BAYES ESTIMATION WITH SPHERICALLY SYMMETRIC, CONVEX LOSS

DALE UMBACH

(Received Dec. 18, 1978; revised Sept. 18, 1980)

Summary

It is desired to estimate a parameter $\theta \in \mathcal{R}^n$ with the loss function of the form $L(\theta, a) = W(\|\theta - a\|)$, where $W \colon \mathcal{R}^+ \to \mathcal{R}^+$ is convex, differentiable, and non-decreasing. With this structure a characterization of Bayes estimators is given. Also it is noted that if the sample space, \mathcal{X} , for the observation, X, is a complete separable metric space then a Bayes estimator exists.

1. Introduction

In DeGroot and Rao [2] a characterization of a Bayes estimator for θ when the loss is of the form $L(\theta, a) = W(|\theta - a|)$ is given. They show that if $W: \mathcal{R}^+ \to \mathcal{R}^+$ is non-decreasing, differentiable, and convex, a measurable function δ is a Bayes estimator for θ if and only if the following inequalities hold a.e. (II): [II] being the marginal distribution for X.]

$$\int_{\scriptscriptstyle{\theta \geq \delta(x)}} W'(\theta - \delta(x)) dF(\theta \,|\, x) \! \geq \! \int_{\scriptscriptstyle{\theta < \delta(x)}} W'(\delta(x) - \theta) dF(\theta \,|\, x)$$

and

$$\int_{\scriptscriptstyle{\theta>\delta(x)}} W'(\theta-\delta(x)) dF(\theta\,|\,x) \! \leq \! \int_{\scriptscriptstyle{\theta\leq\delta(x)}} W'(\delta(x)-\theta) dF(\theta\,|\,x) \;.$$

Here $F(\cdot|x)$ is the posterior distribution function when the observed value of X is x.

In this work a similar characterization is given for θ being a vector valued parameter and $L(\theta, a) = W(\|\theta - a\|)$, where W is as above.

The case when $L(\theta, a) = \sum_{i=1}^{n} W_i(|\theta_i - a_i|)$ can be handled using the DeGroot and Rao results if each W_i is as above. In this case each

Key words and phrases: Bayes estimation, spherically symmetric loss, convex loss.

coordinate, $\delta_i(x)$, of $\delta(x)$ satisfies the DeGroot and Rao characterization with W_i , δ_i , $F_i(\theta_i|x)$ substituted for W, δ , and $F(\theta|x)$ respectively for each $i=1, 2, \dots, n$. Here $F_i(\theta_i|x)$ is the posterior distribution function for θ_i (the *i*th coordinate of θ) given X=x.

In DeGroot and Rao [3] similar results are given to those in this paper. DeGroot and Rao, however, have more restrictions on the loss function, W, yet work in a more general parameter space, Banach space. The results here and in DeGroot and Rao [3] are closely related to the very abstract results in Strasser [6]. Contained herein is a direct and easily accessible proof for the important case when the parameter space is \mathcal{R}^n .

Recall, a Bayes estimate for the given value of x is a number, δ_x^* , such that

$$\int_{\mathcal{R}^n} W(\|\theta - \delta_x^*\|) dF(\theta|x) = \inf \int_{\mathcal{R}^n} W(\|\theta - a\|) dF(\theta|x).$$

Thus the problem of finding a Bayes estimate is a problem of finding a minimizer of

$$\int_{\mathcal{R}^n} W(\|\theta - a\|) dF(\theta)$$

for a specified distribution function F.

In what follows, all vectors are written as column vectors with T denoting the transpose operation.

In Section 2 the solutions of this minimization problem are characterized and some properties of the minimizing values are discussed. In Section 3 this minimization is discussed as it relates to Bayes estimators. In addition, it is shown that if the sample space, \mathcal{X} , is a separable, complete, metric space then a Bayes estimator will always exist.

