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Summary

It is desired to estimate a parameter 8 ¢ R* with the loss function
of the form L(6, a)= W(||#—al]), where W: R* — R* is convex, differ-
entiable, and non-decreasing. With this structure a characterization
of Bayes estimators is given. Also it is noted that if the sample
space, X, for the observation, X, is a complete separable metric space
then a Bayes estimator exists.

1. Introduction

In DeGroot and Rao [2] a characterization of a Bayes estimator
for & when the loss is of the form L(f, a)=W(6—al) is given. They
show that if W: R*— R* is non-decreasing, differentiable, and con-
vex, a measurable function § is a Bayes estimator for # if and only if
the following inequalities hold a.e. (II): [II being the marginal dis-
tribution for X.]

Voo, WO UMF OL0)Z W 0() =0 O12)
and

|, WO—0)AFOlm)S | W(0)—~0)AF(0]2) .

0s5(

Here F'(-|x) is the posterior distribution function when the observed
value of X is x.

In this work a similar characterization is given for 6 being a vec-
tor valued parameter and L(4, a)= W(||0—al|), where W is as above.

The case when L(4, a)=é W(l6.—a;]) can be handled using the

DeGroot and Rao results if each W, is as above. In this case each
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coordinate, d;(x), of 3(x) satisfies the DeGroot and Rao characterization
with W,, 8;,, F,(6;|x) substituted for W, 8, and F'(0|x) respectively for
each 1=1,2,.--,n. Here F\(6,|x) is the posterior distribution function
for 4, (the ith coordinate of 6) given X =z.

In DeGroot and Rao [3] similar results are given to those in this
paper. DeGroot and Rao, however, have more restrictions on the loss
function, W, yet work in a more general parameter space, Banach
space. The results here and in DeGroot and Rao [3] are closely re-
lated to the very abstract results in Strasser [6]. Contained herein is
a direct and easily accessible proof for the important case when the
parameter space is R*.

Recall, a Bayes estimate for the given value of x is a number, 38},
such that

e W0 =02 DF (0]) =int | ,, W(lI6—al)dF(©]).

Thus the problem of finding a Bayes estimate is a problem of finding
a minimizer of

| e W10 —alDdF 6)

for a specified distribution function F.

In what follows, all vectors are written as column vectors with T
denoting the transpose operation.

In Section 2 the solutions of this minimization problem are charac-
terized and some properties of the minimizing values are discussed.
In Section 3 this minimization is discussed as it relates to Bayes esti-
mators. In addition, it is shown that if the sample space, X, is a
separable, complete, metric space then a Bayes estimator will always
exist.

2. The minimization problem

Suppose W is as in the introduction; convex, non-decreasing, and
differentiable on (0, o). Define W/(0)=1lim W’(¢). To avoid a triviality
+

=0

assume that W is not identically constant. Also, throughout we assume
s W16 —alDAF ()< oo .
With this assumption it follows that

[ Wl0—al)dF (0) <o
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Because, since for each >0, from the convexity of W, we have

| Wilio—alpar @) <, WlO=allt)= WF=alD 45(9)

>3

_ W (|6 —all+¢)
_S "__e__dF(ﬂ)
_ W(|i6—all) oo
S @ dF ()< .

A proof of the finiteness is not difficult, but is too tedious to include.
Now, let

2.1) U(a):g 2 W(I0—al)dF(©@)  for af<oo.

LEMMA 1. U: R"— R* is convex.

ProOOF. Define Q,(a)=W(||¢—al|). Then if b, ce R it follows that
(L 0+9)=w(|o-Lo+o))
=w{|zo-n+g0-0])

gw(—ne—bu+—ne—cu)

—

=5 W(lo— bl|)+ W(|l6—cl))

l\’)

%Q,(b)+ Quc) .

Thus each @,: R*— R* is convex. Thus, if b, c € R" and b+#c¢ we have
U(-%-(b—l—c)):&w W(Hﬂ———lz—(b+c)H>dF(0)
={ an (3O +2QU0))dF )
= LUO+1 0.

Thus U is convex.

LEMMA 2. Lim U(a)=co

|laj|—e0

Proor. Fatou’s lemma implies

lim U(a)gs o lim W(I6—al)dF (6) .

llall—oo
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But for each ¢ we have ||H1m W(|0—a|)=cc since W is non-decreasing,
a|—oco
convex, and not identically constant. Thus the lemma is establised.
Lemmas 1 and 2 imply that the set of values which minimize U is

a non-empty, closed, bounded, convex set in R*. Call this set M.
Now suppose & € R* with ||¢]|=1. Define

