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Summary

Let F be a distribution function over the real line. Define R, (y)
=S|m—y[”dF(x) for p=1. For p>1 there is a unique minimizer of

R(-), say 7, Under mild conditions on F it is shown that lim y, exists
-1

and that the limit is a median. Thus, one could use this limit as a
definition of a unique median. Also it is shown that lim y,=(R+L)/2
Pp—oo

where R is the right extremity of F and L is the left extremity of
F provided that —co<L<R<oo. A similar result is available if L=
—o0, R=o00, yet F has symmetric tails.

1. Introduction

Suppose F' is a distribution function, d.f., over the real line. The
number m is called a median of F if F(m)=F(m+0)g% and F(m—0)

g%. Consider Rp(y):glx—ylf’dF(x) for p=1. It is well known that
R(y) is minimized at y, if and only if y, is a median, and that Ry(y)
is minimized when y=g, the mean of F. If p>1, then R,(y) is strict-
ly convex and has a unique minimizer, say 7, characterized by

S (x—r,,)v-ldF(x)=S (r,— )" dF (x) .
p) )

(=o0,7p
See DeGroot and Rao [1] for the details on these remarks.
Jackson [2] has shown that if F'can be written as F(x)=—1— i‘ Iy, ()
n i=t

for some —oco<b <bh,<--+<b, <o, then limy, exists and the limit say
p—1

7y, is characterized by ; y=b¢.1; (the unique median) if n is odd, and
(r=b)(r—bs) - - (y=byp) =(bers1—7)+ - +(by—7) for n even. In addition
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Jackson has shown that lim r,,:%(bl+b,,).
Hm

In this note similar results are given for distribution funections in
a large class.

2. The case when p—1

Suppose F' is a d.f. and that S]x]’dF(x)<oo for some r>1. Then

R, (y)<oo for all real ¥y and 1<p=<r. Also, for 1<p=r, 7, the mini-

mizer of R,(-), exists and is unique since R,(-) is strictly convex for

p>1 and Ilim R (y)=o0. In fact, DeGroot and Rao [1] have shown that
Yl—co

R;(y)/p=g (y—x)ﬂ“dF(x)—S o (x—y)"'dF(x)

(=00,
exists for each y. Thus the minimizer is that value of y for which
Ri(y)/p=0. Note that if R)(y)>0 then r,<y and if R)(y)<O0 then r,>y.

To show that lim r, exists it will be shown that for each y there
-1

exists ¢(y)>1 such that sgn R)(y) is constant for 1<p<g(y). A limit
exists, then, by the following Bolzano-Weierstrass type argument.
Suppose there exists a finite interval, I=(L, U), such that y,¢I for

1<p<s for some s>1. Define al=%(U+L). If sgn Rl(a)=0 for all

p sufficiently small then y,—a, If sgn Rj(a,)=1 for all p sufficiently
small then L<y,<a,. If sgn R)(a;)=—1 for all p sufficiently small then

a,<r,=U. If L=y,<a;, then with azz-é—(L—l—al) consider sgn R/(a,).

If a,<y,=U, then with azz-%-(U +a,) consider sgn R)(a,). This will

tell us whether 7,>a, or r,<a,. Etec.

To show that sgn R/(y) is constant for p sufficiently close to 1, it
will be helpful to expand it in a series and interchange the order of
integration and summation. In doing this the following class of d.f.’s
is considered.

DEFINITION. A d.f., F, is said to be of order s=0 if for each
real x we have lim (F(x+¢)— F(x))/e*=0=lim (F(x —e)— F(x —0))/e’ where
e—0 &0

¢ — 0 through positive values.

If F'is discrete in the sense that there is a fixed positive minimum
distance between any two jump points, then F' is of order s for each
s<oo. By virtue of right continuity every d.f. is of order s=0. If
F has a bounded density then F is of order s for each s<1. If F has
a bounded density, f, except near =z, and in a neighborhood of
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S(@)ZK|x—x| " for some 0<r<1, then F' is of order s for each s<
1—7». The use to be made of such d.f.’s is that if F' is of order s>0 then

for each 0=<¢<s and each real y and each ¢>0 we have S( )(x—y)“’
Y, Y+e

-dF(r)<oo. This is needed to establish sgn Rj(y) constant, as is seen
in the following lemmas.

LEMMA 1. If F s of order s>0 and 1<p<s+1 and R (y)<oo
then Riwyp=3E-]  ta@-oydF@-| n@—yriFe)

—o0o0,

— i Cn(;y) (p_l)n.
n=0 N!

PROOF. For x>y we have (x——y)”'lzio [(p _1)1:;'(%_?/)]" and for

x<y we have (y—x)ﬂ“:% (p=DIn(y—o)"  Tpus Ri(y)/p=

nl
(2.1) S(_w’w é [(p—1) 1;1!(21—9(;)]" AF()
(2.2) _ S(M g’ [(p—1) I:Lx!(x—y)]" AF () .
But since
S(_w’y) 5 [(p—1) lxl(y——x)]" AF (@)
= 50D ing-apare)

ZS e(p—l)lln(y—z)ldF(x)
(=00,y)

:S(_w’y_” (y—x)P-ldF(x)+S ey aF@ <o

(y-1,

the order of summation and integration can be interchanged to obtain
2.1)=

S @D g-a)dF @)

One can similarly handle (2.2). Thus, R{,(y)/p:i‘:) C:f?) (p—1)" where

Cw=|__ Mn@—odF@-| _On@—yldFe).