2. The minimization problem

Suppose W is as in the introduction; convex, non-decreasing, and differentiable on $(0, \infty)$. Define $W'(0) = \lim_{\epsilon \to 0^+} W'(\epsilon)$. To avoid a triviality assume that W is not identically constant. Also, throughout we assume

$$\int_{\mathcal{R}^n} W(\|\theta-a\|) dF(\theta) < \infty.$$

With this assumption it follows that

$$\int_{\mathcal{R}^n} W'(\|\theta-a\|)dF(\theta) < \infty.$$

Because, since for each $\varepsilon > 0$, from the convexity of W, we have

$$\begin{split} \int_{\mathcal{R}^n} W'(\|\theta-a\|) dF(\theta) & \leq \int_{\mathcal{R}^n} \frac{W(\|\theta-a\|+\varepsilon) - W(\|\theta-a\|)}{\varepsilon} dF(\theta) \\ & = \int_{\mathcal{R}^n} \frac{W(\|\theta-a\|+\varepsilon)}{\varepsilon} dF(\theta) \\ & - \int_{\mathcal{R}^n} \frac{W(\|\theta-a\|)}{\varepsilon} dF(\theta) < \infty \ . \end{split}$$

A proof of the finiteness is not difficult, but is too tedious to include. Now, let

(2.1)
$$U(a) = \int_{\mathcal{R}^n} W(\|\theta - a\|) dF(\theta) \quad \text{for } \|a\| < \infty.$$

LEMMA 1. $U: \mathcal{R}^n \to \mathcal{R}^+$ is convex.

PROOF. Define $Q_{\theta}(a) = W(\|\theta - a\|)$. Then if $b, c \in \mathcal{R}^n$ it follows that

$$\begin{split} Q_{\boldsymbol{\theta}}\!\!\left(\frac{1}{2}(b\!+\!c)\right) &= W\!\left(\left\|\boldsymbol{\theta}\!-\!\frac{1}{2}(b\!+\!c)\right\|\right) \\ &= W\!\left(\left\|\frac{1}{2}(\theta\!-\!b)\!+\!\frac{1}{2}(\theta\!-\!c)\right\|\right) \\ &\leq W\!\left(\frac{1}{2}\|\boldsymbol{\theta}\!-\!b\|\!+\!\frac{1}{2}\|\boldsymbol{\theta}\!-\!c\|\right) \\ &\leq \frac{1}{2}W(\|\boldsymbol{\theta}\!-\!b\|)\!+\!\frac{1}{2}W(\|\boldsymbol{\theta}\!-\!c\|) \\ &= \frac{1}{2}Q_{\boldsymbol{\theta}}\!(b)\!+\!\frac{1}{2}Q_{\boldsymbol{\theta}}\!(c)\;. \end{split}$$

Thus each $Q_{\theta}: \mathcal{R}^n \to \mathcal{R}^+$ is convex. Thus, if $b, c \in \mathcal{R}^n$ and $b \neq c$ we have

$$\begin{split} U\Big(\frac{1}{2}(b+c)\Big) &= \int_{\mathcal{R}^n} W\Big(\Big\|\theta - \frac{1}{2}(b+c)\Big\|\Big) dF(\theta) \\ &\leq \int_{\mathcal{R}^n} \Big(\frac{1}{2}Q_{\theta}(b) + \frac{1}{2}Q_{\theta}(c)\Big) dF(\theta) \\ &= \frac{1}{2}U(b) + \frac{1}{2}U(c) \; . \end{split}$$

Thus U is convex.

LEMMA 2. $\lim_{\|a\|\to\infty} U(a) = \infty$.

PROOF. Fatou's lemma implies

$$\lim_{\|a\|\to\infty} U(a) \ge \int_{\mathcal{R}^n} \lim_{\|a\|\to\infty} W(\|\theta-a\|) dF(\theta) .$$

But for each θ we have $\lim_{\|a\|\to\infty} W(\|\theta-a\|) = \infty$ since W is non-decreasing, convex, and not identically constant. Thus the lemma is establised.

Lemmas 1 and 2 imply that the set of values which minimize U is a non-empty, closed, bounded, convex set in \mathcal{R}^n . Call this set M. Now suppose $\xi \in \mathcal{R}^n$ with $\|\xi\|=1$. Define

$$(2.2) U_{\xi}(a) = \lim_{t \to 0^+} \frac{U(a+t\xi) - U(a)}{t}.$$

By Theorem A.1 of the appendix, we see that $a \in M$ if and only if $U_{\varepsilon}(a) \ge 0$ for all ε with $\|\xi\| = 1$.

Now, define

$$Q_{ heta, \xi}(a) \! = \! \left\{ egin{array}{ll} W'(\| heta - a\|) rac{(a - heta)^T \xi}{\|a - heta\|} & ext{for } a
eq heta \ W'(0) & ext{for } a
eq heta \ . \end{array}
ight.$$

LEMMA 3. If $||a|| < \infty$ then

$$U_{\epsilon}(a) = \int_{\mathcal{R}^{n}} Q_{\theta,\epsilon}(a) dF(\theta) < \infty$$
 .

