Statistical Theory
of Model Analysis at Tsukuba University in Japan, October 1979.
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In fact we may find, even in those cases, an AMU estimator whose
asymptotic distribution attains it at least at a point, or, an AMU esti-
mator whose asymptotic distribution is uniformly “close” to it.

2. Definitions

Let X be an abstract sample space whose generic point is denoted
by 2, B a o-field of subsets of X and {P,: €6} a set of probability
measures on B, which @ is called a parameter space. We assume that
6 is an open set of R'. Consider n-fold direct products (X", B") of
(X, B) and the corresponding product measure P of P,. An estimator

of @ is defined to be a sequence {é,,} of Pm-measurable functions 9n on
X" into . For simplicity we denote {0:,} by 4,.

For an increasing sequence of positive numbers {c,} (c, tending to
infinity) an estimator 4, is called consistent with order {c.} (or {c,}-
consistent for short) if for every >0 and every 9€® there exist a
sufficiently small positive number 4 and a sufficiently large positive
number L satisfying the following :

im sup Prlc.|0.—0|=L}<e
n—oo :]6—9|<3

(Akahira [1]). For a {c,}-consistent estimator 4, a distribution function
F,(.) is called to be the asymptotic distribution function of c,,(én—ﬂ) of
order C={c,} if for each real number ¢, F,(t) is continuous in 6 and

for any 9 €@ there exists a positive number d such that for any con-
tinuity point £ of F(t)

lim  sup |Pr{cs(0.—0)<t}—Fy(t)|=0 .
n—oo 0:]0—93|<d

A {c,}-consistent estimator is called to be asymptotically median unbiased
(AMU) if for every 9 €@ there exists a positive number 8 such that

lim sup
n—oo :|0—3|<3

P;'{énge}—%[ =0;

lim sup
n—oo §:10—9|<3

P,"{é,,go}——;_‘zo.

DEFINITION. For an AMU estimator é;“ it is called two-sided asymp-
totically efficient if for any AMU estimator én and any t>0

. lim [P} {c,| 6% — 0| <t} — P/ {c,]6,— 0] <t}] =0 .

We may have different definitions of asymptotic efficiency as fol-
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lows. An AMU estimator 6;* is called right-hand side (left-hand side)
asymptotically efficient if for any AMU estimator 6,

lim [P} {e (5% — 0) <t} — P {c,(6,—0)<t}]=0  for all >0

n—oo

(lim [P} {c.(0.—0) <t} — Pi{e(65*—0)<t}]=0  for all t<0).

In non-regular cases it is shown in [8] that there are right-hand side
and left-hand side asymptotically efficient estimators but not generally
an asymptotically efficient estimator, that is, an AMU estimator satis-
fying simultaneously the above inequalities.

3. Two-sided asymptotic efficiency

We shall obtain the upper bound of the asymptotic distributions

of cnlén—ﬁl in the class A of the all AMU estimators §,. Let 6, be an
AMU estimator and t be any positive number. We have

3.1)  Pred,—0|<t)=Pr{e(6a—0)<t}— P} {enf,— 0) < —1t} -

Let 6, be any fixed in 8. Put 6,=6,+(t/c,) and 6,=0,—(t/c,). Suppose
that there exists the asymptotic distribution of c.(0,—0). Since

P {6, <O0)=Pie(0,—0)<—t};  Pi{b.<O}=Pi{c(0,—6:)<t},
it follows by the uniformity of the neighbourhood of 6, that
(3.2) lim | P} {0,< 60} — Pi:{en(f,—0) < —t}|=0 ;
(3.3) lim | P {6, < 60} — Pi{ea(0,—00) <t}|=0 .