2.2) Ua)=lim J@+t)—U@)
t—0t t

By Theorem A.l1 of the appendix, we see that a € M if and only if
Ua)=0 for all & with ||&]|=1.
Now, define

wi(|0—al)@=D¢  tor a0,
Q,.(a)= lla—2|

W’(0) for a=40.
LEMMA 3. If |la||< oo then
Ui@)=| ¢, Qud@)IF(0)<oo .
ProOF. Let {f.}7-, be a sequence of positive reals converging to

zero. For any fixed a consider the sequence {G.,.(-)}i-, defined by

W(l0—a—tLl)—W(lf—al)
te

Note that lim G, .(8)=Q, (a) and that
k—oo

Ge(0)=

li S G, (0)dF(0)=lim Tt U@ _ g7y
k—oo R k—co tk

Thus, the lemma is established once we show that the limit may be
moved inside the integral. Thus consider |G..(d)]. We first want to
show that

G, .(0)|< W(|6—all+t)—W(|0—al) =H,(0).
: = t

Now, note that
W(|0—a—t&l)= W(|6 —all+t.)
since W is non-decreasing. Also note that
W(l0—a—tsl)z W(llo—all—t.)
for t,<||0—a|| for the same reason. Thus if ¢,<|/#—a| then
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IW(ll6—a—tsl)—W([0—al)l
- W(l6—all+t)—W(l6—al)  for [[—a—tL|>|0—al
L W(lo—al)-W(lo—al—t)  for [l0—a—tE|<]0—a].
However, if t,<||0—a] then
W6 —al)—W([0—all—t)= W(l0 —all+t)— W([|0—al)) .

This follows since W is convex. To see this, suppose 0<y<w, then

Wt We=t) > w(L ety La—)=we).

Thus
Wx+y)+We—y)22W(),
which implies
W(z+y)— W(x)=W(x)— W(z—y) .

Thus if ¢,<||0—all then |G, .(0)|<HJ(60). Now consider ¢,=||§—all. For
this case we have

WO)=W(l|0—a—tsl)=W(l6—all+1t) .

Thus,
WO)—W(l0—al)SW(|0 —a—t&l))— W(l|0—all)
sW(|0—all+t.)—W(|0—all) .
But
(2.3) W0 —al)—W(O)= W(||0 —al|+t)— W(|6—al) .

Now (2.3) holds since ¢,=||#—al| implies %”0—@”4‘%—%2”0—“”,

which implies
1ig_ 1> w6 —
W<2H0 all+ 5 tk>_ (16 —all).

However, the convexity of W implies

W(l6—all+t)+ W(0) 1, o1
. gw@o au+§tk)

which implies inequality (2.3). Thus we see |G. (6)|<H,(6). But note,
H,(0) is a monotonically decreasing, non-negative sequence with

S @ H(0)dF(6)<co for each k, so
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lim | ., B(OWF(©)=|,, lim H(OWF (),
={ o W10 —al)iF () <o .
Thus the Lebesgue generalized convergence theorem implies that
lim | ., GoO)AF(0)=| ,, lim Gu(O)AF(0)=| ;, Qu.()IF(0)

Thus, the lemma is established.

THEOREM 1. The set of wvalues that minimize U 1s a non-empty,
bounded, closed, convexr set McC R™ such that a ¢ M if and only if

> 1 a;,—6 ’ 2
CH  Ha ) WI-aH=0dFO)| SIFOm@T,

where pp is the measure induced by F.

ProoF. The only property of M that is not obvious from Lemmas
1, 2, and 3 is that a ¢ M if and only if (2.4) holds. Now, a € M if and
only if UJa)=0 for all £ with ||£]]=1. But

Ui@)=| 5, Qu@)dF ()
=W O+ g, Wllo—al) E=0Ear0).
Thus a € M if and only if

g W 10=a) SR ARz~ W Opr(@).

However,
(2:5) [ Wl —al) L= apo
=312 gu_ oy WI0—al) ‘If;— f“) dF(0) .

Now the right hand side of (2.5)=— W'(0)ur(a) for all & with [|£]|=1
if, and only if, (2.4) holds. Thus the theorem is proved.

LEMMA 4. Suppose W is strictly convex. For y, z € R" define B(y, z)
={x € R2"(x—y)=0}. Suppose px(B(y, 2))<1 for each y, z € R*, i.e. no
n—1 dimensional hyperplane has probability one under F. Then U 1is
strictly convex.

PrRoOOF. The proof follows as in the proof of Lemma 1. We now
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conclude
1 1 1 1
<
W (10 —ll+-Lll0—ell ) S +-Qub)+1-Au)

with strict inequality when [[§—b||#(/§—c||. But {8 ¢ R"|||6—-b[|=]l0—cl[}
J— n — T _,l = = .l — = *
_%eﬁ,@ m[a 2@+@]0}1%2w+¢b Q B*. Thus

ETRR N (T
e P e P
<[ (2Q®+10@)dFO)+| 4, (+Q0+5QU)IFO)
<Lue)+ LU .

Thus U is strictly convex.