PROOF. Let $\{t_k\}_{k=1}^{\infty}$ be a sequence of positive reals converging to zero. For any fixed α consider the sequence $\{G_{\varepsilon,k}(\cdot)\}_{k=1}^{\infty}$ defined by

$$G_{\xi,k}(\theta) = \frac{W(\|\theta - a - t_k \xi\|) - W(\|\theta - a\|)}{t_k}.$$

Note that $\lim_{k \to \infty} G_{\varepsilon,k}(\theta) \! = \! Q_{\theta,\varepsilon}(a)$ and that

$$\lim_{k\to\infty}\int_{\mathcal{R}^n}G_{\varepsilon,k}(\theta)dF(\theta)\!=\!\lim_{k\to\infty}\frac{U(a\!+\!t_k\!\xi)\!-U(a)}{t_k}\!=\!U_\varepsilon\!(a)\;.$$

Thus, the lemma is established once we show that the limit may be moved inside the integral. Thus consider $|G_{\xi,k}(\theta)|$. We first want to show that

$$|G_{\varepsilon,k}(\theta)| \leq \frac{W(\|\theta-a\|+t_k)-W(\|\theta-a\|)}{t_k} = H_k(\theta).$$

Now, note that

$$W(\|\theta-a-t_k\xi\|) \leq W(\|\theta-a\|+t_k)$$

since W is non-decreasing. Also note that

$$W(\|\theta-a-t_k\xi\|) \geq W(\|\theta-a\|-t_k)$$

for $t_k < \|\theta - a\|$ for the same reason. Thus if $t_k < \|\theta - a\|$ then

$$\begin{split} |W(\|\theta - a - t_k \xi\|) - W(\|\theta - a\|)| \\ & \leq \left\{ \begin{array}{ll} W(\|\theta - a\| + t_k) - W(\|\theta - a\|) & \text{for } \|\theta - a - t_k \xi\| > \|\theta - a\| \\ W(\|\theta - a\|) - W(\|\theta - a\| - t_k) & \text{for } \|\theta - a - t_k \xi\| \leq \|\theta - a\| \end{array} \right. \end{split}$$

However, if $t_k < \|\theta - a\|$ then

$$W(\|\theta - a\|) - W(\|\theta - a\| - t_k) \le W(\|\theta - a\| + t_k) - W(\|\theta - a\|).$$

This follows since W is convex. To see this, suppose 0 < y < x, then

$$\frac{W(x+y) + W(x-y)}{2} \ge W\left(\frac{1}{2}(x+y) + \frac{1}{2}(x-y)\right) = W(x) \ .$$

Thus

$$W(x+y)+W(x-y)\geq 2W(x),$$

which implies

$$W(x+y)-W(x) \ge W(x)-W(x-y)$$
.

Thus if $t_k < \|\theta - a\|$ then $|G_{\varepsilon,k}(\theta)| \le H_k(\theta)$. Now consider $t_k \ge \|\theta - a\|$. For this case we have

$$W(0) \leq W(\|\theta - a - t_k \xi\|) \leq W(\|\theta - a\| + t_k)$$
.

Thus,

$$W(0) - W(\|\theta - a\|) \leq W(\|\theta - a - t_k \xi\|) - W(\|\theta - a\|)$$

$$\leq W(\|\theta - a\| + t_k) - W(\|\theta - a\|).$$

But

$$(2.3) W(\|\theta - a\|) - W(0) \le W(\|\theta - a\| + t_k) - W(\|\theta - a\|).$$

Now (2.3) holds since $t_k \ge \|\theta - a\|$ implies $\frac{1}{2} \|\theta - a\| + \frac{1}{2} t_k \ge \|\theta - a\|$, which implies

$$W\left(\frac{1}{2}\|\theta-a\|+\frac{1}{2}t_k\right) \geq W(\|\theta-a\|).$$

However, the convexity of W implies

$$\frac{W(\|\theta - a\| + t_k) + W(0)}{2} \ge W\left(\frac{1}{2}\|\theta - a\| + \frac{1}{2}t_k\right)$$

which implies inequality (2.3). Thus we see $|G_{\varepsilon,k}(\theta)| \leq H_k(\theta)$. But note, $H_k(\theta)$ is a monotonically decreasing, non-negative sequence with $\int_{\mathcal{R}^n} H_k(\theta) dF(\theta) < \infty$ for each k, so

$$\begin{split} \lim_{k\to\infty} \int_{\mathcal{R}^n} H_k(\theta) dF(\theta) &= \int_{\mathcal{R}^n} \lim_{k\to\infty} H_k(\theta) dF(\theta) \;, \\ &= \int_{\mathcal{R}^n} W'(\|\theta - a\|) dF(\theta) < \infty \;. \end{split}$$

