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ON A STOCHASTIC GAME WITH ONE-CHANCE RECOVERY
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Summary

Bernoulli trials with success rate p are considered. Peter, who is
a gambler of success rate p, gets 1 unit if the first trial results in
success and loses the same unit otherwise. For the kth trial (£=2),
he gets or loses 1 according as success or failure unless his previous
gain S,_; is negative. When S,_; is minus, Peter gets or loses —S,_;.
Then Peter’s gain S, in n trials is the sum of “dependent” random
variables. Therefore, Peter has always the chance p of recovering his
minus gain instantaneously.

The probability function of S, is given and the expected gain is
compared with the ordinary (non-symmetric) random walk situation.
It will be concluded that Peter should not play the game with one-
chance recovery because when p is less than 1/2, he must be afraid of
suffering a bigger risk than the usual case.

1. Statement of the problem

The usual type of random walk is found in Feller [1]. Put w;=1
if the kth trial results in success with the probability p, w{=—1 other-
wise. Then S.=w}+wi+ -+ is the gain (the accumulated excess of
successes over failures) in n trials and the probability function of Sj
can be expressed by the binomial distribution. Some topics of a gen-
eral random walk which is the sum of independent random variables
with an arbitrary common distribution, are discussed in Feller [2].

We consider Bernoulli trials with the probability of success p» and
put ;=1 if the first trial results in success and w,=—1 otherwise.
Next we shall define for the succeeding trials as follows. When

Seci=ort oyt oy
is not smaller than 0, put
1 (success) ,
-1 (failure) ,
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and when S,_;<0, put
—S;_1 (success) ,

N (failure) ,

W=

S, corresponds to the so-called “Peter’s accumulated net gain” (see for
example Feller [1]). It is the significant difference from the ordinary
random walk problem that S, is not the sum of independent random
variables and that Peter has always the probability p of recovering
his minus gain instantaneously. We shall call the problem of this type
STOCHASTIC GAME WITH ONE-CHANCE RECOVERY. We are now
interested in some stochastic properties of gain S, in a sequence of n
tossing.

2. Preliminaries

For any positive integer n, the arrangement {s,s,,--,s,} of in-
tegers satisfying

$,=0, 8$i—8i=g,==+1 (1=1,2,---,m)

is called “path”. For i<n/2, let C(n, ) be the number of paths which
satisfy

s=z—1,8=2~-1,---,8,=2—1 and s,=n—27¢.

LEMMA.

0 cini=(1)-(2)

(i) 5 CWi)=Clr, i+1)

(i) §C(m+2i,i)C(n—2i,j—i)=C(m+n+2,j)
(iv) gC.-C,,_Z_i+2C =C.,

where
C,=C(2i, ) .

PrOOF. When i<2, the relation (i) is trivial. Next, from the
definition of C(n, 7) it is easily verified that

C(2i+2, i+1)=C(2i+1, i)+C (2, ) ,
Cm,i+1)=C(n—1,9)+C(n—1,i4+1) (B=2i+3).

Furthermore noting that
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C (2, )= [(3’) + (ﬁl)] - [(ﬁ"ﬂ + (ﬁz)]

___<2i-_|—1>__<2_i+1>_<2i+1>_<2i+1> ,

) i—1/7 i+l 1—1
we have
cei+2, i+0=37)-(317) -
Similarly

Cn, i+1)=(iﬁ1)—<i_’fl) .

Therefore, it is shown that (i) is true for 7=3 using mathematical

induction.
For the proof of (ii) we first note that

()~ (%) =) -Gl =2 (')
Therefore, from (i) we have
seea=g{("7)-(2)
=(311)= (%)= (20)+ (%)
=(i)=()=cm 4.

Next, we can also see that the relation (iii) is true for j=1.
Then we suppose (iii) for some j. We further note that

C(n—2i, j+1—3)=C(n—1—2i, j—i)+C (n—83—2(i—1), j—(i—1)) .
Then using the assumption and the relation (ii)
éC(m+2i, §) C (n—2i, j+1—1)
:ié C (m+2i, 1) C(n—1—2i, j—1)
+’2 %’ C (423, %) C(n—3—2i, j—i)
=C(m+n+1, 5)=Cla—1, )+ 3 (C(+n—1, 5)~C(+2, )

=C(m+n+1, j)—C(n—1, j)+C(m+n+1, j+1)
—C(n—-1,j+1)—-C(m+2j+2, j+1)
=C(m+n+2, j+1)—Cn, j+1)—C(m+25+2, j+1) .
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From the definition of C(n, 7) we have

C2n,n)=C2n—1,n—1)4+C(2n—2, n—1)
=C(2n—2,n—2)4+2C(n—2,n—1).