COROLLARY 1. If W 1is strictly convex and py(B(z, y))<1 for each
x,y € R" then M contains only one point, the unique point such that
(2.4) holds.

This corollary is a direct consequence of Theorem 1 and Lemma 4
and the observation that a strictly convex function has at most one
minimizer.

3. Bayes Estimators

For a given prior distribution let /7 be the marginal distribution
for X. For we X, let F(-|x) be the posterior distribution when the
observed value of X is #. Let D be the class of all measurable from
X to R*. Suppose all previous assumptions about W and F are still
in force when F is replaced with F'(-|x) for each x ¢ X.

Now, a Bayes estimator for # is a function ¢ € D that minimizes
the Bayes risk

e | W00 DA O L)L @)

We will use the results of Section 2 to characterize this class of esti-
mators.

For each 2 € X and |lal|<oo, let U(a|x) be defined as in (2.4) with
F(6|x) in place of F(f). Let M(x) be the set of values of a which
minimize U(a|x). For each a we can choose U(a|-) as a measurable
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function of z, as in Doob ([4], p. 27), upon the assumption of the ex-
istence of the condition distribution function. With these preliminaries
we see that we have established the following theorem.

THEOREM 2. d€D is a Bayes estimator for 6 if and only if @
satisfies the following

> "HNA_ d{(x)—0; : / 2
3 Lan gy 010 =3 1) DA 012) | STV Ot

The next theorem present sufficient conditions for a Bayes estimator
to exist.

THEOREM 3. If XX 1is a separable, complete metric space then there
exists a measurable function & such that d(x) € M(x) for each x ¢ X.

The proof is a direct application of Corollary 1 in Brown and
Purves [1].
The following corollary is a direct application of these results.

COROLLARY 2. If W 14s strictly comvex, and pp..(B(¥Y, 2)<1 for
each x € X and y,z€ R", and X 1is a separable, complete, metric space,
then o defined by o(x)=DM(x) ts the unique (a.e. (II)) Bayes estimator.

4. An application

These results can be applied when the posterior distribution is
elliptically symmetric. This is shown for the case when the distribu-
tion has a density in the following theorem.

THEOREM 4. Suppose X 1s a random variable whose density at x
18 given by g((x—u)TA(x—u)) for some vector u and some positive de-
finite (p.d.) matric A and some g: R*— R*. Then min E W(|| X —al|)

=E W(| X —ul|) provided E W(||X||)< oo.

Proor. By Theorem 1 it suffices to show that
W'(| X —ul) _
(4.1) E[————(X—u) -0.
| X —ull

But since A is p.d. there exists an orthogonal matrix, B, such that
BTAB is a diagonal matrix with strictly positive diagonal elements,
say d;, dy, --+,d,. Let Y=B"(X —u). The density for Y at y is given

by g((By)*ABy)|det B|=g<é djy;>, where y, is the jth coordinate of
i=1
9. Thus the left hand side of (4.1) equals
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W'(|BY) W'(1Y1)
(4.2) E[—_—HBY“ BY] BE[ e Y]
But the ith coordinate of E[W] is given by
W'(Hyll) z
“9 oo gyl 050

But by symmetry

Wyl ,, <” _ 2_) _
ng T 21 dy3)dy.=0.
So (4.3)=0. So (4.2)=0, which implies that (4.1)=0. Thus the theorem
is established.

For example, if the posterior for data 2 is normal with mean wu,
and variance-covariance matrix 3,, p.d., then for any loss funection of
the form in this work a Bayes rule is given by d8(x)=wu,, provided that
the risk is finite. This includes, of course, the loss function L(f, a)=
16 —all.

Appendix
In this appendix we prove a result used in the body of the paper.

THEOREM A.l. a €M if, and only if, Ufa)=0 for all & with ||¢|=
1, where U.a) is defined in (2.2).

Proor. Roberts and Varberg ([5], p. 62) define
U(a+tv)— U(a)
t ’

(A1) Ul(a; v):lilrgl
and note that Ul(a; v) always exists if U is convex. Note that if ||v||
=1, we can write Ul(a; v)= Uya).

(If) By (A.1) we note that for x+a,

U(a+tnx—au-—”€1)— Ula)
lo—al]

Ul(a, x—a)=lim '
ti0 t

U<a+t|lx all-+ ”) U(a)
e — allt

=|lx—a| lim
tl0
=l —a||Us-ayiz-a@) -

However, Roberts and Varberg ([5], p. 117) state that U(x)— U(a)=
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Ul(a; x—a). So we have U(x)—U(a)=||lz—a||Us_wiz-a(@)=0. Thus U
is minimum at a.

(Only if) Suppose U is minimum at a. This implies U(x)— U(a)=0.
We see that the numerator inside the limit in (2.2) is never negative.
Thus we must have Ui(a)=0.
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