In order to obtain the upper bound of (3.1), from (3.1), (3.2) and (3.3)
it is enough to get the AMU estimator maximizing

(3.4) P{8,< 00} — P} {6, <0}

in the class A. Suppose that every P,(-) (6 €8) is absolutely continu-
ous with respect to a o-finite measure z. We denote the density dP,/du
by f(z, 0). Let ¢u(&.)=2%,<0,}(&,), where Xg,<s,)(#,) is an indicator of

the set {9n<0o} with Z,=(x,,--, ®,). Then we have
- n n T - 1 -
@5 || 8@ @ 00 ] du@)=Br 00— 5 (-0,

If the maximum value of
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@8 {-+-{ 6@ {[T @0 09—T £l 00} TT du(o) =15, (60— E3, (90

is obtained for every ¢, satisfying (3.5) and 0=<¢,(Z,)<1, it is the upper
bound of (3.1) in the class A. By the similar way as the proof of the
fundamental lemma of Neyman and Pearson it is seen that the ¢
maximizing (3.6) under the condition (3.5) is given by

1 for 1T /(0 0911 f@0 00> 21T (@0 603
@7 gi@)={ 1  for T[fxu 0= @, 0)=2T f(z, 0);

0 for TTf(w, 0)—]1 F@a 0)<2 T f(x, 00,

where 2 is some constant and 7 is a 0-1 valued function of Zz,.

In the subsequent discussions we deal only with the case when ¢,
=mn. Suppose that X'=0=R'. Let Y,Y,-.-,Y, -, be a sequence
of independent and identically distributed (i.i.d) real random variables
with a density

m0), kO)<y<k®);
(3.8) 9(y, 0)= .
, otherwise

where m(8)=1/{k(6)—k(6)} and k() and k(9) are differentiable in # and
satisfy k'(0)<k'(6)<0. When K'(6)=EKk'(6), it follows from the results

of Weiss and Wolfowitz [11] that the estimator k~'{[min X,+k(k™
(max X;))]/2} is two-sided asymptotically efficient’. It is easily verified
that this estimator is AMU. Examples 1 and 8 below illustrate this.
From (3.8) it follows that for each # €@ and each t there exists

lim {m(ﬁ—%) /m(o)}"=exp {—m/(6)}m(0)} ¢

n—o0

_ K(O)—k©®)),_ _
=exp {W}t—exp {a(0)—pB(O)}t ,

where o(8)=K'(6)/(k(0)—k(0)) and B(8)=K'(6)/(k(6)—Kk(8)).

Remark. Consider more general density f(x,6) of the following
form than (3.8)

f(x, 6)>0 for a(f)<x<b(d);
=0 otherwise .

t This is pointed out by the referee.
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Then there may be a measurable transformation ¢ such that f(z, 6) is
(asymptotically) considered to be changed to a density of the type (3.8)
by y=¢(x). Such examples will be given later.

We consider three cases in (3.7), i.e. 2>0, 2=0 and 1<0.

(a) Case 2>0. If 0<u<t, then &(8,)<k(6,+u/n)<k(6,). We have for
sufficiently large n

an(ﬂﬁ) = P,’; {E(ez) <min y;,, E<0o+ —Z—) <max y;< E(ﬁo)}

= ({0} (58— k(0 — (00 (B 60+ )~ (0)]

~ E@)t )" (1. K(BJutk(@)t )"
L+ (E(ao)—k(ao»"} gy ;

~ B {1 _ ea(oo)u} .

If we take as u

1
a(f,)

log {1——e""’("o)”}
for all ¢t satisfying
PLOYY {1 _eu(ﬂo)t} 2_1_
-2
then
B gH—1  (n—ooo)
00 n 2 .
We also obtain for sufficiently large n
B, (¢) — B4, (81)=1— Pi {k(0) <min , max Y <0+ %)}
—1— {m(6,)}" {E(aw%) —@(02)}"
~1 _ea(ﬂo)t _i_le(“(eo)-ﬁ(ﬂo)” .
2
Hence we have for any é,, €A
(3.9) fim P,"{nlén—0{<t}=1-—e““’)‘+%e‘“(">"’(’>"

for all ¢t satisfying e/ {1—e<®}=1/2.
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(b) Case A=0. We consider the case when e/ “*{1—e“*}<1/2. If
If 0= u<t, then k(6,) <k(f,—u/n)<k(d;). We have for sufficiently large n

4, (1) =P (60— 2 ) <min y,, F(0) <max y.<(00)
= (m(oy (ko) —k(0—2))"
-t ) o2
~ P[] —ge 0]

If we take as u

_ 1
B(60)

for all t=—(1/a(6,)) log 2, then

log 2{1—e<“"}

an(qs:)—»% (n— o).