Using the relation (iii) for the term C(2n—2,n—2), we have the re-

lation (iv).

3. Probability function of S,

We shall find the probability function of S,. Put
P(s)=Pr{S,=s},

then it is easily seen from Figure 1 that the range of P, is
{n,n—2,n-38,---, 0, —1, —2, —4,-.., —207%, —27"1}

and

P(mn)=p", P.n—2)=np*'q, P,m—3)=p"'¢, P,(—-2YN=q".

n

—on-1

Fig. 1. Game with one-chance recovery. (The vertical scale below —2 is
taken logarithic.)
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For other cases we first obtain

PROPOSITION 1.

Qk, n—k—2i)=Pr {S;,5,>0 (1=5=19), S,=n—k—21|S,=0}
=C(n—k—-2, i)p**'¢*,

where
N _[7n n
C(n, z)-( i >_<i—2> .
PROPOSITION 2.

P,(n—20)=31 Pu(0QCa, n—2)  (bs[222]),

Pn(n—2b—1)=‘;§:]l Pui(0)Q(2a+1, n—2b—1) (bg["—3]) ,
P ,,(n-—Z[_'g]) = Pyrpyay(0)p" 17,

P, (n -2 [nT—l] — 1) =Py (n_l)/2]+1(0)pn—2[(n-l)/Z]—l ,

P(—2=P,_,_(0)¢* (1=0,1,---,n—3,n—1).

Proposition 1 is trivial from the definition of C(n, ). Proposition
2 is the direct consequence of Proposition 1 and the definition of our
game (see Figure 1). From Proposition 2 it is sufficient to have the
expressions for P;(0).

ProrosIiTION 3. For k=2,

2%-3 P

(1) P (0)= E pquZk—l—i(O)"I'pqn_l‘i'i_% (OFPY ¥ (1) /X1
2%—2 k-1 .

(2) Py, (0)= ;2=1 pqu2k—i(O)+pq2k+§l Ci2Pri—2:11(0)0°¢* ,

where

C24,7 ij=0,
1 j=—1.

ProOF. We first note the following relations hold :

k N
(3) Pz;c-l(l)=§ Ci2Pusi(0)p'¢" ™,
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k-1
(4) P,(1)= ¢2=1 Ci—2Pur1-2(0)p'g " .
For, we devide the event [S;._;=1] as follows:
k
[SZk—1=1] =t|:__Jl [Szk-1=1: S2k—2i=01 tt Szx—zi+z>0, ) SZk—2>0] .

Noting that
Pr{Su-2i+2>0,+++, Spp—3>0, Spe_1=1[Ss_2:=0} =C;_sp'¢"*

we have the relation (8). In the same way we can also prove the re-
lation (4).
Next we note that

2k—4
Pr {Su-1<0}= E’ Py i(—2Y)+ Py (—2%77)
2k—4
— lgo Py (0)gH g%,
Inserting these expressions into

Pp(0)=p Pr {S;,_1 <0} +qP;._,(1) ,

we obtain the recurrence relation (1). Similarly, we can show the re-
lation (2).

PROPOSITION 4.
[t/2] . )
(5) PL(0)=§ C(-1,1—1)p'¢~'+C() ,

where

C._p*q*, =2k (even)

)=
0, otherwise .
ProOF. Suppose that the relation (5) holds for [<2k. From Prop-
osition 3 we have
2k—2 k—1
P, (0)= P3| pg* 7 Py(0) 4 pg* 4 E& Ci-2-1P2;(0) (pg)*~’
=A+p¢* '+ B.

