NONEXISTENCE OF COMPLETE SUFFICIENT STATISTICS FOR STATIONARY k-STATE MARKOV CHAINS, $k \ge 3$

A. L. WRIGHT

(Received Mar. 27, 1979)

Abstract

It is shown that there does not exist a complete sufficient statistic for the class of all k-state Markov chains, $k \ge 3$. When k=2 there is a complete sufficient statistic.

1. Introduction

Consider the set of all Markov chains with a finite or countable state space S. Assume that either $S = \{1, \dots, k\}$, $k \ge 2$, or else S is the positive integers. The purpose of this note is to point out that there exists a complete sufficient statistic for the set of all stationary chains with state space S if and only if $S = \{1, 2\}$. We will not try to describe the well-known role of complete sufficient statistics in the theory of uniformly most powerful unbiased tests and in minimum variance unbiased estimation. The books of Lehmann [4] and Zacks [6], among others, contain information and background. The concept completeness of a sufficient statistic is due to Lehmann and Scheffé [5].

2. Results

By definition, the parameter space for the set of Markov chains with state space S is $\Theta = \left\{ (p_{ij}) \colon p_{ij} \geq 0, \sum\limits_{j \in S} p_{ij} = 1 \text{ for each } i \in S \right\}$. Fix integer $n \geq 2$ and let (x_1, \dots, x_n) denote a sample from the chain. It turns out that if the initial state x_1 is fixed then there does exist a complete sufficient statistic for Θ , as shown by Denny and Yakowitz [3], and Denny and Wright [2]. This implies that there is a complete sufficient statistic for Θ if the distribution of x_1 is known to the statistician, that is, if the initial distribution is the same for all $\theta \in \Theta$.

AMS 1970 subject classifications: Primary 62M05; Secondary 62B05, 62J10. Key words and phrases: Markov chains, complete sufficient statistics.

By definition, the parameter space for the set of all stationary Markov chains with state space S is $\Theta_S = \{(p_{ij}): (p_{ij}) \in \Theta, \text{ there exists}$ at least one stationary initial distribution (p_i) for $(p_{ij})\}$. Recall the definition of the transition count statistic $\{f_{ij}: (i,j) \in S \times S\}: f_{ij}$ is the number of m, $1 \le m \le n-1$, for which $x_m = i$ and $x_{m+1} = j$ (see, for example, Billingsley [1]).

Suppose $S = \{1, 2\}$. It is mentioned on p. 338 of Denny and Wright [2] that the following function is a complete sufficient statistic for θ_s :

$$(x_1,\dots,x_n) \rightarrow (x_1,f_{11},f_{22},0)$$
 if $f_{12}=f_{21}$,

and

$$(x_1, \dots, x_n) \rightarrow (0, f_{11}, f_{22}, f_{12} + f_{21})$$
 if $f_{12} \neq f_{21}$.

THEOREM. If $S \neq \{1, 2\}$, $(x_1, \{f_{ij}\})$ is a minimal sufficient statistic for Θ_S which is not complete. Consequently there does not exist a complete sufficient statistic for Θ_S .

PROOF. To simplify notation we assume that S is finite. The factorization theorem shows sufficiency: $P_{\theta}(x_1, \dots, x_n) = p_{x_1} \prod_{i,j} p_{ij}^{f_{ij}} h(x_1, \dots, x_n)$. To prove minimality we use Theorem 6.3 of Lehmann and Scheffé [5]. Let (x_1, \dots, x_n) and (y_1, \dots, y_n) denote two samples and let $\{f_{ij}\}$ and $\{g_{ij}\}$ denote their respective transition counts. By the above mentioned theorem it is enough to prove: if $(x_1, \{f_{ij}\}) \neq (y_1, \{g_{ij}\})$ then there exist $\theta_i \in \Theta_S$, i=1,2, so that

$$\frac{\mathrm{P}_{\theta_1}(x_1,\cdots,x_n)}{\mathrm{P}_{\theta_1}(y_1,\cdots,y_n)} \neq \frac{\mathrm{P}_{\theta_2}(x_1,\cdots,x_n)}{\mathrm{P}_{\theta_n}(y_1,\cdots,y_n)} .$$

Assume first that $\{f_{ij}\}=\{g_{ij}\}$ and $x_1\neq y_1$. If θ_1 is doubly stochastic then the left side of (1) is one, and since the right side of (1) is p_{x_1}/p_{y_1} , there is clearly θ_2 so that (1) holds. Assume now that $\{f_{ij}\}\neq\{g_{ij}\}$, and with no loss of generality assume $f_{12}>g_{12}$. For each $\varepsilon>0$ we define doubly stochastic $\theta_1(\varepsilon)$ as follows: $p_{12}(\varepsilon)=\varepsilon$, $p_{ij}(\varepsilon)=(k-2+\varepsilon)/(k-1)^2$ for $2\leq i\leq k$ and $j\neq 2$, and $p_{ij}(\varepsilon)=(1-\varepsilon)/(k-1)$ otherwise. As ε tends to zero the left side of (1) tends to zero, so there is θ_2 so that (1) holds. This proves minimality. As pointed out in Billingsley [1], x_n is a function of $(x_1, \{f_{ij}\})$. Let F be the function of the sufficient statistic defined by $F(x_1, \{f_{ij}\})=x_1-x_n$. To see that $(x_1, \{f_{ij}\})$ is not complete, we use the stationarity assumption and conclude that $E_{\theta}(F)=0$, $\theta\in \theta_s$. The last statement of the theorem is a consequence of the preceding facts, and the theorem is proved.

Sometimes incomplete sufficient statistics occur because the parameter space is "restricted." The above proof shows that $(x_1, \{f_{ij}\})$ will

not be a complete sufficient statistic for the class of all distributions for which it is sufficient and for which x_1 and x_n have the same mean.

UNIVERSITY OF ARIZONA

REFERENCES

- Billingsley, P. (1961). Statistical methods in Markov chains, Ann. Math. Statist., 32, 12-40.
- [2] Denny, J. L. and Wright, A. L. (1978). On tests for Markov dependence, Zeit. Wahr-scheinlichkeitsth., 43, 331-338.
- [3] Denny, J. L. and Yakowitz, S. J. (1978). Admissible run-contingency type tests for independence and Markov dependence, J. Amer. Statist. Ass., 73, 177-181.
- [4] Lehmann, E. L. (1959). Testing Statistical Hypotheses, Wiley, New York.
- [5] Lehmann, E. L. and Scheffé, H. (1950, 1955). Completeness, similar regions, and unbiased estimation, Sankhyā, 10, 305-340 and Sankhyā, 15, 219-236.
- [6] Zacks, S. (1971). The Theory of Statistical Inference, Wiley, New York.