We also obtain for sufficiently large n

E; (¢5)—Ez (¢2)= P {k(8;) <min y,, k(0,) < max y,<k(6,)}
=1-Pp {k(6,)<min y;, max y;<k(0,)}

~]1 — g2t |
Hence we have for any 6,¢€ A

(3.10) im Pp{n|0,—0|<t}<1—e=®*

for all ¢ satisfying e/ {1—e*®*}<1/2 and t=—(1/a(f)) log 2.

(¢) Case 2<0. Consider the case when e’“{l—e“'}<1/2 and t<
—(1/a(8y)) log 2. Let w=t and k(6,)<k(f,+wu/n). Note that if for suf-
ficiently large n, k(6,+u/n)—k(6,)~0, then u=0(n). Indeed since

E(eo+l)~k(02)~(l¥(eo)—l_c(o.,)) 1+a(ao)l+ﬁ(ao)i} ,
n n n

it follows that for sufficiently large n

_~__r B(6)
Ty al)

Hence we have

u=0(n) .
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We have for sufficiently large n
E;, (¢7)= Py, {k(02)<mln Yir k<00+ %) < max y¢<E(01)}

) 25 {k(8,) <min y,, k(6,) < max y,<k(6,)}

)
R

+ P} {k(6,) <min y,, k(0,) <max y,<k(0,)}

~ ela 0 +BWEN __ palapdut5(6p)t +1 B OV

If we take as u

1 log {ea(oo)t — e Bt (ea(ﬂo)t _ l) }
a(6y) 2

for all ¢ satisfying e*“ {1 —ef%*}<1/2, then
E,, (g7 )—’-5 (n— o).

We also obtain for sufficiently large n
Ej, (6%)—E7 (¢7%) ~ 1 — 0 + {1 —2¢=“} sinh [{a(60) — B(00)}] .
Hence we have for any 6,¢ A

(3.11) Iim P;{n| 0,—0|<t}<1—e=®* 4 (1 —2¢®} sinh [{a(8) —B(0)}t]
for all ¢ satisfying e/®*{1 —e*®}<1/2, t<—(1/a(f))log 2 and e {1—e’ "'}
=1/2.

Next we consider the case when e/ {1 —e '} <1/2, t< —(1/a(6y))-

log 2 and e {1—e*®"}>1/2. Let u=t and k(6,)<k(f,+u/n). We have
for sufficiently large n

E; (45)=1—P¢ {lg(ﬂo)<min v <k(8,), max yi<17:<00+ %)}
— [tm(@oy {00+ 2 )~ ko9
— (@) [B{00+-2) k0]

~1 — e | galBu+BLOQE

If we take as u
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log [2{1—e’*}],

(00)
then

E (8% )—*— (n—o0).

We also obtain for sufficiently large n
B4, (8)— B, (1) =1~ | 1— Pi{ke(60) <min y,<(6,), max u<k(0+2)]

— P, {k(6,) < min y,<k(8,), max yi<7¢(01)}]
€ BRIt [ el _ glaCop)+ 50N

+ P {k(6;)<min y,, max y,<k(6,)}
— P {k(6,) < min y;, max y, <k(6,)}
~ g (a0 = FOE [gaopu _ galOpu+ 5O 4 ] — ghCoE