Thus the Lebesgue generalized convergence theorem implies that

$$\lim_{k\to\infty}\int_{\mathcal{R}^n}G_{\xi,k}(\theta)dF(\theta)\!=\!\int_{\mathcal{R}^n}\lim_{k\to\infty}G_{\xi,k}(\theta)dF(\theta)\!=\!\int_{\mathcal{R}^n}Q_{\theta,\xi}(a)dF(\theta)\;.$$

Thus, the lemma is established.

THEOREM 1. The set of values that minimize U is a non-empty, bounded, closed, convex set $M \subset \mathbb{R}^n$ such that $a \in M$ if and only if

$$(2.4) \qquad \sum_{i=1}^{n} \left[\int_{\mathcal{R}^{n} - \{a\}} W'(\|\theta - a\|) \frac{a_{i} - \theta_{i}}{\|\theta - a\|} dF(\theta) \right]^{2} \leq \left[W'(0) \mu_{F}(a) \right]^{2},$$

where μ_F is the measure induced by F.

PROOF. The only property of M that is not obvious from Lemmas 1, 2, and 3 is that $a \in M$ if and only if (2.4) holds. Now, $a \in M$ if and only if $U_{\varepsilon}(a) \ge 0$ for all ε with $\|\varepsilon\| = 1$. But

$$egin{aligned} U_{arepsilon}(a) &= \int_{\mathscr{R}^n} Q_{ heta,arepsilon}(a) dF(heta) \ &= W'(0) \mu_F(a) + \int_{\mathscr{R}^n - \{a\}} W'(\| heta - a\|) rac{(a - heta)^T \xi}{\|a - heta\|} dF(heta) \;. \end{aligned}$$

Thus $a \in M$ if and only if

$$\int_{\mathbb{R}^n - \{a\}} W'(\|\theta - a\|) \frac{(a - \theta)^T \xi}{\|a - \theta\|} dF(\theta) \ge - W'(0) \mu_F(a).$$

However,

(2.5)
$$\int_{\mathcal{R}^{n}-\{a\}} W'(\|\theta-a\|) \frac{(a-\theta)^{T} \xi}{\|a-\theta\|} dF(\theta) \\ = \sum_{i=1}^{n} \xi_{i} \int_{\mathcal{R}^{n}-\{a\}} W'(\|\theta-a\|) \frac{(a_{i}-\theta_{i})}{\|\theta-a\|} dF(\theta) .$$

Now the right hand side of $(2.5) \ge -W'(0)\mu_F(a)$ for all ξ with $\|\xi\|=1$ if, and only if, (2.4) holds. Thus the theorem is proved.

LEMMA 4. Suppose W is strictly convex. For $y, z \in \mathbb{R}^n$ define $B(y, z) = \{x \in \mathbb{R}^n | z^T(x-y)=0\}$. Suppose $\mu_F(B(y,z)) < 1$ for each $y, z \in \mathbb{R}^n$, i.e. no n-1 dimensional hyperplane has probability one under F. Then U is strictly convex.

PROOF. The proof follows as in the proof of Lemma 1. We now

conclude

$$W\Big(\frac{1}{2}\|\theta-b\|+\frac{1}{2}\|\theta-c\|\Big)\!\leqq\!\frac{1}{2}Q_{\boldsymbol{\theta}}\!(b)\!+\!\frac{1}{2}Q_{\boldsymbol{\theta}}\!(c)$$

with strict inequality when $\|\theta-b\|\neq \|\theta-c\|$. But $\{\theta\in\mathcal{R}^n|\|\theta-b\|=\|\theta-c\|\}$ $=\left\{\theta\in\mathcal{R}^n\left|(c-b)^T\left[\theta-\frac{1}{2}(b+c)\right]=0\right\}=B\left(\frac{1}{2}(b+c),\ b-c\right)=B^*.$ Thus

