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Abstract

Let F and G be two distribution functions defined on the same
probability space which are absolutely continuous with respect to the
Lebesgue measure with probability densities f and g, respectively. Matu-
sita [3] defines a measure of the closeness, affinity, between F and G

as: p=p(F, G)———S [f(x)g(x)]*dx. Based on two independent samples

from F and G we propose to estimate p by ;‘;=S [f'(w)g}(x)]‘/’dx, where

A

f(x) and g(x) are taken to be the kernel estimates of f(x) and g(x),
respectively, as given by Parzen [5].

In this note sufficient conditions are given such that
(i) E(o—p)*—0 as x— oo and (ii) p—p with probability one, as n— co.

1. Introduction

Let F' and G be two distribution functions (d.f.’s) defined on the
same probability space. Assume that F and G admit densities f and
g, respectively, with respect to a measure p. Matusita [3] defines a
of the closeness between F and G as:

(L.1) p=0(F, )= [F@0(@)]"du(@) .

Matusita [3] studies certain decision problems based on estimates of p
when p is the counting measure, while Matusita [4] gives an extensive
account of the mathematical properties of p. In several other papers,
Matusita applied p to various inferential problems such as classification,
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independence, among others. He also furthered his mathematical studies
of p in other publication, see Ahmad [2] for a list of references. Ahmad
and Van Belle [1] introduced another measure of affinity when f and
g are square integrable, viz.,

12)  1=AF, @)=2 | F@o@ip@)[|| Fedue)+ | ¢Eauw) -

When g is the counting measure, Ahmad and Van Belle [1] propose
certain test statistics based on estimates of p and 2, while when p is
the Lebesgue measure, Ahmad [2] proposes a nonparametric estimate
of 2 using the kernel estimates of f(x) and g(x) and present its large
sample properties and its applications in hypothesis testing. Note that
A is defined only when f and g are square integrable. This restriction
motivates the development of inference about p. In this note a large
class of nonparametric estimates of p is shown to be, under certain
conditions, consistent in the second mean, and under a bit stronger
conditions it is strongly consistent.

Let X;, -+, X, and Y;,---,Y, be two independent random samples
from F and G respectively. Assume that F' and G admit probability
density functions (p.d.f.’s) f and g, respectively, thus

(1.3) p=lF, &)= [f@(@))"dz .

Furthermore, let & be a known p.d.f. satisfying the following condi-
tions:

1.4) sup k(u)<oo and |u|k(u)—0 as |u|— oo,

and let {a,} be a sequence of nonnegative real numbers such that a,
—0 as n—oo. The kernel estimates of f(x) and g(x) are given by:

15 f@=a | ME—w)aldF.w=(ma)" 3 He-X)a]
and
16 i@)=a; | HEe—w/ald6.w=ma)" 2 kE—Ya] .

The estimates (1.5) and (1.6) are due to Rosenblatt [6] and Parzen [5],
and are called the kernel estimates. Thus a nonparametric estimate
of p may be given by:

.7 b=\ @) dz .

It should be mentioned here that the results of this note are readily
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extendable to affinity of several distribution, cf, Matusita [4]. .
Throughout this note we shall assume that the set of discontinuity
points of f and g are, respectively, null sets.

2. Main results
THEOREM 2.1. If mna,— oo, then
2.1) E (o—p)*—0 as m— oo .
ProoF. Note that
@2 EG-prs2E || (Fe)16w) - @) ]
+2E{| gy (@) (f@)da] .

It suffices to show that one term in the above right-hand side converges
to 0 as n—oo. The second term may be shown to converge similarly.
But using Fubini’s theorem,

@8 E{| (@) 1@ — o) ds)
=| | BLF@F @1 E [@@)"*— @) 116w) "~ (0w))"Idsdy

=| | E F@1E fu1 B (@@ — @)1
B (@)~ o) Tdsdy
| [E @1 B [g(a))da|

-l
=| & f@de- | E1G(@) "~ @@) " 1ds
S

E [(§(x))"*— (9(x))"*T'dw
<| E o) —g)1dz

where the first equality follows since f and g are independent, the first
and the second inequalities follow from Schwarz’s inequality while

the last inequality follows since SE f(ac)dx:l for all n=1 and since

for all a,b=0, (a—b)=|a’*—b*]. Since E|g(x)—g(x)|SE"? [§(x)—g(z)]'S
{Var g(x)+[E g(x)—g(x)]*} %, it follows from Theorems 1A and 2A of
Parzen [5] that for each continuity point of g, E|g§(z)—g(x)|—0 and n
— o0, but E|g(x)—g(x)|SE g(x)+g(x) which is integrable for all nx=1
and converges to 2¢g(x) as n— oo, again an integrable function. Hence
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the extended Lebesgue dominated convergence theorem, Royden [7]
p. 89, applies and we have SEI@(x)-—g(m)[dx—»O as n—oo. Similarly

we have
@4 E{] @) (@) —(f@) ] s| El1f@)—f@)de—0
as n—oo,

THEOREM 2.2. If k 1s a continuous functions of bounded variation,
if for any y>0, 3 exp (—mal)<oco, if inf f(x)>0 and inf g(x)>0, and

if S f@)g(@)dz< oo, then
@.5) p—p  with probability one as n— oo .
PROOF. Note that,

@8 lo—ol=|| LF@i@1 o [F@)@1 ds|
=[] 1/ @@~ F@e@N - 1 @@+ [ @o(@)) da|
<[inf f(@) inf g@] " | | /@)@~ f@@)de
=c{] f@)l@)—g@)ldz-+ | o)1 F@)— f() ds]
<C {sup |§(x) —E g(a)|+ | F@)IE j(a) —(z)|ds

+sup | /@)~ B f(@)|+ | 9(a)|E fx) - F(@)lda} -

Under the condition of the theorem it follows as in Lemma 2.2 (iii) of
Ahmad [2] that the first and third terms above converge to 0 with
probability one as n— . The second term is majorized by

sup| /@)~ E f@) | [E §@)—g@dw+ | E @)/ B (&) —g(o)lds ,

where the first term converge to 0 with probability one as n— oo, since
as seen in the proof of Theorem 2.1, SIE f(x)—f(:c)]dw——»O, as m— oo,

Also since E f‘(ac)lE g(x)—g(x)| =0 as m— oo at all continuity points

of f and g and since E f(z)|E §(x)—g(x)|<E F(2)|E §(z)+g(x)| which is
integrable and converges to 2f(x)g(x) again and integrable function,
thus the extended Lebesgue dominated convergence theorem applies and

SE f'(w)]E g(x)—g(x)|dx—0 as m—oo. The fourth term in the right-
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hand side of (2.6) also converge to 0 as n—oco.

Remark 2.1. An interesting and open question would be to discuss
the limiting distribution of p.
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