=1—eft 4 ?12_ o~ 1a—6GIE _
Hence we have for any f},,e A
(3.12) Tm P} {nld—6]<t}< l—e“")‘+%e“"(")“ﬂ‘”“
for all ¢ satisfying e*{1—e™}<1/2, t< —(1/a(f))log 2 and e= {1 —e®*}
>1/2. In order to summarize the above discussion we divide the range

(0, c0) into the sets of ¢ satisfying following cases (I)-(IV):

( I ) eﬁ(o)t{l_ea(ﬂ)l}g%;

1 1
I O § PEPLOT , t=———1log2;
(II) {1 —e @} < 5 = 0 og

Qal
1 1
I SO [1 __ pa(O)t =, —__ 2 a ()t —efy < =
(III) e {1—e }<2 t< a(0) log e {1l —e }_2
(IV) PLOY {l_ea(a)t} <_1__ , t< ___1__ ]og 2, e {1 __eﬂ(o)t} >_1_ ;
2 a(0) 2
where

k@O . ()
R O R D=0}

(see Figure 3.1).
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E(8;)

E(6y)

Fig. 3.1. The relation between {¢*¥=1} and the cases (I)-(IV) in
the supports of g(y, 8:) (=0, 1,2) when one consider the AMU
condition.

Remark. If

1 1 B8(0)
(3.13) o log 227 log {1+ oo } ,

then the following holds:

et {1 —ef ) < 1
T2

for all t< —(1/a(6)) log 2.
From (3.9)-(3.12) we have established the following :
THEOREM. If there exists an AMU estimator 5;‘: such that

(3.14)  Tim Pp{n|6%—06|<t}

n—

1—e +%e‘““"“"’” Sor the case (1);

1 — gt for the case (II);

=4 1—e*® 4 {1—2¢*} sinh [{a(d)—B(6)}]
for the case (III);

1—eﬁ(’)‘+—;-e“"("’)"’(")” for the case (IV),

77
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then 6% is two-sided asymptotically efficient.

From the theorem it is seen that the right-hand side of (3.14) is
the bound of the asymptotic distributions of nlé,,—ﬂl for all AMU esti-

mators 6,. The bound is also useful in the cases when there may not
exist a two-sided asymptotically efficient estimator, i.e. an AMU esti-
mator whose asymptotic distribution uniformly attains it. In fact we
may find, even in those cases, an AMU estimator whose asymptotic
distribution attains at least at a point, or an AMU estimator whose
asymptotic distribution is uniformly “close” to it (see Examples 2 and
4 in Section 4).

4. Examples
In this section we shall apply the theorem to several examples.

Example 1 (Uniform distribution case). Suppose that X, X;,---,
X,,+++ is a sequence of i.i.d. random variables with a density

1 for —0—%<x<—0+% ;
f(x’ 0):

0 otherwise .
This density is of the form of (3.8) with

1

(1) mO=1; (i) kO)=—0-—, K(0)=—0+1

E .
Since this falls in only cases (II) and (III), it follows by the theorem
that for any AMU estimator én

im P {n|6,—0|<t}<1—e ¥

for all £>0. Let é,’{‘:(min X;+max X;)/2. Since mix X; and max X,
are asymptotically independent, it follows that the asymptotic distri-
bution of nléj:—ﬁ] is given by 1—e *. Hence it is seen that 9;{‘ is two-
sided asymptotically efficient.

Example 2 (Truncated exponential distribution case). Suppose that
X, Xy,+++, X,,- -+ is a sequence of i.i.d. random variables with a density
ce~ for o<x<6+1;
f(xr 0)2

0 otherwise ,

where ¢c=(1—e™")". Transforming f(x, ) by y=ce™*, we have
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e’ for ce “V<y<ce™;

g(y’ 0)= .
otherwise .

This density is of the form of (3.8) with
(i) m(f)=¢e; (i) k(@)=ce @, k(f)=ce™.