$$\begin{split} &U\Big(\frac{1}{2}(b+c)\Big) = \int_{\mathcal{R}^n} W\Big(\Big\|\theta - \frac{1}{2}(b+c)\Big\|\Big) dF(\theta) \\ &= \int_{\mathcal{B}^*} W\Big(\Big\|\theta - \frac{1}{2}(b+c)\Big\|\Big) dF(\theta) + \int_{\mathcal{R}^n - B^*} W\Big(\Big\|\theta - \frac{1}{2}(b+c)\Big\|\Big) dF(\theta) \\ &< \int_{\mathcal{B}^*} \Big(\frac{1}{2}Q_{\theta}(b) + \frac{1}{2}Q_{\theta}(c)\Big) dF(\theta) + \int_{\mathcal{R}^n - B^*} \Big(\frac{1}{2}Q_{\theta}(b) + \frac{1}{2}Q_{\theta}(c)\Big) dF(\theta) \\ &< \frac{1}{2}U(b) + \frac{1}{2}U(c) \; . \end{split}$$

Thus U is strictly convex.

COROLLARY 1. If W is strictly convex and $\mu_F(B(x, y)) < 1$ for each $x, y \in \mathcal{R}^n$ then M contains only one point, the unique point such that (2.4) holds.

This corollary is a direct consequence of Theorem 1 and Lemma 4 and the observation that a strictly convex function has at most one minimizer.

3. Bayes Estimators

For a given prior distribution let Π be the marginal distribution for X. For $x \in \mathcal{X}$, let $F(\cdot|x)$ be the posterior distribution when the observed value of X is x. Let D be the class of all measurable from \mathcal{X} to \mathcal{R}^n . Suppose all previous assumptions about W and F are still in force when F is replaced with $F(\cdot|x)$ for each $x \in \mathcal{X}$.

Now, a Bayes estimator for θ is a function $\delta \in D$ that minimizes the Bayes risk

$$\int_{\mathcal{X}} \int_{\mathcal{R}^n} W(\|\theta - \delta(x)\|) dF(\theta|x) d\Pi(x) .$$

We will use the results of Section 2 to characterize this class of estimators.

For each $x \in \mathcal{X}$ and $||a|| < \infty$, let U(a|x) be defined as in (2.4) with $F(\theta|x)$ in place of $F(\theta)$. Let M(x) be the set of values of a which minimize U(a|x). For each a we can choose $U(a|\cdot)$ as a measurable

function of x, as in Doob ([4], p. 27), upon the assumption of the existence of the condition distribution function. With these preliminaries we see that we have established the following theorem.

THEOREM 2. $\delta \in D$ is a Bayes estimator for θ if and only if δ satisfies the following

$$\textstyle\sum\limits_{i=1}^{n} \left[\int_{\mathcal{R}^{n}-\left\{\delta(x)\right\}} W'(\|\theta-\delta(x)\|) \frac{\delta_{i}(x)-\theta_{i}}{\|\theta-\delta(x)\|} dF(\theta|x) \right]^{2} \leq \left[W'(0)\mu_{F(\cdot|x)}(\delta(x)) \right]^{2}.$$

The next theorem present sufficient conditions for a Bayes estimator to exist.

THEOREM 3. If \mathcal{X} is a separable, complete metric space then there exists a measurable function δ such that $\delta(x) \in M(x)$ for each $x \in \mathcal{X}$.

The proof is a direct application of Corollary 1 in Brown and Purves [1].

The following corollary is a direct application of these results.

COROLLARY 2. If W is strictly convex, and $\mu_{F(\cdot|x)}(B(y,z))<1$ for each $x \in \mathcal{X}$ and $y, z \in \mathcal{R}^n$, and \mathcal{X} is a separable, complete, metric space, then δ defined by $\delta(x)=M(x)$ is the unique (a.e. (II)) Bayes estimator.

4. An application

These results can be applied when the posterior distribution is elliptically symmetric. This is shown for the case when the distribution has a density in the following theorem.

THEOREM 4. Suppose X is a random variable whose density at x is given by $g((x-u)^T A(x-u))$ for some vector u and some positive definite (p.d.) matrix A and some $g: \mathcal{R}^+ \to \mathcal{R}^+$. Then $\min_a \to W(\|X-a\|) = \to W(\|X-u\|)$ provided $\to W(\|X\|) < \infty$.