Using the assumption and Lemma (ii)
2k—2 [h/2] k-1
A=3 pg* ™ 3 C(h—1, j—1)p'e"' + 3] pg™"C, /"
=2 Jj=1 =1

k— — -
zjzzi p]-HqZk—-j—l ::Ezj C (h_ 1’ j_1)+:2i ph+lq2k—h—lch_1
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=5 pHigh I O (2k—2, J) .
In the similar way
B=31C, ., 3 C(2j—1, h—L)pt-rorgrss?
+§ Ce-1-,C;-10"¢* +Ciop*¢*
=21P¢" 5 G O(@—1-2, i=1-1)+ 3, Cooa Cy-e”
=31 C(2h—2, i—2)p'¢* "+ Cytie”
Consequently, we have
P(0)=3 #'¢*~[C (h—2, i—1)+C k2, i—2)]+C,orpic*
=31 C(@h—1, i—1)p'g*~*+C(2k) .
This shows that the relation (5) holds for I=2k. Along the same line,

we can also prove that (5) holds for [=2k+1 assuming the truth of
(5) for I=2k.

We can now state the fundamental results of the probability funec-
tion of S, in the range {n,n—2,n—3,-.-,2}.

THEOREM 1.

(6)  Pn—20)=C(n, g+ 5 C (n—1, k—1— i)y
k=*57])
(1) Pn—2-D=3Con—Lk—ipgr  (ks[2Z3]).

PrROOF. We shall prove only the relation (6). We first note that

P.(n—2k)= é Py 2/(0) C(n—2k—2+ 21, 7)p**+igt
=I+C(n—2, k)p"~*¢*,
where

I=f§ Py(0) C (n—2—2, k—l)pr—"+-'g" .

Using Proposition 4 and Lemma (iii), (iv)
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I=§$C(2l 1, i—1) C(n—2—2I, k—l)pr-r-i+égk+i-i
éCL1C(n 22, k—D)p ~*q*

z=; """*"lMC(Zl 1,1—1—h) C(n—2—2l, k—1I)
+C(n—2, k—1)p ¢t
=:§': C(n—1, k—h—1)p"* g+ C (n—2, k—1)p**g*
=h2 C(n—1, k—1—R)p**g+r 4 {C(n—1, k—1)
+C(n—2,k—1)}p"*¢"*.
Noting that
C(n—1, k—1)+C(n—2, k—1)+C (n—2, k)=C (n, k) ,

we have the relation (6).

4. Moments of S,
We write the factorial moments of S, as
m(n)=>18P,(s), t(n)=318(s—1)P,(s) .
Then it is easily seen that
m()=p—q, m(1)=2¢q
m2)=2(p—q),  m(2)=2p"+6¢".
Therefore
d(1)=4pq , d(2)=8pq .
In general, for =3 we have
THEOREM 2.
(8) mm)=m(n—1)+(p—q)(1+n(n—2)—n(n—2))

(9) m(n)=pmn—1)+2(p—q)m(n—1)—(p—q)(rs(n—2)—r}(n—2))
+2gmy(n—2)

where

)= jz:',) P._(0)24g"*,  k=0,1.
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ProoF. We first note that
P,(n)=pP,_(n—1),
P(s)=pP, (s—1)+qP,((s+1) (1=s=n-2),
P(—1)=qP._(0),
p—2)=¢qP,_(—2"), (!=1,2,---,m—8,n—-1).
Therefore
()= sP.(s)
—npP, _l(n—1)+'§ S[pP._i(s—1)+qP,_(s+1)]

n—3
—qP,(0)+ 3 (—2)qPoi(—27)+(~ 2 gPui(— 27 .
Denoting the summation of 5=0,1,...,n—4,n—2 by 3}, we have
n—1 n—1
m(n)=p ij) (T+1)P,(5)+q E, (I—1)P,(5)+29 X' (—2)P,_(—2)

=5 iPsi(§)+ (=) 5, Pacii) +H 1~ (0= D] 2 (—2)P,i(—2)
=m(n—1)+(p—a)(1+3,.) ,
where
der =3V (& —1)P,_(—2')
=:2: @2'—1)P,_,_(0)g'=n(n—2)—m(n—2) .