Since this falls in only cases (II) and (III) by (3.13), it follows by the
theorem that for any AMU estimator 4,

(4.1) Tim Pr{n|6.,—0|<t}

l—e*—(1—2 *)sinh¢t for 0<t<%log2;

1—e %t for tgllog2 .
c

Then there may not exist a two-sided asymptotically efficient estimator.
Let 6,, be the maximum likelihood estimator. Since 6,,=min X, is

not AMU, we modify 6,, to be AMU and denote it by 6%,. Then it
follows that

1

éjlk{L:éML_ (—l- log 2)— .
[ n

Since

sinh ct for O<t<—1— log 2
. c
lim Py {n|60%.—0|<t} =
1—le‘“ for tz—l—log2,
2 c

6%, is not two-sided asymptotically efficient but the asymptotic distri-

bution of n[é;“m——ﬁl attains at t=(1/c) log 2 the bound of the asymptotic
distributions of all AMU estimators, i.e. the right-hand side of (4.1).

Let 6*=max {m?x X,—1, miin X} —((1/c)log 2)/n. 6* is an AMU esti-
mator and the asymptotic distribution of n]é,*;—f)l also attains the bound
at t=(1/c)log2. Let 6}*=max {m?x X, —1+v/n, miin X;—t/n}, where
v=(e/c)log 2(1—e™*). We consider the case when t=(1/c)log 2. Since

t>w, it follows that the asymptotic distribution F(z, t) of n(6**—0) is
given by
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e (1 gt} for —t<z<v;
F(z,t)=< 1—e™°=*» for x=v;
0 otherwise .
It is easily seen that §* is AMU. We also have for every t=(1/c)log 2
(4.2) EEP,"{mé:*—aKm}
@@ (] —gre@tD) __gmee T 0 (] gme(tmm) for 0<z<v;
={ 1—g @t _ge '@t (] _ g et=D} for v=2<t;
1 —e oD for x=>t,

where v=(e/c)log 2(1—e~*). From (4.1) and (4.2) it follows that the
asymptotic distribution of =|0¥*—6| attains the bound (4.1) of the
asymptotic distribution of AMU estimators at an arbitrary point £ in

[(1/c)log 2, o). Let 6,p=(min X,+max X,—1)/2 and f,a.0=(e/(1+€)):
min X;+(1/(1+e))(max X;—1). Then it is easily shown that 0:,(“,) is
asymptotically better than ém uniformly in t, i.e.

lim Py {n]d,,— 0] <t} <lim P} {n|0yar0—01<1t}

for all ¢>0.

Example 3 (Symmetric truncated normal density case). Suppose
that X,, X;,---, X,,--- is a sequence of i.i.d. random variables with a
density

ce~="2  for §—1<x<O+1;
f (90—0)=} .
otherwise,

where ¢ is some constant. We consider the likelihood function

L., 0)=¢ﬁ=1 I%’f%:exp [—-%Lé (:v,—-ﬁr)z__g1 wf”

for m?xa:,—1<0<minx,-+1, where E:%Zn]xi and Z,=(Xy,: -, L,).
i

-
1l
-

Since X converges in probability to 0 under P, as n— oo, if §=0(1/n),
then L.(X,, 6) converges in probability to 1 for some interval under
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P, as n—oo. We may consider that the case is asymptotically equiv-
alent to the uniform distribution case. Hence the case is essentially
(asymptotically) reduced to that of Example 1.

Example 4 (Asymmetric truncated normal density case). Suppose
that X, X;,---, X,,--- is a sequence of i.i.d. random variables with a
density

cle= @0 for 0<x<0+1;
S (w—0)={ )
otherwise ,

where ¢’ is some constant. We consider the likelihood function

for max xr,—1<6<minx,. Since X converges in probability to con-

stant K under P, as m— oo, where K=c'(1—e'?), if 6=0(1/n), then

L.(X,, 6) converges in probability to e** for some interval of % under
P, as n—oo, where u is a real number. We may consider that the
case is asymptotically equivalent to the truncated exponential distribu-
tion case. Hence the case is essentially (asymptotically) reduced to
that of Example 2.
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