PROOF. By Theorem 1 it suffices to show that

(4.1)
$$\mathbb{E}\left[\frac{W'(\|X-u\|)}{\|X-u\|}(X-u)\right] = \mathbf{0} .$$

But since A is p.d. there exists an orthogonal matrix, B, such that B^TAB is a diagonal matrix with strictly positive diagonal elements, say d_1, d_2, \dots, d_n . Let $Y = B^T(X - u)$. The density for Y at y is given by $g((By)^TABy)|\det B| = g\left(\sum_{j=1}^n d_j y_j^2\right)$, where y_j is the jth coordinate of y. Thus the left hand side of (4.1) equals

(4.2)
$$\mathbb{E}\left[\frac{W'(\parallel BY \parallel)}{\parallel BY \parallel}BY\right] = B\mathbb{E}\left[\frac{W'(\parallel Y \parallel)}{\parallel Y \parallel}Y\right].$$

But the ith coordinate of $\mathrm{E}\Big[\frac{W'(\|Y\|)}{\|Y\|}\Big]$ is given by

(4.3)
$$\int_{\mathcal{R}^n} \frac{W'(\|y\|)}{\|y\|} y_i g\left(\sum_{j=1}^n d_j y_j^2\right) dy .$$

But by symmetry

$$\int_{\mathcal{R}} \frac{W'(\parallel y \parallel)}{\parallel y \parallel} y_i g\left(\sum_{j=1}^n d_j y_j^2\right) dy_i = 0.$$

So (4.3)=0. So (4.2)=0, which implies that (4.1)=0. Thus the theorem is established.

For example, if the posterior for data x is normal with mean u_x and variance-covariance matrix Σ_x , p.d., then for any loss function of the form in this work a Bayes rule is given by $\delta(x) = u_x$, provided that the risk is finite. This includes, of course, the loss function $L(\theta, a) = \|\theta - a\|$.

Appendix

In this appendix we prove a result used in the body of the paper.

THEOREM A.1. $a \in M$ if, and only if, $U_{\xi}(a) \geq 0$ for all ξ with $\|\xi\| = 1$, where $U_{\xi}(a)$ is defined in (2.2).

PROOF. Roberts and Varberg ([5], p. 62) define

(A.1)
$$U'_{+}(a; v) = \lim_{t \downarrow 0} \frac{U(a+tv) - U(a)}{t}$$
,

and note that $U'_{+}(a; v)$ always exists if U is convex. Note that if ||v|| = 1, we can write $U'_{+}(a; v) = U_{v}(a)$.

(If) By (A.1) we note that for $x \neq a$,

$$\begin{split} U'_{+}(a,\,x-a) &= \lim_{t \downarrow 0} \frac{U\Big(a+t\|x-a\| \cdot \frac{x-a}{\|x-a\|}\Big) - U(a)}{t} \\ &= \|x-a\| \lim_{t \downarrow 0} \frac{U\Big(a+t\|x-a\| \cdot \frac{x-a}{\|x-a\|}\Big) - U(a)}{\|x-a\|t} \\ &= \|x-a\| U_{(x-a)/\|x-a\|}(a) \; . \end{split}$$

However, Roberts and Varberg ([5], p. 117) state that $U(x)-U(a) \ge$

 $U'_{+}(a;x-a)$. So we have $U(x)-U(a) \ge ||x-a|| U_{(x-a)/||x-a||}(a) \ge 0$. Thus U is minimum at a.

(Only if) Suppose U is minimum at a. This implies $U(x)-U(a)\geq 0$. We see that the numerator inside the limit in (2.2) is never negative. Thus we must have $U_{\epsilon}(a)\geq 0$.

BALL STATE UNIVERSITY

REFERENCES

- [1] Brown, L. D. and Purves, R. (1973). Measurable selections of extrema, Ann. Statist., 1, 902-912.
- [2] DeGroot, M. H. and Rao, M. M. (1963). Bayes estimation with convex loss, Ann. Math. Statist., 34, 839-846.
- [3] DeGroot, M. H. and Rao, M. M. (1966). Multidimensional information inequalities and prediction, *Multivariate Analysis* (ed. P. R. Krishnaiah), Academic Press, New York, 287-313.
- [4] Doob, J. L. (1953). Stochastic Processes, John Wiley and Sons, Inc., New York.
- [5] Roberts, A. W. and Varberg, D. E. (1973). Convex Functions, Academic Press, New York.
- [6] Strasser, H. (1973). On Bayes estimates, J. Multivariate Anal., 3, 293-310.