This completes the proof of (8).
In the similar way,

(M) =3 s(s—1)P,(s)

=n(n—1)pPos(n—1)+ 3] (s~ 1) [PPyi(s— 1) +aP_i(s-+ )]

+20P, (0)+20] 3 (—2)(~2—D)P.(-2)
+H(=2)(= 2P, (—2)]

=p 8 i+ DPus()+4S =D ~DPos(d)
+H142(—0)~3(p— )] 5 (—2)(— 2~ )P, (—2/)

=5 i~ DP () +20—0) 8 1Pa ) +20S, Pacs)
T3 (—2)(~ 2= P~ 2)+2p—0) 3 (~2)Pos(~2)
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+>Y [2(p—q)27(27+2)—3(p—)2/(2' +1) +2q] P,,_,(— 27)
=m(n—1)+2(p—qQ)u(n—1)—(p—q) X' 2/(2'-1)P,_(—2)
+2q[1->' P,_(—27)]

= puln—1)+ 2= Qpu(n—1)—(p—0) 2 2@~ DP,s- (0"
+20 3] Poos (007

This completes the proof of (9).

From Theorem 2 we obtain

mn)=pm(n—1)+(p—q)(1+38,-1)
=m(n—2)+(—q)(1+8,-2) +(@—q)(1+3,-,)
=m(n—2)+(p—q)(2+3,2+3.-1)

=u(@+(p—g)(n—2+5 0, .
Since
m(2)=2p"—2¢'=2(p—q) ,
then we have
w(n)=pi(n)+(p—q)d(n) ,

where p)(0)=(p—q)n is the expected value of gain in ordinary random
walk situation and

Am=310=5 3 @ ~Prr-(O)""
=Sie-1[ 3 POe.
For special references, we shall show the first 5 terms of 4(n).
48)=d=¢",
4(4)=[P(0)+ P,(0)lg*+3Py(0)¢’=(1+3q)¢*,

4(5)=[Py(0)+ P,(0)+ P,(0)]a*+ 3[ P(0) + P,(0)]¢* + T[ Po(0)]¢*
=(142p9)¢"+3¢*+7¢'=(1+5¢+5¢")¢* ,

4(6)=(1+5q+12¢*+8¢")¢*,
A(7)=(1+69+20¢"+¢*+33q")q* .

When p<gq, player with one-chance recovery strategy must incur
the additional risk (g—p)4(n) (4(n) is always positive!!). From the ex-
pression for 4(n) it is clear that



STOCHASTIC GAME WITH ONE-CHANCE RECOVERY

An)>4n—1) .

However, the inequality
(10) A(n)n>4(n—1)/(n—1)
does not always hold.

PROPOSITION 5.
(11) 7o(l)=[P(0)+m(—1)lg
(12) m(1)=[Py(0)+2r,(1—1)]g

ProorF. We shall show only the proof of (12).

i -1
m()—m(l—1)= P} P,_,(0)2'¢’*'~(p+q) =P (0)27g/+
i 1
=q{ 31 P (02— 3 P (0)2 ¢
i
—p P,_,(0)2'~'¢’
1
=P(0)g+(g—p) 12‘;1 P,_,(0)2/"'¢
=P(0)g+(g—p)r,(1—-1) .
THEOREM 3. When p=q the inequality (10) always holds.

PrROOF. We first note that

(n—1)4(n)—nd(n—1)
=(n—-1)[4(n)—4(n—1)]—4(n—-1)
>(n—3)[4(n)—4(n—1)]—4(n—1)

=(n—3) m(n—2)—m(n—2)]- & [m0)— (0]
=§ {[ry(n—2)—m(n—2)]— [z () —7(D)]} -
Consequently, it is sufficient to show that

[7(D) —7(D] - [m((— 1) — 7, (I —1)] >0 .
Using Proposition 5 we have
m(l)—m(l— 1)—[m(l) —mo(l—1)]

=Py(0)g+(¢— D)7 (l—1)—[P(0)g— (! —1)p]
=(g—p)m(l—1)+m(l—1)p .

The last expression is positive for p=q.
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Fig. 2. Graphs of 4(n)/n.

In Figure 2, we show the graphs of 4(n)/n for typical values of p.
Since

w(n)—p(n) _ 4(n) (p#q)
¢i(n)

and both g(n) and gi(n) have the same sign, then if p<gq, the addi-
tional risk rate of one-chance recovery strategy becomes seriously large.
On the otherhand, in the favorable case to Peter, the additional merit
of such strategy is not so large. Consequently, Peter should prefer
the ordinary game to the game with one-chance recovery strategy.
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