LEMMA 2. Under the conditions of Lemma 1 for each vy there exists
a(y)>1 such that sgn Ri(y) is constant for 1<p<q(y).
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Proor. Let y be fixed. Let n*=inf{n:C,(y)#0}. If n*=oo, then
Ri(y)/p=0 for all 1<p<s+1, and thus sgn R.(y) is constant. If n*<
oo then lim L) __jim $; P=D""CY) _ Cu¥) . Thus there

it (p—1)"p  plin=m n! nX!
exists g(y)>1 such that 1<p<q(y) implies sgn R (y)/p(p—1)" is con-
stant, which in turn implies that sgn R)(y) is constant.

Thus, if F is of some order s>0 and has a finite th moment for

some r>1, then we have that limy, exists provided we show that
pll

there exists a finite interval I such that y,€ I for p sufficiently close
to 1. This is established by showing that if M is any number larger
than every median of F' then R)(M)>0 for all p sufficiently close to 1
and thus 7,<M; and that if N is any number smaller than every
median then R,(N)<O0 for p sufficiently close to 1, and thus 7,>N.

This will also establish that limy, is also a median of F. Thus 1irln o
pll pll

could be used as definition of a unique median. This is shown in
Lemma 3.

LEMMA 3. Suppose M is a number larger than every median. Then
1,.<M for p sufficiently close to 1.

ProOOF. Note that for each y we have li¥n R (y)=R,(y). Let m
pll

be a median. Then we know R(m)<R(M). But R, (M)— R(M) and
R, (m)— Ri(m) as p decreases to 1. Thus for p sufficiently close to 1
we have R (m)<R, M), which implies 7,<M since m<M and R,(-) is
convex.

The case for N, a number smaller than any median, is handled
similarly.

For example, suppose F has a density given by f(x):—;—I((fLo)—{—

1 .. Each number between zero and one is a median. But since
8 (1,5)

R,’,(l)/p:?l—[zf’—l—41"l]<0 for p>1, we must have y,>1. Thus, limy,
D plt

=1 since the limit exists and must be a median.

Note that for absolute error loss, a Bayes estimator is given by
the posterior median. If the above definition of the median is used
the estimator is guaranteed measurable by being the a.e. limit of
measurable functions.
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3. The case when p—

The basic result of this section is that lim y,=(R+L)/2 where R=
p—oo

inf {x|F(x)=1} and L=sup {z|F(x)=0} when —co<L=R<oco. A simi-
lar result is available if L= —oco and R=oo, yet F has symmetric tails.
For 7, to exist we need R,(y)<oo. So throughout this section we as-
sume that F has all its moments finite. Under these conditions con-
sider the following proposition.

PROPOSITION. Suppose there exist R*<oco and L*>—oco such that
L<L*<R*<R and F(R*+xz)=1—F(L*—x—0) for each x=0. Then

lim 7, =L (R*+L*).
pm 127

PROOF. Let Y:%(R*—i—L*). (Note that if —oo<L<R<oo then

_;_(R*+L*)=%(R+L).) Note that

Ry Y):S N (Y—w)”dF(x)—i—S (Y —0)dF()

(oo, [z*,

+ S(Y (- Y)"dF(m)—l—S _(@—YydF@).

(R,
The minimum of

S(_m,w |ly—z|Pd F'(x)+ S(m’m) |y —xPdF ()
occurs at y=Y by symmetry considerations. Thus for p>1 and 0<|e¢|
<%(R*—L*) we have

Voo YoV @+ @Y —epaF )

(R*,

N S(—m A (Y—x)"dF(x)-l—S o) (x—Y)dF () .

(R*,

But since R(Y +¢)=

g(_w o (Y+e-x)de(x)+S . (Y+5_x)de(x)

[9AN

(— Y—s)"dF(x)+S _(@—Y—epdF(@),

S(Y+5,R“) [R*,

it is sufficient to show that for each such e there exists K<oo such
that p=K implies that
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3.1) (Y-{—e—x)"dF(x)-l—S . @= Y —opdF (@)

S[L"‘,Y+e) (Y +e,

(3.2) > Smm (Y—m)”dF(w)+g . @=YVAF@).

- v,
But (8.2)< [-% (R*— L*)] p[F(R*) —F(L*-0)]. Now note that without

loss of generality we may assume that R* and L* are points of in-
crease of F, for if not we could find a larger R* and smaller L*
whose average remain the same and still have the properties above
and are points of increase of F. Now suppose ¢<0. Then (3.1)=

(Y—l—e—x)PdF(x)-{-S (x— Y —eydF(z)

’ g[v,ne) (¥ 46, B 4+e/2]

(3.3)
(x—Y —e)dF(x) .

S(R"+=/2,R‘]
Note that each term is non-negative and (3.3)_2_[%(R*—L*)——e/2]p
[F(R*)—F(R*+¢/2)]. But since F(R*)—F(R*+¢/2)>0 and —e/2>0
we have that for p sufficiently large
(2 B —L0)| TF®) - F(L*—0)]
]_ b4
<[+ ®*—LY—ef2| IF(R)—F(R*+e[2)]

Thus for p sufficiently large (3.1)=(3.2). One can handle the case ¢>0
in a similar fashion. Thus the proof is completed.
In particular, if —coc<L<R< oo, then F will have all its moments

and y,— %(R+L) as p— oo,
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